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Abstract: Mental workload during high-effort tasks is a crucial measure
of effective task performance. Maintaining cognitive demands within an
individual's capacity enables the effective performance of complex multi-
tasking. Conversely, surpassing this margin may lead to unpredictable
and suboptimal performance. This review explores human mental
workload assessment across real-world tasks like aircraft piloting, vehicle
driving under challenging conditions, and automated power plant
monitoring. Both subjective and objective monitoring methods are
examined: subjective methods include the widely used NASA-TLX,
while objective methods cover EEG and eye-tracking measures during
task execution. Findings from these methods are correlated with overall
task performance outcomes. Real-time workload monitoring provides
distinct advantages in critical settings; for instance, if an operator's
cognitive capacity is reached, alerts could be triggered, or task demands
adjusted to alleviate overload. Finally, a multi-modal analysis of the
literature is presented, comparing the effectiveness of various monitoring
technologies across different task domains to guide future research
directions.
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Introduction
Mental Workload (MWL) is the cognitive effort

expended to meet the demands of a specific task. The
assessment of mental workload is vital for accurately
predicting operator performance and the resulting system
outcomes. Understanding mental workload is essential
for enhancing human-machine interactions and detecting
factors contributing to elevated mental workload. MWL
assessment information can be used to enhance
performance by mitigating stress, fatigue and
performance declines caused by excessive MWL.
Neuroergonomics (Safari et al., 2024) combines
neuroscience, cognitive psychology and human factors to
investigate brain activity within workplace settings (Di
Flumeri et al., 2019). Cognition fulfills a vital role in in
reasoning and problem-solving, involves billions of
neurons communicating through synapses in the brain
(Sweller, 2011; Sporns et al., 2000). MWL, influenced
by task complexity, time constraints and distractions,
affects task performance (Dyke et al., 2015).
Maintaining an optimal cognitive workload, a level of
workload that can be managed by a human is vital for
efficiency in real-world tasks (Paas and Van Merriënboer,

1994; Parasuraman, 2003). varying with tasks such as
numerical operations or reading, which challenge
working memory (Ladekar et al., 2021). MWL Plays a
critical role in human-machine interaction and scales
with information presented, available processing time
and other tasks (Ramakrishnan et al., 2021; Paas et al.,
2003). Assessing cognitive workload would be beneficial
in tasks such as military operations (Diaz-Piedra et al.,
2020; Wu et al., 2022), air traffic control (Aricò et al.,
2016; Izadi Laybidi et al., 2022; Li et al., 2023) and
vehicle driving (Abd Rahman et al., 2020; Yang et al.,
2020; Low et al., 2021), where excessive workload can
lead to errors. Tasks vary in cognitively demanding
contexts. For instance, visual tasks require more MWL
compared to auditory tasks (Amon and Bertenthal,
2018). Short-term information processing relies on
working memory, while long-term memory supports
extended information retention, retrieval and use
(Burgess and Hitch, 2005). The varying task cognitive
demand presents challenges to assess MWL effectively.

Automation in the workplace heightens the need for
real-time MWL assessment. As automation increases,
human operators are faced with MWL-intensive roles
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like system monitoring and troubleshooting (Mouloua
and Hancock, 2019). The shift in task focus resulting
from automation often involves continuous passive
monitoring, with human intervention triggered only by
exceptional conditions. Despite or perhaps due to
automation, environments with high levels of automation
continue to encounter performance variability and human
error owing to limitations in cognitive resources
(Borghini et al., 2014; Zanetti et al., 2022). This review
paper examines current practices in cognitive workload
assessment and integrates insights from psychology,
neuroscience, engineering and computer science, aiming
to provide a holistic understanding that will benefit
future studies and practice. The review identified
significant contributions by using PRISMA guidelines.
As a result, this review synthesizes existing research,
explores methodologies and delves into the definitions
and assessment mechanisms for MWL. Applications
across diverse domains such as military operations and
air traffic control are analyzed, highlighting the critical
role of workload assessment in enhancing human
performance and reducing errors in automated
environments. By considering various approaches from
existing literature, this review seeks to advance
understanding and practices in cognitive workload
management for real-world applications. The use brain
activity data, as measured with ElectroEncephaloGraphy
(EEG) figures prominently in MWL assessment. EEG-
based approaches may be augmented with other
physiological measures, as outlined below.

Materials and Methods
This review is based on a comprehensive survey of

peer-reviewed literature retrieved from reputable
academic databases and digital libraries. The selected
sources span a range of disciplines relevant to mental
workload, ensuring both foundational research and recent
developments are included. Studies were chosen to
reflect diverse methodologies and perspectives in
cognitive workload assessment, allowing for a thorough
and interdisciplinary understanding of the topic.

Selection Process and Scope

The review aimed to capture the breadth and depth of
the field of cognitive workload monitoring and
assessment, accommodating its inherently
interdisciplinary nature. To achieve this, the following
steps were taken:

Data Collection Strategy

Relevant studies were identified using targeted search
terms, such as cognitive workload, mental workload
assessment, neuroergonomics, EEG-based workload
monitoring and workload in aviation and aerospace.
Boolean operators were applied to refine searches,
ensuring the inclusion of highly relevant literature.

Time Frame

The primary focus was on research published in the
past decade to highlight contemporary advancements.
However, seminal contributions published before this
period were also incorporated where they provided
foundational insights or historical context.

Inclusion and Exclusion Criteria

Studies were included if they explicitly addressed
methodologies for monitoring or assessing cognitive
workload, offered experimental evidence, or explored
interdisciplinary applications. Papers were excluded if
they lacked sufficient methodological detail, were not
peer-reviewed, or presented duplicate findings.

Data Evaluation and Methodology

The material selected emphasizes the impact and
significance of published research in this field,
considering both theoretical advancements and practical
applications. A high-level summary of the scope, data
and methodologies is provided to guide readers through
the contributions of the reviewed studies. Special
attention was given to identifying and discussing cross-
disciplinary approaches that integrate neuroscience,
human factors, ergonomics and engineering perspectives.

PRISMA Chart Overview

To ensure transparency and reproducibility, the
review process is detailed in a PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses) chart, shown in Figure (1).

Fig. 1: The PRISMA Chart for the Current Review Paper

http://192.168.1.15/data/13206/fig1.jpeg
http://192.168.1.15/data/13206/fig1.jpeg
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This chart illustrates the workflow for paper
selection, including:

The total number of studies identified through
initial searches
The screening process based on titles and abstracts
Excluded papers with reasons for exclusion
The final set of studies included after a full-text
review

By combining systematic searching with rigorous
selection criteria, this review offers a comprehensive
exploration of cognitive workload monitoring and
assessment methods, providing valuable insights into this
rapidly evolving field.

Defining Mental Workload
Mental workload (MWL) refers to the cognitive

resources utilized during task performance (O’Donnell,
1986). Insufficient resources can cause stress and hinder
performance (Paxion et al., 2014; Heard et al., 2018).
Tasks involving potentially risky human-machine
interaction, like piloting aircraft or operating unmanned
vehicles, exhibit particularly high MWL potentially
compromising safety (Jaquess et al., 2018). Of note,
research shows performance declines with both high
(overload) and low (underload) MWL levels (Zarjam et
al., 2013; Yi et al., 2019; Bagheri and Power, 2020;
Sammer et al., 2007; Brookhuis and De Waard, 2010;
Ryu and Myung, 2005; Calabrese, 2008). Assessing
MWL is crucial for optimizing user interface design to
maintain an appropriate workload balance (Borghini et
al., 2016).

Assessing Mental Workload
Interdisciplinary methods of assessing MWL are

crucial for characterizing and predicting human
performance (Young et al., 2015; Parasuraman et al.,
2008), impacting high-risk task environments (Jou et al.,
2009) and task environments requiring sustained
reliability (Carswell et al., 2005; Yurko et al., 2010).
MWL in this review refers to the cognitive effort
subjectively perceived by subjects, usually augmented by
EEG and other physiological information (Noyes et al.,
2004; Luximon and Goonetilleke, 2001; Orlandi and
Brooks, 2018). MWL can be assessed using various
methods (Heine et al., 2017; Averty et al., 2004; da
Silva, 2014):

1. Subjective measures like the NASA Task Load
Index (NASA TLX) (Wang et al., 2005; Hernández-
Sabaté et al., 2022) and Subjective Workload
Assessment Technique (SWAT) (Hart and
Staveland, 1988)

2. Objective measures based on physiological
responses such as EEG and ElectroCardioGram
(ECG) (Rim et al., 2020)

3. Task performance measures like response time and
task accuracy (Astrand, 2018; Hogervorst et al.,
2014; Zhang et al., 2017)

Qualitative vs. Quantitative Measures of Mental
Workload

Qualitative methods evaluate mental workload by
exploring distinct characteristics without relying on
objective numerical quantification (Bernard, 2017).
These approaches offer depth and context, helping to
interpret quantitative findings and describe phenomena
across diverse settings often at the expense of
reproducibility (Sofaer, 1999; Palinkas et al., 2011). By
allowing individuals to express their experiences freely,
without being confined to predefined categories or
terminologies, qualitative methods offer a nuanced
understanding of mental workload. Qualitative research
addressing MWL-related phenomena is typically
flexible, unstructured, and subjective, whereas
quantitative research aimed at testing specific hypotheses
tends to be more stable, structured, and objective (Longo
et al., 2022).

Subjective Measurements

Conventional methods for evaluating cognitive
workload often use subjective techniques (Reid and
Nygren, 1988), such as questionnaires or interviews. In
such scenarios, participants assess the mental effort
required for tasks (Kruger and Doherty, 2016). These
tools combine subjective and objective measures to
monitor MWL. Subjective assessment typically involves
participants completing questionnaires based on stimuli
or time intervals (Balta et al., 2024). However, reliance
on subjective participant opinions can yield unreliable
and non-repeatable results (Hancock and Chignell,
1988). To address these issues, multidimensional
approaches like the NASA TLX and SWAT (Roca-
González et al., 2024) have been developed for
comprehensive mental workload assessment.

National Aeronautics and Space Administration Task
Load Index

The NASA-TLX tool is widely used for subjective
workload assessment (Hart, 2006). NASA-TLX includes
six subscales: mental demand, physical demand,
temporal demand, own performance, effort and
frustration, each assessed on a scale (Wang et al., 2019;
Wu et al., 2021; Lau-Zhu et al., 2019). Scores range
from 0 to 100, with higher scores indicating higher
workload (Diaz-Piedra et al., 2019), derived from ratings
on a 0-10 visual scale. The effort subscale assesses
consistency in engagement (Yu et al., 2015; Venables
and Fairclough, 2009). Weighted averages across
dimensions provide an overall workload score (Guan et
al., 2022). ANOVA with repeated measurements
identified cognitive load as a primary factor influencing
NASA-TLX scores (Qu et al., 2020). The NASA-TLX
has been employed to gauge pilot mental workload and
correlatation with task performance scores under
different workload conditions, revealing insights into
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performance, attention and working memory strategies
(Mohanavelu et al., 2020). Pilots consistently reported
higher workload under high-difficulty compared to low-
difficulty conditions when using the NASA-TLX
(Verdière et al., 2019). Subjective assessments of task
difficulty and performance usually follow task
performance. As a result, such assessments lack temporal
resolution, limiting the capture of dynamic or transitory
features in mental workload (Drouin-Picaro et al., 2017).

Subjective Workload Assessment Technique (SWAT)

The Subjective Workload Assessment Technique
(SWAT) captures the multidimensional aspects of Mental
Work Load (MWL) by having individuals rate the time,
mental effort and emotional stress required for a task.
Similar techniques, such as NASA-TLX, also assess
MWL using multidimensional approaches. While these
tools provide valuable diagnostic information about
overall mental workload, they do not offer detailed
insights into the specific attentional resources needed for
different task levels (Alotaibi et al., 2024).

Objective Measurements
Objective measurements provide useful

augementation to subjective methods for continuous and
objective MWL assessment. Examples of objective
measurements include ECG for heart activity (Chen et
al., 2017), electromyography for muscle activity,
respiration (Gagnon et al., 2016; Kroupi et al., 2014;
Aydemir, 2017; Hou et al., 2020), eye tracking (Glaholt,
2014) and EEG for brain activity (Lee et al., 2020),
among others (Rim et al., 2020). These measurements
can provide insight to subject’s physiological state and
may be used to predict sustained or instantaneous MWL.
Heart Rate Variability (HRV), another orjective
measurement, is correlated to MWL (Fairclough et al.,
2005). Ocular features also respond to changes in
workload (Van Orden et al., 2001).

EEG is particularly valuable for its direct
measurement of brain activity, offering accurate
workload assessments with lower reaction times
(Reinerman-Jones et al., 2014; Matthews et al., 2015).
EEG headsets, though sensitive to movement artifacts,
are preferred for their practicality and high temporal
resolution (Cassani et al., 2014). Despite technical
challenges collecting "clean" EEG data, EEG remains
the most popular physiological method for assessing
mental workload (Suk and Lee, 2013; Liu et al., 2017).
EEG measures brain electrical activity via scalp
electrodes, with brain activity analyzed across frequency
bands. The high temporal resolution of EEG captures
subtle variations in mental states, such as vigilance and
cognitive workload (Zarjam et al., 2013). EEG is a key
method for measuring the brain’s electrical activity
through electrodes placed on the scalp (Mihajlovicet al.,
2015; Hoppe et al., 2015).

Studies have shown that EEG power in various
frequency bands are sensitive to fluctuations in cognitive

demand (Petkar et al., 2009; Antonenko et al., 2010;
Pavlov and Kotchoubey, 2017; Friedman et al., 2019).
For instance, Cheng and Hsu (2011) used EEG data to
estimate workers’ fatigue, finding that increased theta
band activity indicates decreased attention levels.
Borghini et al. (2012) developed an EEG-based cerebral
workload index to assess drivers’ mental efforts under
varying task difficulties, based on EEG power spectra
increases. Schrauf et al. (2011) identified EEG alpha
spindles and alpha band power as indicators of task
performance during secondary auditory tasks, suggesting
that EEG power levels are strong indicators of cognitive
workload variations (Hebbar et al., 2021).

EEG bands included delta (0-4 Hz), theta (4-7 Hz),
alpha (8-12 Hz), beta (13-30 Hz) and gamma (30-100
Hz) (Saby and Marshall, 2012). Alpha and theta band
activity is commonly used to measure cognitive load,
with alpha activity linked to idling, arousal and
workload. Decreased alpha activity correlates with
increased mental load, stress and anxiety (Sauseng et al.,
2009; Iqbal et al., 2019). Alpha waves increase during
relaxation and enhance autonomic responses to stimuli
while theta waves play a role in daydreaming and sleep,
enhancing creativity and reducing pre-performance
anxiety (Choi et al., 2018). Beta waves are linked to
attention-related mental activities (Engel and Fries,
2010; Howells et al., 2010; Murata, 2005), Gamma
waves are involved in cognitive processing, learning and
memory (Wang and Wang, 2013). EEG is an effective
tool for measuring mental workload and monitoring
cognitive states by capturing the brain’s electrical
activity directly (Seppänen and Fisk, 2006). Changes in
theta and alpha activity are associated with higher brain
functions, such as working memory and executive
control (Fink et al., 2005; Stipacek et al., 2003; Morton
et al., 2022). As mental workload increases, theta band
activity in the frontal lobe rises, while alpha band
activity in the parietal lobe declines (Holm et al., 2009;
Lean and Shan, 2012). EEG signals across different
frequency bands offer valuable insights into various
cognitive states and task conditions. Increased theta band
power is linked to greater working memory demands (De
Smedt et al., 2009; Liu et al., 2019), while beta band
activity relates to task-specific cognitive effects,
including sensory and language processing, as well as
motor effects (Ghosh Hajra et al., 2018). Conversely,
alpha band activity represents inhibitory mechanisms in
the brain, with reduced alpha activity indicating
increased neuronal excitability and active information
processing (Klimesch, 2012). Task-relevant brain regions
show decreased alpha power, while non-essential regions
exhibit increased alpha activity, especially as task
difficulty rises (Sauseng et al., 2009; Hajra et al., 2020).

Using EEG for Assessing Mental Workload

Electroencephalography (EEG) offers several
advantages, such as versatility, non-invasiveness and
ease of setup, making it a widely used method for
monitoring brain activity (Ding and Lee, 2013; Kwak
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and Lee, 2019). Despite these benefits, EEG is limited by
a low signal-to-noise ratio, as signals can be
contaminated by eye blinks, muscle contractions and
electronic devices (Kwak et al., 2015; Górecka and
Walerjan, 2011). Additionally, individual differences in
EEG characteristics can affect reliability (Lee et al.,
2019). To mitigate these issues, studies often combine
EEG with Peripheral Physiological Measures (PPMs)
such as ECG, respiration and EDA, enhancing accuracy
and reliability (Aarsland et al., 2017; Kamei et al., 2010;
Ahn et al., 2016). High mental workload is associated
with increased EEG power in the theta band and
decreased power in the alpha band. As mental fatigue
sets in, increases in theta, delta and alpha bands can be
observed. While EEG has broad applications, its
potential in improving aircraft operations has been less
explored (Borghini et al., 2014). Effective analysis of
EEG signals involves time-frequency analysis to identify
power distribution across different frequencies and
cortical locations. The proposed analysis pipeline focuses
on delta, theta, alpha, beta and gamma bands (Nunez and
Srinivasan, 2006). Low-cost and wireless EEG devices
have made the technology more accessible, yet its
application remains largely within laboratory settings.
Tight clamping of headsets can cause discomfort,
limiting continuous measurement of mental workload
(Wang et al., 2019). Changes in 141 mental workloads
are effectively measured by spectral power analysis of
theta and alpha bands (Iqbal et al., 2020). However,
individual differences in thoughts and emotions can
complicate cross-task classification, necessitating a
robust approach for reliable analysis (Ladekar et al.,
2021).

Types of EEG Devices in Mental Workload Studies

EEG technology is categorized into four types by
Bleichner and Debener, 2017; Mihajlovic et al., 2015:

Mobile EEG: Allows for movement during signal
acquisition, suitable for naturalistic settings and
ambulatory monitoring
Portable EEG: Can be easily carried but may not
tolerate movement as well as mobile EEG
Wearable EEG: Self-applied and worn with regular
clothing, emphasizing convenience and everyday
use
Transparent EEG: Highly unobtrusive, nearly
invisible and comfortable, combining portability
with motion tolerance for prolonged use

Wireless EEG refers to devices utilizing wireless
protocols for signal acquisition, applicable across
mobile, portable, wearable, or transparent EEG
categories (Suk and Lee, 2013). Recent advancements in
mobile EEG systems, such as Neurosky’s Mindwave and
InteraXon’s Muse, have enhanced accessibility but face
challenges like comfort and integration into ergonomic
designs. These devices, often employing dry electrodes
and wireless transmission, are suitable for non-clinical

studies requiring ecological validity despite limitations in
electrode count and signal quality compared to
traditional EEG setups (Petkar et al., 2009; Iqbal et al.,
2020). Emerging System-On-a-Chip (SoC) technologies
are furthering the development of wearable EEG devices
for commercial applications, promoting user-friendly
interfaces and passive Brain-Computer Interface (BCI)
applications (Suk and Lee, 2013).

Scientific Domains That Can Benefit from
Mental Workload Assessment

Mental workload assessment is crucial in high-
demanding fields such as military operations, nuclear
power plant monitoring, air traffic control and driving to
optimize user performance and prevent critical errors
(Guan et al., 2022).

Measuring Mental Workload in Aerospace

Challenging flight conditions can significantly impact
pilots’ cognitive levels and their ability to control flights,
evidenced by changes in multiple physiological measures
(Gentili et al., 2014). Pilots face increased cognitive load
due to complex environmental factors and rapid
processing of visual information, which can impair task
performance (Wanyan et al., 2014). Experiments
utilizing high-fidelity 6-degree-of-freedom flight
simulators provide insights into pilots’ physiological
responses during flight simulations, offering a realistic
environment for research and training purposes (Wu et
al., 2022). Traditionally, pilots’ workload during flights
is evaluated using expert interviews and subjective
questionnaires like rating scales. However, these
methods are problematic: questionnaire assessments vary
subjectively among individuals and interrupt flight
operations, impractical in real-time. Moreover, they only
capture workload at specific times, missing continuous
task-related workload changes and physiological states
(Li et al., 2022).

To address these challenges, psychophysiological
measurements such as electrocardiogram-derived heart
rate variability, electrodermal activity, pupil size and
blink rates offer more objective and real-time insights
into pilots’ workload and cognitive states during flight
operations (Wilson, 2002; Fritz et al., 2014).

Psychophysiological measures are extensively
studied for assessing workload in operational
environments (Hajra et al., 2020; Gateau et al., 2018).
These measures encompass brain-related metrics like
EEG, ERP, MEG and brain metabolism, ocular measures
such as fixations, scan path, blinks and pupil diameter,
cardiac measures including HRV and facial expression
analysis. These metrics offer objective and time-sensitive
insights into pilots’ cognitive and physiological states.
However, integrating these measures with performance-
based parameters in pilot studies remains underexplored
(Hebbar et al., 2021).
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Recent advancements include minimally invasive
sensors like screen-mounted and head-mounted eye
trackers, watch-type blood pressure monitors (Carmen et
al., 2006), necklace-type devices for cardiac monitoring
(Penders et al., 2011), wearable devices for heart rate and
blood pressure monitoring (Gu et al., 2009) and ring-
type devices for heart rate and temperature
measurements (Wu et al., 2011). These technologies
enable continuous monitoring of cognitive workload in
safety-critical domains (Iqbal et al., 2020). Studies
utilizing physiological measures have gained popularity
for their ability to objectively track autonomic and
central nervous system changes associated with cognitive
workload, moving beyond subjective assessments
(Wilson, 2000). Changes in EEG frequency bands,
particularly theta (4-8 Hz) and alpha (8-11 Hz), correlate
with higher cognitive functions such as working memory
and executive control, providing valuable insights into
workload dynamics (Sauseng et al., 2010; Herweg et al.,
2020; Wu et al., 2021).

Iqbal et al. (2020) presented an innovative EEG-
based approach to evaluate cognitive workload among
control room operators by examining the alignment
between operators' mental models and actual system
behavior. This study introduces a technique utilizing S
Ɵ(ω) to measure the degree to which participants’ mental
models correspond with real-time process behaviors
during control tasks. Results indicate that lower S
Ɵ(ω)values correspond to effective task management and
reduced cognitive workload when mental models align
closely with process dynamics. Conversely, higher S
Ɵ(ω)values point to mismatches and increased workload.
This method achieved 83.9% accuracy in population
studies for identifying task outcomes, underscoring its
effectiveness in assessing cognitive workload within
control room settings. Similarly, Ke et al. (2021)
investigated the impact of ambient noise on cognitive
and task performance using portable EEG devices,
focusing on safety-critical tasks like hazardous hole
identification under different noise conditions. The
research processed EEG data to mitigate artifacts through
filtering and independent component analysis.

Wavelet decomposition extracted alpha band energy
and asymmetry indices for stress assessment. Statistical
analysis with Kruskal-Wallis ANOVA revealed
significant noise effects on cognitive indicators. Meta-
analysis synthesized EEG and behavioral metrics across
noise conditions, while meta-regression identified
predictors of cognitive workload and stress responses,
highlighting noise’s nuanced impact and suggesting
strategies for optimal noise management in real-world
contexts (Ke et al., 2021).

Application of Mental Workload in Psychology

Ladekar et al. (2021) developed a method using EEG
signals from dry electrodes to classify visual cognitive
workload. Participants engaged in tasks involving

counting colored balloons to assess four levels of
workload intensity. Gupta et al. (2021) estimated
cognitive load during cross-task performance using
custom visual tasks involving geometric shapes and
colored balloons, analyzing EEG signals through time
windowing and smoothing techniques. Shaw et al.
(2018) explored ERP and spectral changes as indices of
cognitive workload during locomotion tasks of varying
difficulty (easy vs. hard) and conditions (seated vs.
walking). Yim et al. (2022) developed a model
combining EEG data and NASA-TLX scores to estimate
mental workload during visualization tasks. Roy et al.
(2016) compared EEG markers for workload estimation
using tasks like the Sternberg task, emphasizing spectral
measures and ERPs. Radüntz (2020) investigated
workload across cognitive tasks like the Grooved
Pegboard Test (GPT) and Tower of Hanoi (TOH),
highlighting workload variations based on task
complexity and individual factors like handedness and
working memory capacity. Belkhiria and Peysakhovich
(2021) proposed using EEG-EOG headsets to objectively
measure workload via eye movements and brain activity,
assessing complexity levels across auditory, memory and
counting tasks. Taori et al. (2022) classified workload
using EEG temporal dynamics with methods like AR
modeling and HMM, showing promise for continuous
engagement assessment. These studies underscore the
diverse applications of EEG and psychophysiological
measures in psychology, offering insights into cognitive
workload assessment across various tasks and
conditions. This section reviews diverse methodologies
utilizing EEG and psychophysiological measures to
assess cognitive workload in psychology. Studies range
from classifying workload levels during visual tasks
using EEG signals to analyzing ERP and spectral
changes during locomotion tasks of varying difficulty.
These studies underscore the diverse applications of EEG
and psychophysiological measures in psychology,
offering insights into cognitive workload assessment
across various tasks and conditions. Table (1) describes
the information of mental workload assessment in
psychology.

Yin et al. (2019) developed the Transfer Dynamical
AutoEncoder (TDAE), a novel autoencoder designed to
capture dynamic EEG features and individual
differences. TDAE utilizes transfer learning across
datasets from process control tasks and emotional stimuli
responses. In tasks involving Auto CAMS, managing
cabin air quality, TDAE significantly outperformed
existing machine learning models, demonstrating
superior classification accuracy when optimized with
appropriate hyper parameters. Puma et al. (2018) studied
cognitive workload in multitasking environments using
EEG. They observed increased theta and alpha rhythms
correlating with higher task engagement, plateauing with
three to four tasks. EEG, along with HEOG, VEOG and
pupil size, assessed tasks like gauge monitoring,
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tracking, letter detection and mental arithmetic. The
study used EEG signal processing and meta-analytic
methods to assess cognitive workload during
multitasking, finding significant increases in Nasa-Tlx
scores (F (3,57) = 74.56, p < 0.001) and pupil size ( F
(3,57) = 21.57, p < 0.001) with task complexity.
Performance scores (F (3,57) = 22.24, p < 0.001) varied
significantly, grouped into three distinct categories by
cluster analysis. Theta power increased with task
demands, plateauing, while alpha power unexpectedly
rose with task complexity, emphasizing EEG’s role in
understanding multitasking cognitive workload and
performance. Choi et al. (2018) proposed EEG-based
Workload Index (EWI) for measuring mental workload
in digitalized control rooms, such as nuclear power
plants. Their findings validated EWI’s efficacy over
subjective methods during scenarios like PRZ safety
valve malfunctions. Li et al. (2019) introduced a
wearable EEG method to screen mental fatigue in
construction workers, using spectral parameters and
Stroop tests to quantify fatigue levels based on reaction
times and performance metrics. Xing et al. (2020)
investigated physical and mental fatigue induction in
construction workers, finding that high physical fatigue
accelerates mental fatigue onset. Wearable EEG
monitored tasks involving manual handling and mental
fatigue induction through picture identification tasks.
Fan et al. (2020) studied EEG and ECG responses to
varying task difficulty levels in visual monitoring tasks,
developing a model that correlates task complexity with
mental workload indicators like reaction times and

accuracy. Argyle et al. (2021) studied the effects of task
demand, fatigue and attention degradation on
physiological responses such as heart rate, breathing rate,
nose temperature and hemodynamic activity in the
prefrontal cortex and middle temporal gyrus. They found
that fatigue significantly influenced heart rate, breathing
rate and hemodynamic response compared to baseline
during a visual search task. However, task demand only
showed slight effects on breathing rate and nose
temperature, with no significant impact on heart rate or
hemodynamic response. Tang et al. (2021) explored the
precision of mental workload classification using
Riemannian log map of spatial covariance combined
with event-related potentials (ERPs) from a single-
stimulus paradigm. Participants controlled a drone in a
flight simulator, adjusting mental workload levels by
varying simulator difficulty. Dehais et al. (2019)
investigated the use of a portable EEG system with six
dry electrodes to estimate pilot workload during real
flight conditions. They observed decreased P300
amplitude as task difficulty increased, suggesting
reduced auditory processing capacity during critical
flight phases. Statistical analyses included a 3-way
repeated measure ANOVA for ERPs with factors load
(Low, High), Type of sound (Frequent, Target) and
Electrodes (Fz, Cz, Pz, P3, P4, Oz) and a 2-way ANOVA
for spectral band powers across delta, theta, alpha and
beta bands at electrodes Fz, Cz, Pz, P3, P4 and Oz.
EEGlab bootstrap test (10,000 iterations) was employed,
offering robustness without assuming normal distribution
or homoscedasticity.

Table 1: Describes the information of mental workload assessment in psychology

References Country Simulation Section Participants Type of
Measurement

Type of EEG Device

Guan et al. (2022) China N-Back 16 EEG NeuroScan system
Drouin-Picaro et al.
(2017)

Canada Mental Rotation, N-Back, Visual
Search

16 EEG, ECG The Muse (InteraXon,
Canada)

Liu et al. (2017) USA N-Back 21 EEG EOG Neuroscan Nuamp
Hebbar et al. (2021) India Auditory N-back, Visual N-back,

Auditory Arithmetic Test
33 EEG Emotive Inc

Radüntz (2017) Germany Back, Sternberg, Stroop, AOSPAN 54 EEG EMOTIV EPOC+
Liu et al. (2017) USA N-Back 13 EEG Neuroscan Nuamp
Samima and Sarma
(2023)

India N-Back 10 EEG Ag/AgCl, RMS, India

Mun et al. (2017) Korea N-Back 16 EEG BIOPAC Systems Inc
Sadeghian et al. (2022) Iran N-Back 120 EEG Portable g-Tec Signal
Pergher et al. (2019) Belgium N-Back 38 EEG SynAmpsRT device
Dimitrakopoulos et al.
(2017)

Singapore N-Back 20 EEG ANT waveguard system

Aghajani et al. (2017) USA N-Back 17 EEG Bio-Signal Group Inc.
(Brooklyn, New York)

Kutafina et al. (2021) Germany/Poland Fixed-base, Go/No-go task 23 EEG EMOTIV Inc.
Zhang et al. (2019) China Spatial N-back, Arithmetic Tasks EEG SYMTOP Instrument Co. Ltd.

Gu et al., 2022; Roca-González et al., 2024
developed a theoretical framework linking mental
schema evolution and cognitive workload using EEG

metrics. Their research employed a simulated UAV flight
task and demonstrated that highlighted changes in frontal
theta, parietal alpha and central beta power spectral
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density corresponding to varying mental workload
stages. Statistical analysis was performed using
MATLAB R2018b with EEGLAB 2020, validated in
RStudio (version 1.4). A two-way repeated-measures
ANOVA analyzed frontal theta, parietal alpha, central
beta PSD, subjective and behavioral data, with Geisser-
Greenhouse corrections for sphericity violations. Paired
t-tests with Bonferroni corrections identified the main
effects. Li et al. (2023) proposed a methodology to
analyze neurophysiological patterns related to Situation
Awareness (SA) and detect instances of SA loss in air
traffic control operators (ATCOs) under different
workload conditions. Their findings underscored distinct
neurophysiological responses during normal and high
workload scenarios.

Plechawska-Wójcik et al. (2019) utilized machine
learning and EEG features to estimate cognitive
workload during arithmetic tasks. They identified
significant correlations between workload levels and
Beta wave power across central and parietal brain
regions. Statistical analysis was performed using
Statistica 13, Matlab and R, with a significance level of
5%. A repeated-measures ANOVA analyzed 285 EEG
features across 19 electrodes, 5 frequencies and 3
cognitive workload levels in 11 subjects. Spearman
correlation coefficients determined relationships between
EEG features and cognitive workload, revealing
significant effects for workload, location and frequency.
Post hoc tests confirmed stronger EEG wave power
during cognitive tasks than relaxation. Bagheri and
Power (2020) investigated the impact of mental
workload and stress on EEG-based detection accuracy.
Their findings emphasized reduced classification
performance when training and testing data differed in
workload and stress levels. Wang et al. (2019) explored
the use of facial infrared thermography to detect mental
workload during cognitive tasks. They identified
moderate correlations between facial skin temperature
and mental workload, varying across facial regions. This
study used facial skin temperature and random forest
classifiers to predict mental workload across six facial
regions, optimizing hyper-parameters via grid search and
assessing performance with leave-one-out cross-
validation. Results showed prediction accuracies of 45%
± 9% (slightly cool), 57% ± 9% (neutral) and 44% ± 9%
(slightly warm), indicating moderate accuracy compared
to EEG-measured workload. Discussion noted challenges
like short tasks, small datasets and task variability
influencing facial thermography. Future work should
focus on extending task durations, increasing task
difficulty and improving camera capabilities for more
reliable predictions. Kosti et al. (2018) examined the
potential of mobile EEG scanners to monitor mental
workload in programmers during task performance.
Results suggested applications in improving training and
performance in software development. Wu et al. (2021)
investigated how design principles of online courses
affect mental workload using physiological measures and

machine learning techniques. Their findings highlighted
the role of multimodal physiological features in
accurately classifying workload induced by different
course designs. Andreessen et al. (2021) explored a
passive brain-computer interface’s ability to predict
mental workload based on EEG signals during tasks of
varying difficulty and presentation speeds. Their study
suggested promising applications for personalized user
models. So et al. (2017) investigated frontal theta
activity as a potential biomarker for mental workload
using a mobile EEG system across multiple cognitive
tasks. Findings suggested this is a consistent indicator of
workload across different task types.

To summarize, the application of EEG and
psychophysiological measures in psychology spans
various methodologies to assess cognitive workload.
Studies utilize EEG signals for tasks like visual cognitive
workload classification, cross-task performance analysis
and ERP exploration during locomotion tasks. These
approaches underscore EEG’s versatility in capturing
workload variations across diverse psychological tasks,
enhancing understanding and measurement precision in
cognitive workload assessment across different
conditions and applications.

Application of Mental Workload in Healthcare

Wang et al. (2019) investigated assessing cognitive
and behavioral states in surgical trainees during robotic
surgeon training using the da Vinci Skill Simulator.
Results indicated that monitoring cognitive states during
training could enhance surgical performance and reduce
errors during surgeries. Watson et al. (2019) explored the
effects of acute consumption of blackcurrant juice on
mood and attention using EEG. They found that
polyphenols in the juice modulated prefrontal cortex
activity in young adults, influencing cognitive
performance. Murugesan et al. (2022) assessed mental
workload in depressive disorder patients using single-
channel EEG during visual-motor tasks. Their findings
highlighted differences in frontal brain activity related to
task complexity and perceived difficulty in patients.
Shafiei et al. (2020) developed an EEG-based method to
objectively evaluate mental workload during Robot-
assisted Surgery (RAS) training. Their model
outperformed traditional methods, offering a more
accurate assessment of workload for surgical trainees.

Morales et al. (2019) studied prefrontal beta power as
an indicator of surgical workload complexity in
laparoscopic surgery. Their research underscored the
utility of EEG in assessing cognitive demands during
surgical procedures. Liu et al. (2020) investigated EEG
markers for Visually Induced Motion Sickness (VIMS)
using a driving simulator. Their findings suggested
varying susceptibility to VIMS among individuals,
emphasizing the need for personalized assessment
approaches. Blackburn et al. (2018) used a quantitative
EEG method to detect abnormalities in Alzheimer’s
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Disease (AD) patients. Their study revealed significant
differences in brain synchronization patterns between
AD patients and healthy controls, particularly during
different states of rest. Kutafina et al. (2021) examined
mobile EEG’s ability to track mental workload during
cognitive tasks. They demonstrated its effectiveness in
distinguishing workload levels and capturing task-
induced variations in EEG data, suggesting its potential
for evaluating cognitive training interventions. The
application of EEG in healthcare reveals its diverse
utility in assessing mental workload across clinical
contexts. Studies highlight EEG’s effectiveness in
enhancing surgical training by monitoring cognitive
states and performance during robotic surgery
simulations. Additionally, EEG proves valuable in
evaluating mental workload in depressive disorder
patients and assessing cognitive demands during
laparoscopic surgery, underscoring its potential for
personalized healthcare interventions and diagnostic
applications in conditions like Alzheimer’s Disease and
Visually Induced Motion Sickness.

Application of Mental Workload in Aviation and
Transportation

Liu et al. (2020) compared physiological signals and
vibration artifacts in response to task difficulty using the
NRC Bell 205 helicopter’s fly-by-wire system. ECG-
based regressors showed stronger correlations with task
parameters, suggesting ECG as a reliable indicator of
physiological response. Abd Rahman et al. (2020)
developed a system to monitor ental workload in aging
drivers during real road conditions. EEG data revealed
significant changes in theta and alpha activity, indicating
workload variations with driving complexity. The study
used repeated measures ANOVA to analyze EEG and
driving performance across different complexities.
Pearson correlation explored relationships between
NASA-TLX scores, EEG and Overall Driving
Performance Scores (ODPS). Multiple linear regression
predicted ODPS from NASA-TLX and EEG, revealing
workload effects on aging drivers’ performance. Fan et
al. (2018) used a driving simulator to study mental
workload in individuals with Autism Spectrum Disorder
(ASD). EEG data highlighted power features as effective
indicators of engagement during driving tasks. Di Di
Flumeri et al. (2019) assessed mental workload in car
drivers using EEG, demonstrating real-time workload
measurement feasibility for adaptive automation
systems. Choe et al. (2016) explored transcranial Direct
Current Stimulation (tDCS) effects on flight simulator
training, emphasizing timing’s role in enhancing learning
and performance. Yang et al. (2020) studied the impact
of directional road signs on driver workload using a
driving simulation system, revealing differential effects
based on sign complexity. Liu et al. (2020) developed an
EEG-based evaluation system for seafarers in maritime
simulators, showing varied performance outcomes based
on EEG assessments. Wanyan et al. (2018) investigated

mental workload’s effects on pilots’ information
processing using flight simulator data, highlighting
changes in pre-attentive processing and blink rates.

Jaquess et al. (2018) monitored cortical dynamics
during flight simulator tasks, observing changes in
mental workload indicators with task practice. Orlandi
and Brooks (2018) analyzed ship handling maneuvers’
effects on mental workload and physiological responses
in marine pilots using simulators. Cui et al. (2021)
evaluated pilot competency using EEG signals during
flight simulations with abnormal events, demonstrating
EEG’s potential in assessing pilot performance. Scholl et
al. (2016) investigated PIO detection using EEG during
flight maneuvers, highlighting EEG’s role in identifying
critical pilot-induced oscillations. This study used
Cognionics dry electrode sensor data filtered between 1-
50 Hz and down-sampled to 250 Hz for PIO
classification using HDCA. Spectral power features in
ten frequency bins were analyzed, with Fisher Linear
Discriminant classifiers determining spatial electrode
weights. Training and testing trials were balanced,
yielding PIO classification Az of 0.70 and prePIO Az of
0.69. Artifact Subspace Reconstruction (ASR) improved
PIO classification to Az of 0.79, with minimal score
variation across ASR thresholds (0.79-0.80). Tables (2-3)
summarize research findings on mental workload
assessments in aviation and transportation contexts. The
application of EEG to aviation and transportation tasks
suggests it can be used to assess mental workload across
diverse operational scenarios. Studies reveal EEG’s
efficacy in monitoring pilot and driver performance,
detecting workload variations during flight maneuvers
and driving tasks. EEG data analysis, including spectral
power features and regression models, proves
instrumental in evaluating cognitive engagement and
performance outcomes in real-time settings such as flight
simulators and driving simulations. These findings
underscore EEG’s potential for enhancing safety and
efficiency in aviation and transportation through tailored
workload management strategies and adaptive
automation systems.

Application of Mental Workload in Military and
Defense

Diaz-Piedra et al. (2020) investigated the impact of
diverse road environments on mental workload among
Spanish Army drivers during combat and non-combat
scenarios using a sophisticated military LMV driving
simulator. EEG recordings were used to objectively
measure variations in mental workload during real
training and operational settings. Findings underscored
the utility of EEG in discerning workload fluctuations,
even in high-stress situations such as combat scenarios.
Mohanavelu et al. (2020) analyzed the dynamic
workload of fighter pilots across various conditions
using a high-fidelity flight simulator. Their study
encompassed normal and low visibility scenarios with
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and without secondary tasks during take-off, cruise and
landing maneuvers. Results indicated that heightened
workload detrimentally affected pilot performance across
all flight phases, with an observable increase in
sympathetic nervous system activity under demanding
cognitive tasks. The study used non-parametric tests
(Friedman and Wilcoxon signed-rank) to analyze HRV
features across flight segments and workload conditions,
due to non-normal distributions. Significant differences
were found, highlighting distinct HRV patterns and
performance challenges during critical flight phases,
particularly in high workload conditions such as take-off
and landing. Wu et al. (2022) developed an adversarial
Bayesian deep network to detect pilot fatigue based on
EEG signals collected during military flight simulations.
Employing a 6-degree-of-freedom full flight simulator,

they achieved significant accuracy in cognitive state
detection, enhancing their method’s performance through
data augmentation and brain power map analysis. The
application of EEG in military and defense settings
demonstrates its critical role in monitoring and managing
mental workload under high-stress conditions. Studies
employing EEG to assess Army drivers and fighter pilots
reveal its effectiveness in detecting workload variations
during combat simulations and flight maneuvers. EEG-
based methodologies offer real-time insights into
cognitive states, enhancing operational readiness and
performance assessment in dynamic military
environments. These findings underscore EEG’s
potential as a valuable tool for mitigating fatigue,
optimizing decision-making and improving mission
outcomes in military and defense applications.

Table 2: Information of Mental Workload Assessments in Aviation

References Country Simulation Section Participants Type of
Measurement

Type of EEG Device

Wu et al. (2022) China C919/military simulators EEG,
Eye-tracking

BCI200 system

Aricò et al. (2016) Italy ATM scenario 12 EEG BioSemi ActiveTwo
Izadi Laybidi et al.
(2022)

Iran N-Back 20 EEG Mind Media Nexus-10
MKII system

Zanetti et al. (2022) Switzerland,
Sweden

simulated search with drones and rescue 24 EEG Emotiv EPOC

Jaquess et al. (2018) USA Control an airplane (Beechcraft T-6
Texan II)

36 EEG Brain Products GmbH

Hernández-Sabaté et
al. (2022)

Spain N-Back, flight scenario in A320
simulator

20 EEG EMOTIV EPOC+

Diaz-Piedra et al.
(2019)

Spain High-fidelity fixed-base Armed
Reconnaissance Helicopter Simulator

15 EEG,
Eye-tracking

SOMNOwatch+EEG-
6 (Somnomedics, Germany)

Guan et al. (2022) Australia, USA MATB 29 EEG, EOG, Eye-
tracking

ActiCAP Xpress

Qu et al. (2020) China MATB-II 10 EEG Neuroscan Neuamps
Verdière et al.
(2019)

France MATB-II 20 EEG BioSemi ActiveTwo

Causse et al. (2015) Canada Armchair and Computer 15 EEG, ERP, EOG ctiveTwo BioSemi System
Lee et al. (2020) Korea Cessna 172 aircraft 7 EEG, EOG BrainAmp

Table 3: Information on Mental workload assessments in Transportation

References Country Simulation Section Participants Type of
Measurement

Type of EEG Device

Di Flumeri et al.
(2019)

Italy Real Driving a Fiat 500L 8 EEG BEmicro system

Diaz-Piedra et al.
(2020)

Spain Combat Military LMV Driving
Simulator

41 EEG SOMNOwatch

Abd Rahman et al.
(2020)

Malaysia Sedan Car Driving 20 EEG, EOG BIOPAC EEG100C

Yang et al. (2020) China, USA,
Canada

riving simulation system (DSR-
1000TS2.0)

32 EEG -----

Low et al. (2021) Australia Logitech G25 Racing Simulator 45 EEG Advanced Brain Monitoring
(ABM Inc.)

Liu et al. (2020) China Wide Field Driving Simulator (DE-
1500, FAAC Inc.)

8 EEG The MuseTM (InteraXon Inc.)

Fan et al. (2018) USA Virtual Driving Environment 20 EEG Emotiv EPOC
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EEG-Based Mental Workload Study Design

Experiment Design for an EEG-based Mental
Workload Assessment Study Scientific inquiry in brain-
based studies begins with a research question, such as
identifying EEG bands associated with depression or
stress. This drives the formulation of a research
hypothesis, describing how specific conditions may
influence measured outcomes. EEG research demands
substantial resources equipment, time and human effort
including participants and research assistants. Participant
sample size and trial counts effect size and trial
requirements. Moreover, rigorous experimental design is
crucial to mitigate unwanted artifacts in raw EEG data,
ensuring the reliability and interpretability of study
outcomes. Researchers must plan every aspect, from
participant recruitment to data analysis, accounting for
potential risks, confounders and resource constraints
(Malik and Amin, 2017).

Real-Time vs. Controlled Experiment Design

Real-time analysis involves immediate problem-
solving with limited resources, allowing for adaptation to
evolving conditions, such as routine analysis, control and
nondestructive evaluation/parameter estimation (Yondo
et al., 2018). In contrast, controlled experiments, derived
from psychology research methods, are crucial in
Human-Computer Interaction (HCI) studies. The HCI
serves a crucial role in human-computer-environment
systems, facilitating efficient task completion with
features like simplicity, ease of operation and low
cognitive load. Therefore, ensuring the scientific rigor
and validity of evaluation processes has become a critical
concern in contemporary HCI research (Song et al.,
2023)

Experimental Designs for Mental Workload Studies

Tasks like mental arithmetic and the n-back task are
effective in manipulating cognitive workload levels
reliably. The n-back task assesses working memory by
requiring participants to recall whether current stimuli
match those seen n steps earlier. Variants like the 0-back
task serve as baselines, while higher n-back levels
increase workload demands (Kane et al., 2007; Brouwer
et al., 2012; Walter et al., 2013; Baldwin and Penaranda,
2012). Mental arithmetic tasks, involving solving
arithmetic problems under time constraints without
external aids, also correlate closely with working
memory performance (Wang and Sourina, 2013; Hwang
et al., 2014). The Stroop color-naming task, a classic in
attention research, illustrates how word meanings
interfere with identifying ink colors. It probes the brain’s
ability to manage conflicting stimuli, contributing
significantly to theoretical models of attention and
cognitive control (Stroop, 1935; Cohen et al., 1990;
MacLeod, 1991; Sharma and McKenna, 2001).
Cognitive control involves directing attention, memory

retention and response selection to achieve goals, as seen
in studies on response inhibition and error correction
(Rietschel et al., 2014; Bustamante et al., 2021; Miller
and Cohen, 2001; Schumacher et al., 2003; Wager et al.,
2005; Goghari and MacDonald, 2009). The Sternberg
task evaluates working memory capacity by presenting
sequences of digits for memorization and subsequent
retrieval. Dual-task paradigms, involving simultaneous
performance of primary and secondary tasks, assess
cognitive load and resource allocation during learning
processes (Sternberg, 1966; Whitney and Hinson, 2010;
Klabes et al., 2021; Esmaeili Bijarsari, 2021). Such
designs illuminate how cognitive processes manage
multiple tasks and allocate attention resources effectively
(Brünken et al., 2002; Klepsch et al., 2017; Park and
Brünken, 2015; Sun and Shea, 2016).

Conclusion
This review emphasizes the critical impact of mental

workload (MWL) on task performance, particularly in
complex operational environments such as piloting
aircraft and maritime vessels. Several methods, including
EEG, eye-tracking and subjective evaluations, have been
explored for MWL assessment, highlighting their
potential and associated challenges. Future research
should prioritize less intrusive technologies and
standardized methodologies to improve the accuracy and
applicability of cognitive workload assessments.

Advancements in EEG technology and machine
learning have significantly enhanced the granularity and
reliability of cognitive workload assessments. However,
challenges persist, including variability in signal
interpretation and the integration of multimodal data
sources. Addressing these challenges is essential for
advancing the field and developing effective tools to
optimize human performance and safety across diverse
domains.

Implications for Research and Practice

A multimodal approach integrating physiological,
subjective and performance-based measures is crucial for
comprehensive cognitive workload assessment.
Standardizing protocols and leveraging technological
advancements, such as machine learning and AI, can
enhance assessment accuracy and enable real-time
interventions. Future research should expand into diverse
application domains and conduct longitudinal studies to
validate findings and enhance generalizability.

Future Research Directions

1. Standardization of Protocols: Develop and
implement standardized protocols for physiological
measurements and data analysis to improve
comparability and reproducibility

2. Integration of Multi-Modal Measures: Investigate
the integrated use of physiological, subjective and
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performance based measures for holistic workload
assessment

3. Advancements in Technology: Utilize machine
learning and AI to develop adaptive systems for
real-time workload assessment

4. Application to Diverse Domains: Extend research to
diverse operational settings to broaden applicability

5. Longitudinal Studies: Conduct longitudinal studies
to understand the long-term effects of cognitive
workload on performance and well-being

Limitations

While this review provides valuable insights,
differences in experimental methodologies and rapid
technological advancements pose challenges. Continuous
updates and rigorous synthesis of literature are necessary
to keep pace with evolving methodologies and
technologies.
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