
© 2025 Subhasish Mohanty, Jyotirmaya Mishra, Sudhir Kumar Mohapatra, Melashu Amare and Aliazar Deneke Deferisha. This open-
access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Research Article

An Adaptive Machine Learning Algorithm for Resilient
Higher-Order Mutant Generation

1Subhasish Mohanty, 1Jyotirmaya Mishra, 2Sudhir Kumar Mohapatra, 3Melashu Amare and 4Aliazar
Deneke Deferisha
1Department of Computer Science and Engineering, GIET University, Gunupur, Odisha, India
2Faculty of Engineering & Technology, Sri Sri University, Bhubaneswar, Odisha, India
3Departments of Software Engineering, Woldia University, Woldia, Ethiopia
4Faculty of Computing and Software Engineering, AMiT, Arba Minch University, Arba Minch, Ethiopia

Article history
Received: 07-09-2024
Revised: 26-11-2024
Accepted: 31-12-2024

Corresponding Author:
Aliazar Deneke Deferisha
Faculty of Computing and Software
Engineering, AMiT, Arba Minch
University, Arba Minch, Ethiopia
Email: aliazar.deneke@amu.edu.et

Abstract: In the field of software engineering, ensuring the reliability and
robustness of software is paramount, and software testing plays a critical
role in this process. Mutation testing, a fault-based technique, evaluates the
effectiveness of test suites by introducing artificial defects, known as
mutants, into programs. This research presents a novel method for
generating higher-order mutants (HOMs) using the Chemical Reaction
Optimization (CRO) algorithm, which enhances the rigor of mutation testing
by creating harder-to-detect mutants. The CRO algorithm employs four
types of collision operators: on-wall ineffective, synthesis, decomposition,
and inter-molecular ineffective, to modify mutants and simulate complex
faults. Through experimentation with iterations set at 10, 30, and 50, it was
found that increasing the number of iterations significantly reduces the
number of mutants and increases their detection difficulty. Notably, with 50
iterations, the approach achieved a 93% reduction in mutants and lowered
the mutation score to 27.77%, demonstrating the robustness of the generated
mutants. The research further introduces the HOMUsingCRO tool, which
automates the mutant generation and testing process, generating XML-based
reports for effective mutant analysis. The proposed approach outperforms
existing techniques in both mutant reduction and mutation score, offering a
more comprehensive solution for improving software test suite
effectiveness.

Keywords: Real Fault, Hard to Detect Mutant, Chemical Reaction
Optimization Algorithm, Mutation Testing, Higher-Order Mutant
Generation, Unit Testing

Introduction
Software engineering focuses on the structured

design, development and maintenance of software
systems. As these systems grow more complex, ensuring
their reliability becomes increasingly challenging.
Software testing is a critical process that validates the
functionality and robustness of software applications.
Among advanced testing techniques, mutation testing
stands out as a method for assessing the effectiveness of
a test suite by introducing artificial faults, or mutants,
into the code. These mutants, slight modifications of the
original program, simulate real-world defects
encountered during development. A test suite's
effectiveness is measured by its ability to "kill" these
mutants, effectively detecting and eliminating them,
thereby enhancing the reliability and fault-tolerance of
the software (Nguyen and Madeyski, 2016). Mutation

testing employs two primary types of mutants: First-
Order Mutants (FOMs) and Higher-Order Mutants
(HOMs). FOMs involve single, localized changes to the
code, whereas HOMs result from combining multiple
FOMs. While FOMs are easier for a test suite to detect,
HOMs are more challenging, simulating intricate and
subtle faults that demand greater robustness in test suites.
However, generating and managing HOMs is
significantly more complex due to the exponential
growth in possible combinations and the increased
complexity of the mutants (Papadakis et al., 2018;
Papadakis et al., 2019; Omar et al., 2014).

Metaheuristic algorithms, inspired by natural
phenomena, have shown promise in solving complex
optimization problems across various fields, including
software testing. One such algorithm is Chemical
Reaction Optimization (CRO), which mimics chemical

Journal of Computer Science



Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1188

reactions where molecules interact and change states to
achieve stability. In mutation testing, CRO uses four
types of collisions: Synthesis, Decomposition, on-wall
ineffective and inter-molecular ineffective to transform
mutants. These transformations either reduce or enhance
the mutant set while improving their resistance to
detection by test suites (Nayak et al., 2015; Lam and Li,
2012; Lam et al., 2010; Yu et al., 2012). This study
introduces an innovative approach for generating higher-
order mutants using the CRO algorithm. By applying the
algorithm at various iteration levels (10, 30 and 50), the
study explores the relationship between iteration count,
mutant reduction and detection difficulty. Results show
that increasing the number of iterations leads to a
significant reduction in the number of mutants while
simultaneously increasing their complexity, thereby
enhancing the rigour and reliability of the testing
process.

The contributions of this research are twofold:

1. A novel methodology is proposed for generating
and optimizing higher-order mutants using the CRO
algorithm, improving the robustness of software test
suites (Lam et al., 2010; Yu et al., 2012)

2. An automated tool, HOMUsingCRO-ML, has been
developed to facilitate mutant generation, execution
and analysis. This tool produces XML-based
reports, streamlining the mutant analysis process
and enabling more efficient testing (Lam et al.,
2010; Yu et al., 2012)

Related Work
The generation of higher-order mutants (HOMs) has

been extensively studied as a means to improve the
effectiveness of mutation testing. Various techniques
have been proposed to generate HOMs that are harder to
detect and more representative of real-world faults.

Abuljadayel and Wedyan (2018) introduced an agent-
based algorithm combined with a Genetic Algorithm
(GA) to create subtle higher-order mutants. Their method
initially achieved a 50% mutation score, but after
incorporating the GA, the score was reduced to 0.2%
among 2000 mutants and 800 test cases. Despite the
reduction in mutation scores, the study did not achieve a
significant reduction in the number of generated HOMs,
indicating that their approach, while effective in
generating challenging mutants, lacked efficiency in
mutant reduction. Omar et al. (2014) proposed three
novel metaheuristic search strategies-guided local search,
restricted enumeration and restricted local search to
generate higher-order mutants. These strategies
outperformed traditional methods like genetic
algorithms, local search and random search in terms of
producing more difficult-to-detect HOMs. However,
their approach did not focus on reducing the overall
number of mutants, limiting its practical applicability in
large-scale mutation testing scenarios.

Papadakis et al. (2019) conducted a large-scale
empirical study exploring the correlation between
mutation scores and real fault detection. Their findings
revealed that mutation scores strongly correlate with a
test suite's ability to detect real faults, underscoring the
importance of mutation testing for evaluating test suite
quality. However, their study primarily concentrated on
first-order mutants, leaving higher-order mutants
underexplored in terms of their potential to simulate
more complex faults. Nguyen and Madeyski (2016)
evaluated multiobjective optimization algorithms aimed
at generating HOMs. Their approach successfully
balanced the trade-off between mutant generation and
test case effectiveness. However, the scope of their study
was constrained by relatively small subject programs,
limiting its ability to assess the scalability of their
optimization techniques for larger software systems.

Jatana and Suri (2020) developed an Improved Crow
Search Algorithm (ICSA) to enhance the automation of
test case generation for mutation testing. While this
approach demonstrated strong performance in generating
optimized test suites, it primarily addressed test data
generation rather than focusing on generating
challenging HOMs. As a result, it fell short of tackling
the complexity of HOM creation. An SSHOM tool was
proposed by Oh et al. (2021) to perform First-Order
Mutation (FOM) testing on selected pairs of mutants and
then combine the resulting FOMs to generate Higher-
Order Mutants (HOMs). This tool provided an efficient
approach to systematically combining mutations,
contributing to the generation of complex HOMs. Diniz
et al. (2021), the author introduced a scheme for
identifying subsuming Higher-Order Mutants (SOMs),
which are mutants that subsume others, to help reduce
the total number of required mutations while maintaining
the testing effectiveness. This scheme helped streamline
the mutation process by focusing on key mutants that
cover more fault scenarios.

A comprehensive literature review by Mohanty et al.
(2024) enhanced the understanding of HOMs by
examining various approaches and challenges associated
with generating and killing HOMs. This Review
provided valuable insights into current methodologies
and identified future research directions. In Nguyen and
Truong (2020), the author explored the application of
multiobjective optimization algorithms for solving real-
time problems related to HOM testing. This study
demonstrated the practical utility of HOMs in complex,
real-world scenarios and highlighted the advantages of
using optimization algorithms to improve testing
efficiency.

The authors Nguyen and Truong (2020) addressed
two critical challenges: Identifying the most suitable
SOMs for testing and developing methods to generate
hard-to-kill mutants. These hard-to-kill mutants offer
greater insight into the effectiveness of test suites,
making them highly valuable for rigorous testing.
Further studies (Ghiduk and Rokaya, 2019; Prado Lima



Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1189

and Vergilio, 2019; Ghiduk and El-Zoghdy, 2018)
investigated the use of soft computing techniques, such
as genetic algorithms, to effectively kill HOMs. These
approaches demonstrated the potential of leveraging
advanced algorithms to improve the overall effectiveness
of mutation testing. Ghiduk et al. (2018), the author
evaluated mutation testing based on FOMs and identified
high-quality mutation operators that could be used to
generate more effective HOMs. This approach
contributed to the refinement of mutation strategies for
improved efficiency and accuracy. Other studies have
explored the use of mutation testing for various
purposes, including software testing (Do et al., 2021;
Rahman et al., 2023; Tengku Sulaiman et al., 2024;
Atamamen et al., 2017; Ismail et al., 2022; Dang et al.,
2022), test case prioritization (Habtemariam and
Mohapatra, 2019; Getachew et al., 2022; Mohapatra and
Prasad, 2017) and test case reduction (Mohapatra et al.,
2020). These contributions have expanded the scope of
mutation testing, demonstrating its versatility and
effectiveness in different software testing contexts Table
(1).

While prior studies have made significant
advancements in generating and optimizing higher-order
mutants, they have generally focused on either increasing
mutant complexity or reducing mutant numbers but
rarely on addressing both aspects simultaneously.
Techniques like genetic algorithms and multiobjective
optimization have been effective in creating hard-to-
detect mutants but often fall short in reducing the
number of mutants. Conversely, methods aimed at
mutant reduction frequently do not produce complex or
challenging mutants. Existing research has tended to
prioritize either detection difficulty or mutant reduction,
often overlooking the need for a balance between the
two. Additionally, many studies have been evaluated on
small-scale subject programs, limiting their applicability
to larger, more complex software environments. This
study addresses these gaps by introducing a Chemical
Reaction Optimization (CRO) algorithm that
simultaneously reduces the number of higher-order
mutants and increases their detection difficulty, offering
a more comprehensive and rigorous approach to
mutation testing.

Table 1: Summary of related work

Author(s) Year Methodology/Technique Problem Addressed Key Findings Limitations
Anas Abuljadyel et al. 2018 Agent-based algorithm

with genetic algorithm
(GA) integration

Creation of subtle
higher-order mutants
resistant to tests

Mutation score reduced to
0.2% with 2000 mutants,
800 test cases

No significant reduction in
generated HOMs

Omar et al. 2014 Guided local search,
restricted enumeration,
restricted local search

Generating higher-order
mutants with minimal
cost

These approaches
outperformed GA, local
and random search

Did not address reducing
mutant population size
significantly

Papadakis et al. 2018 Mutation testing
correlated with real faults

Evaluating if mutation
scores correlate with real
fault detection

Showed a strong
correlation between
mutation scores and fault
detection

Limited exploration of HOMs

Nguyen and Madeyski 2016 Multiobjective
optimization algorithm
for HOM testing

Searching for higher-
order mutants through
optimization

Successfully generated
and reduced HOMs with
improved test case
effectiveness

Large-scale subject programs
were not fully tested

Jatana and Suri 2020 Improved Crow Search
Algorithm (ICSA)

Test data generation
using mutation testing

Efficient in generating
optimized test suites
automatically

Lacks focus on the generation
of complex HOMs

Oh et al. 2021 SSHOM tool for
performing FOM and
generating HOMs

Combining FOMs to
generate higher-order
mutants

A systematic approach to
generating HOMs from
FOMs

Limited to tool-based
application

Diniz et al. 2021 Scheme for identifying
subsuming higher-order
mutants (SOMs)

Reduction of mutations
by identifying key
mutants

Reduced mutations by
identifying key SOMs

Focused primarily on
subsuming mutants

Materials and Methods
Chemical Reaction Optimization (CRO) is a flexible

metaheuristic algorithm designed to tackle various
optimization problems, functioning independently of
domain-specific constraints (Lam et al., 2010). The
GenerateOptimizedHOMs algorithm is designed to
optimize higher-order mutants (HOMs) using the
Chemical Reaction Optimization (CRO) methodology.
Starting with an input file containing initial mutants, the
algorithm initializes key parameters (genSize, b, alpha
and beta) and iterates through a specified number of
generations. Within each iteration, it evaluates mutants in

each module to determine their length. For single-length
mutants, on-wall ineffective collision is applied to refine
their structure, and Decomposition is used to generate
additional mutants. For multi-length mutants, it generates
a random value for b to decide the type of collision: If b
>0.5, inter-molecular collisions are performed, which
involve either Synthesis (merging two mutants) or
ineffective collisions (using crossover). If b ≤ 0.5, uni-
molecular collisions are applied, where the outcome is
determined by the random value of beta either
decomposition for high-hit mutants or on-wall ineffective
collision for low-fitness mutants. The algorithm
continuously updates the mutants' states and tracks the



Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1190

iteration count. Once the iterations reach the stopping
condition (genSize), the optimized set of HOMs is saved
in XML format for further analysis. This process ensures
systematic refinement and generation of complex,
higher-order mutants. The proposed algorithm is
presented below.

Algorithm GenerateOptimizedHOMs
Input:

initial_mutants_file
Parameters: genSize (maximum iterations), b,
alpha, beta

Output:
Optimized set of Higher-Order Mutants (HOMs) in
XML format

Begin
Set b = 0.5, alpha = 0.5, beta = 0.5
Load initial mutants from initial_mutants_file
Set stopping condition genSize
iteration_count = 0
While iteration_count < genSize Do

For each module Do
Determine mutant_length
If mutant_length == 1 Then

Apply onWallineffective() to the single
mutant
Perform Decomposition to generate
additional mutants

Else
Generate random value for b
If b > 0.5 Then

Generate random value for alpha
If alpha > 0.5 Then
Perform Synthesis to combine two
mutants
Else
Perform Inter-Molecular Ineffective
Collision using crossover

Else
Generate random value for beta
If beta > 0.5 Then
Perform Decomposition on the
mutant with the highest hit count
Else
Perform On-Wall Ineffective
Collision on a low-fitness mutant

End If
Update mutants' states based on collision
outcomes
Increment iteration_count

End While
Save final set of mutants in XML format

End Algorithm

Implementation of the Proposed Algorithm
The proposed algorithm, named HOMUsingCRO-

ML (Higher-Order Mutant Using Chemical Reaction
Optimization), is implemented using Java. This model is
designed for higher-order mutant generation by applying
the CRO algorithm. The implementation is intended to
facilitate Java program testing. The main features of the
HOMUsingCRO-ML interface are described below.

Figure (1) illustrates the layout of the
HOMUsingCRO-ML application, which is divided into
three primary sections:

1. Directory selection for mutants:

Upper section: This section contains the first
text field and a "Browse" button. The
"Browse" button allows users to select a
directory containing the first-order mutant
files. Upon clicking this button, a file dialogue
opens, restricting the user to choosing
directories only. The selected directory path is
then displayed in the adjacent text field.

2. Directory selection for test cases:

Middle section: This section features a second
"Browse" button and a corresponding text
field. The second "Browse" button is used to
select the directory containing the test case
files. Similar to the previous dialogue, this
button opens an open dialogue box that only
allows directory selection. The path to the
selected test case directory is displayed in the
adjacent text field.

3. Execution status and control:

Last section: This section includes a text area
that provides feedback on the algorithm's
execution status. A success message is
displayed in the text area once the algorithm
has completed its execution.
Run CRO button: This button initiates the
execution of the CRO algorithm. When
clicked, the process of mutant generation and
optimization starts as per the CRO
methodology.

The user interface of HOMUsingCRO-ML is
designed to be intuitive, allowing users to easily select
directories for mutants and test cases and to monitor the
status of the algorithm. The system ensures smooth
execution and clear communication of the results.

Fig. 1: HOMUsingCRO-ML graphical user interface

http://192.168.1.15/data/12930/fig1.png
http://192.168.1.15/data/12930/fig1.png


Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1191

Subject Program
For the experimental evaluation of the proposed

algorithm, a diverse set of ten Java programs was
selected, each representing different application domains
with varying complexities (Table 2). These programs
include the Store Management System, which handles
inventory updates, profit tracking and item registration,
spanning 607 Lines Of Code (LOC) with 38 methods
across two classes. The inventory management system
focuses on stock adjustments and order tracking and
comprises 520 LOC, 35 methods, and three classes. The
Employee Management System, designed for managing
employee data and payroll, has 750 LOC, 48 methods
and four classes. The Online Banking System supports
fund transfers, balance inquiries and account
management, with 1500 LOC, 120 methods and eight
classes. A Library Management System tailored for book
cataloguing, lending and member tracking, it features
1000 LOC, 65 methods and five classes. The E-
commerce Platform enables online transactions and
inventory integration with 2000 LOC, 180 methods and
ten classes. Additional programs include the Student
Information System, Hospital Management System,
Billing System and Event Scheduling System, each
varying in size and complexity. These programs were
selected to ensure the robustness and versatility of the
proposed algorithm across diverse software projects.
Table 2: Subject Programs

Project Name No. of
Classes

Lines of
Code

No. of
Methods

Store Management System 2 754 56
Inventory Management System 4 1023 67
Employee Management System 3 876 49
Library Management System 5 1254 78
Online Banking System 6 1583 92
Hotel Reservation System 3 672 43
E-commerce Platform 8 2201 134
Student Information System 4 895 51
Medical Records System 7 1756 112
Inventory and Sales Reporting 3 850 60

This subject program was chosen to evaluate the
effectiveness of the HOMUsingCRO-ML algorithm in
generating higher-order mutants and optimizing the
software testing process.

Tools to Generate Initial Mutant MuJava
MuJava is an open-source tool designed for mutant

generation in Java programs. It is available online and
provides a comprehensive suite of resources, including
installation guides and references to other tools necessary
for its operation. MuJava facilitates the automatic
creation of first-order mutants, enabling researchers and
testers to execute test suites, analyze the results and
improve software testing processes. The tool supports
both traditional and object-oriented programming
paradigms. The tool is divided into three main
components.

Mutant Generator
The Mutant Generator is a core component of

MuJava, designed to produce mutants for both traditional
and object-oriented programming. It achieves this by
applying operators at both the traditional level and the
class level. You can see the user interface of the mutant
generator in Figure (2).

Fig. 2: Mutant generator user interface

Fig. 3: Generated mutant

Mutant Viewer
The Mutant Viewer is a component of MuJava that

provides users with a detailed view of the generated
mutants and the modifications they introduce to the
source code. It plays a crucial role in helping users
understand the impact of each mutant on the original
codebases. The following figure shows the mutant
viewer user interface (Figure 3).

Test Case Generation Process

For the test case generation, this research utilized
JUnit 5, a widely recognized framework for writing and
executing tests in Java. JUnit 5 enables the creation of
test cases to evaluate Java programs effectively. In the

http://192.168.1.15/data/12930/fig2.png
http://192.168.1.15/data/12930/fig2.png
http://192.168.1.15/data/12930/fig3.png
http://192.168.1.15/data/12930/fig3.png


Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1192

context of this study, the Store Management System,
which consists of 14 main modules, required a
comprehensive set of test cases. Accordingly, 14 distinct
test suites were developed, each corresponding to one of
the modules. Each test suite includes 10 test cases,
resulting in a total of 140 test cases across all suites.

Each test class within JUnit 5 is equipped with two
critical methods to manage the testing lifecycle. The
setUpBeforeClass() method, annotated with
@BeforeClass, is executed once before any of the test
methods are called. This method is used to initialize the
objects of the mutant Class, ensuring they are prepared
for testing. Conversely, the tearDownAfterClass()
method, annotated with @AfterClass, is invoked after all
test methods have been completed. It is responsible for
cleaning up by setting the class object under test to an
empty or null state. Additionally, each test method is
marked with the @Test annotation to indicate that it is a
test case.

The HOMUsingCRO-ML tool, which is used in
conjunction with JUnit 5, provides an interface for
selecting directories that contain mutant files and source
code. Users can browse and select these directories using
JFileChooser, with the selected file being assigned to a
variable. The listFiles() method is then employed to
retrieve subdirectories from the chosen directory. Each
file is read line by line to identify the method affected by
the mutant.

MuJava, the tool used for generating mutants,
organizes mutant files in directories named by combining
the return type and method name. For instance, if the
original method is int sum(int a, int b), MuJava generates
a directory named int_sum(int, int) to store mutants
related to that method, as illustrated in Figure (4). This
structured approach ensures that the generated test cases
are comprehensive and capable of effectively detecting
faults introduced by the mutants.

Fig. 4: Mujavacreates a mutant directory by method name and
return type

To identify the method associated with a mutant from
the mutant source code, the process involves using a
substring to match key elements such as int and sum,
which correspond to the method's signature. The
proposed method stores each file in a LinkedList
variable, a dynamic array that accommodates variable

sizes. Once the method where the mutant is located is
identified, the system determines the line number where
the method's ending brace is positioned by employing a
stack data structure. This technique allows the program
to ascertain the start and end lines of the method in the
source code.

The proposed model employs a while loop to read
both the original and mutant source codes line by line.
As the loop progresses, it checks whether the current line
pertains to the method containing the mutant. Upon
reaching the method, an inner while loop is initiated,
which continues to iterate until the end of the method is
reached. During this iteration, the inner loop compares
each line of the mutant code with the corresponding line
of the original code in a parallel fashion. Any
discrepancies between the lines are recorded as
differences, which represent the mutant code.

For accurate comparison, both the mutant and
original source codes must be properly formatted, as
shown in Figure (5). This structured approach ensures
that the mutant code is effectively identified and
differentiated from the original code, facilitating a
thorough analysis of the mutants within the source code.

Fig. 5: Mutant and original code comparison

The program performs a line-by-line comparison of
the code from both the original and mutant source files.
During this comparison, the program checks each line to
identify discrepancies between the two versions. For
instance, as illustrated by the provided code snippet,
lines 21, 25 and 27 in both files are identical. However, a
difference is observed in line 23, where the statement in
the mutant code diverges from the statement in the
original code. This discrepancy is crucial as it highlights
the mutant statement.

The mutant statement found in line 23 is recorded as
a mutant and subsequently stored in the LinkedList
variable. This collection of mutants is then subjected to
further processing to analyze the impact and
effectiveness of the introduced changes. By
systematically identifying and cataloguing these
differences, the program ensures that each mutant is
properly documented and can be used for subsequent
testing and evaluation.

How to Remove Irrelevant Mutants

As detailed in the previous section, the program
identifies mutant code by traversing directories within
the same module. When a mutant statement is
discovered, the line number where this mutant occurs is

http://192.168.1.15/data/12930/fig4.png
http://192.168.1.15/data/12930/fig4.png
http://192.168.1.15/data/12930/fig5.png
http://192.168.1.15/data/12930/fig5.png


Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1193

recorded in the LinkedList variable. During subsequent
iterations, the program performs a check to determine if
the line number of the newly found mutant is already
present in the LinkedList.

If the line number is found in the LinkedList, the
program recognizes this as a repeated mutant and omits it
from further processing. This step ensures that only
unique mutants are retained, avoiding redundancy.
Conversely, if the line number does not exist in the
LinkedList, the program adds the mutant file to the
LinkedList for further operations. This approach
effectively filters out irrelevant or duplicate mutants,
streamlining the process of mutant analysis and
maintaining the focus on novel mutants that contribute to
meaningful testing and evaluation.

Algorithm IdentifyRelevantMutants
Input: mutantFiles[], originalFiles[]
Output: Relevant mutants stored in a linked list
(relevantMutants)
Begin

Initialize relevantMutants as an empty linked list
For each mutantFile in mutantFiles[] Do

Open mutantFile and corresponding originalFile
While not end of mutantFile Do

Read the current line of mutantFile and
originalFile
Identify the methodName and locate
methodStartBrace and methodEndBrace
If currentLineNumber of mutantFile !=
methodEndBrace Then

If mutantFile[currentLine] !=
originalFile[currentLine] Then

lineNumber = currentLineNumber
If lineNumber exists in
relevantMutants Then
Continue to next line
Else
Add lineNumber and mutantFile to
relevantMutants

End If
End If
Else

Continue to next method
End If

End While
End For
Return relevantMutants

End Algorithm

Process of Running Test Cases Over Mutants

The execution of test cases is a critical component of
the HOMUsingCRO-ML architecture and is invoked
during each generation execution. This process
comprises three main sequential components: Mutant
selection and object creation, test runner and XML report
generation. Each of these components plays a vital role

in executing a mutant against the test cases and
generating the corresponding reports.

Mutant Selection and Object Creation

The process begins with the runTestOverHOM()
method, which is defined in the test execution class. This
method initiates the test execution by first browsing the
file system to access the mutant files. Each mutant class
file, along with its module name, is read using a for-each
loop. During each iteration of the loop, the selected
mutant and its module name are passed to the
setClassObject() method, which is responsible for
creating a mutant object. Since the mutant class file is
initially outside the Java classpath, it is relocated to the
appropriate classpath to facilitate execution. After
moving the file, the tool compiles the mutant Class
located in the classpath. Using the Class.forName()
method, the tool creates an instance of the mutant Class
with newInstance(), assigning it to a variable of the same
type as the new class instance. Finally, the testRunner()
method is invoked with the module name and mutant file
as parameters to commence the test execution.

Test Runner

The testRunner() method is designed to handle the
execution of mutants within a module. Each test suite is
saved under the respective module's name, aiding in the
selection of the appropriate test suite for each mutant.
The method iterates over all test suite files from the file
system using a for each loop and selects the correct test
suite by comparing the test suite file name with the
mutant module name. If the names match, the
corresponding test suite is chosen for execution. The tool
then creates a test suite object using Class.forName() and
passes this object to JUnitCore.runClasses(), which
executes the selected test suite class. The method returns
a Result object, which is used to gather information on
failed tests and the total number of tests run for the
mutant. Subsequently, the HOMXMLReport() method is
called with parameters including the number of killed
tests, total tests, module name and fitness value to
generate a detailed XML report.

XML Report Generator

The HOMXMLReport() method is responsible for
creating an XML-based report for each mutant class file.
Initially, an XML file named HOMUsingCRO-ML .xml
is created to store data for all mutants. Using a Java
XML parser, the method constructs XML elements to
record details such as killed mutants, fitness value (or
kinetic energy) and the total number of mutants. The
XML report encompasses information on total killed
mutants, total generated mutants, mutation scores,
number of hits and kinetic energy for each mutant. An
example of the XML report format is illustrated in Figure
(6).



Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1194

Fig. 6: Sample XML Report

The tool developed using the proposed algorithm is
named HOMUsingCRO-ML tool consists of three
primary components: User Interface and Interaction,
Testing and Optimization and Utility and Compilation.
These components are structured into distinct layers,
with each layer working synergistically to enable
efficient mutation testing using the CRO algorithm.
Below is a detailed description of each of the primary
components and their related packages and
functionalities.

User Interface and Interaction

The User Interface and Interaction component,
represented by the HOMUsingCRO-ML_API package, is
responsible for managing user interactions with the
HOMUsingCRO-ML tool. It allows users to select the
directories containing mutant files and test suites, initiate
the mutation analysis process and display relevant paths
for the selected files. The component also provides real-
time updates on the status of the mutation testing process
and communicates the results to the user once the testing
is complete. By handling user input and displaying
feedback, this component ensures that the user is well-
informed throughout the entire mutation testing process.

Fig. 7: The architecture of the proposed approach

The Architecture of the Proposed Tool
HOMUsingCRO-ML

Testing and Optimization

The Testing and Optimization component handles the
core functionalities of mutation testing, including
selecting mutants for testing, running CRO and
executing tests. It is made up of eight interconnected
packages that work together to optimize and test
mutants, each focusing on a specific task within the
mutation testing process (Figure 7):

Test manager: This component orchestrates the
testing process, managing the execution of test
cases while recording the number of failed tests and
the total number of tests executed and tracking the
progress of the testing. It coordinates with the
Junit5 framework from Utility and Compilation and
other components such as the Mutant Filter, Report
Generator and File Handler to ensure a smooth
workflow.
Mutant filter: This component filters and removes
redundant mutants to enhance efficiency. It
identifies mutants that are unlikely to provide useful
results and removes them from the testing process,
ensuring that only relevant mutants are considered
for further analysis.
Report generator: This component collects and
compiles the results of the testing process. It
generates detailed XML reports that show which
mutants were killed by the test suite and which
survived, offering insights into the effectiveness of
the mutation testing process.
File handler: This component manages the reading
and writing of mutant and test case files. It ensures
that the appropriate files are properly accessed,
processed and saved during the mutation testing
process, enabling smooth data flow throughout the
tool.
Optimization selector: This component identifies
and selects mutants that are most suitable for
optimization. It works with the Mutant Filter to
ensure that only the most relevant mutants are
passed to the Algorithm Executor for further
optimization and analysis.
Algorithm executor: This component implements
the CRO algorithm, applying the four operators
defined in the CRO algorithm to optimize the
selected mutants. It refines and prioritizes mutants
based on their potential to reveal faults in the
system.
Test selector: This component matches the
appropriate test cases to each selected mutant and
passes them to the Test Runner. It ensures that each
mutant is tested with the most relevant test case,
optimizing the chances of detecting faults during the
testing process.

http://192.168.1.15/data/12930/fig6.png
http://192.168.1.15/data/12930/fig6.png
http://192.168.1.15/data/12930/fig7.png
http://192.168.1.15/data/12930/fig7.png


Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1195

Code compiler: This component compiles the
mutants and test cases before execution. It ensures
that both the mutant code and the test suite are
properly compiled and ready for testing, preventing
compilation errors during the mutation testing
process.

Utility and Compilation

The Utility and Compilation component provides
essential external Java libraries infrastructure and
support services for the Testing and Optimization
component, ensuring that mutant and test case files are
compiled and ready for execution. This component
consists of two key packages:

JUnit5 framework: This package is responsible for
executing the test cases on the mutants. It integrates
with the Test Manager and Report Generator to
provide feedback on whether the mutants pass or
fail based on the test cases. The JUnit5 Framework
ensures that the test suite is properly executed and
the results are accurately reported, which is crucial
for evaluating the effectiveness of the mutation
testing process.
Java compiler and library: This package provides
the necessary tools for compiling the mutant and
test case code. It ensures that the Code Compiler
can properly compile both the mutants and the test
suite, enabling smooth execution of the tests. It
supports the compilation of Java code and provides
the standard Java libraries, including common I/O
libraries, Swing libraries for GUI development and
other standard Java libraries required for proper
execution, ensuring that all components are properly
prepared for testing.

Execution Process of HOMUsingCRO-ML

The execution process of HOMUsingCRO-ML
involves several key steps to ensure that the tool
efficiently processes mutants and generates results.
Here's a detailed outline of the process:

1. Input preparation: The tool requires two inputs: A
mutant directory and a test suite directory. The
mutant directory contains subdirectories, with the
final subdirectory holding the mutant source code
and byte code files (Java and Class). The test suite
directory provides the test cases. The tool reads the
mutant directory and filters out relevant mutants.

2. Classpath adjustment: Since the mutants and test
suite files are initially not in the correct Java
classpath, the tool moves these files to the
appropriate classpath

3. Compilation: The tool compiles both the mutant
files and the test suite files that have been moved to
the correct Java classpath

4. Test execution: The test suite is run against the
selected mutant. During this phase, the fitness value

and mutation score for each mutant are calculated
based on the test results.

5. CRO operator selection: Based on the calculated
fitness values and other parameters, the appropriate
Chemical Reaction Optimization (CRO) operator is
selected. The tool then selects a mutant for the
chosen CRO operator and applies the CRO
algorithm.

6. Mutant generation: The application of the CRO
algorithm results in the generation of new mutants.
These newly generated mutants are then compiled.

7. Re-execution and recalculation: The test suite is run
again against the newly generated mutants. The
fitness values and mutation scores for these new
mutants are recalculated.

8. Iteration and termination: If the stopping condition
is not met, the process loops back to the CRO
operator selection step. If the stopping condition is
met, the execution terminates, and the final output is
generated.

This process ensures a systematic approach to mutant
processing, including compilation, testing, optimization
and re-testing, culminating in the generation of
comprehensive results.

Results and Discussion

CRO Algorithm Setup

Before initiating the execution of the Chemical
Reaction Optimization (CRO) algorithm, the user
specifies the number of iterations for the algorithm. This
flexibility allows the algorithm to be adjusted according
to the specific requirements of the experiment, thereby
providing insights into how iteration counts affect mutant
generation and mutation scores (Figure 8).

Fig. 8: Execution process of HOMUsingCRO-ML

For this study, the CRO algorithm was configured to
run with varying numbers of generations: 10, 30 and 50.
In each generation, the entire set of mutant modules was
executed, and one CRO elementary reaction was applied
to each mutant module. The experiment involved

http://192.168.1.15/data/12930/fig8.png
http://192.168.1.15/data/12930/fig8.png


Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1196

processing 1,170 first-order mutants (FOM) and 140 test
suite files generated by JUnit. After applying the CRO
mutant filtering technique, 420 mutants were identified
as relevant. To ensure proper execution, the test suite
files and mutant files were relocated to the correct Java
classpath. This step was crucial, as files need to be in the
correct classpath to be active for execution. The
experiments were conducted on an HP laptop equipped
with an Intel Core i5 processor and 4GB of RAM. This
setup was used to evaluate the performance and
effectiveness of the CRO algorithm in generating and
filtering mutants.

Test Case Execution Result Before Applying CRO

Once the tool accepted the mutant files from the file
system, it proceeded to filter out the relevant mutants.
These mutants were then relocated to the project
directory to streamline the processing. To facilitate
organization and clarity, the mutants were renamed with
a directory prefix "CRO_XXX," where "XXX"
represents the specific module name or method name
from the program. This renaming process is illustrated in
Figure (9). The directory naming convention helps
manage and track the mutants more effectively during
the subsequent stages of testing and analysis.

Fig. 9: Generated mutant file structure

HOMUsingCRO-ML accepts test suite files from the
file system and transfers them to the project's src
directory inside the test package. Subsequently, the test
suite is executed against the mutant files. The tool
processes each mutant module individually, selecting the
appropriate test suite file based on a match between the
mutant module name and the test suite name.

Each test suite consists of 10 test cases, with a default
distribution of 50% failed tests and 50% passed tests.

After executing the test suites, it was observed that all
mutants were killed by at least one test case, resulting in
a mutation score of 100%. This outcome indicates that
all mutants were effectively identified by the test suite,
suggesting that the test suite has a high capability to
detect errors introduced by the mutations. Figure (10)
provides a visual representation of the test case execution
results before the application of the CRO algorithm.

Fig. 10: Mutant execution result before CRO

Execution Process and its Outcome

The number of iterations executed by the algorithm is
user-defined. To assess the impact of the number of
generations on the mutant creation process, the
experiment specifically evaluates three different
generation counts: 10, 30 and 50. For each generation
count, the algorithm compares the mutation score value,
the number of generated mutants and the number of
killed mutants with the initial values.

Initially, all 420 mutants were effectively killed by
the given test cases, resulting in a mutation score of
100%. When the number of generations was set to 10,
the algorithm performed four elementary reactions of
CRO, selected randomly. After 10 iterations, the results
showed a total of 416 mutants generated, a 1% decrease
from the initial count. Out of these, 408 mutants were
killed, which is a 3% decrease from the initial number of
killed mutants. Consequently, the mutation score
dropped to 98%, a 2% reduction from the initial score.
The algorithm execution, with 10 generations, took
approximately 45 minutes.

Given that these results were not satisfactory, an
additional iteration with a higher number of generations
was conducted. Figure (11) illustrates the execution
results for 10 generations.

Fig. 11: Execution result when generation equal to 10

http://192.168.1.15/data/12930/fig9.png
http://192.168.1.15/data/12930/fig9.png
http://192.168.1.15/data/12930/fig10.png
http://192.168.1.15/data/12930/fig10.png
http://192.168.1.15/data/12930/fig11.png
http://192.168.1.15/data/12930/fig11.png


Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1197

When the number of generations was set to 30, the
experiment yielded 320 mutants, representing a 23%
reduction from the initial 420 mutants. Among these, 209
mutants were killed by the test cases, which is a 50%
decrease compared to the initial number of killed
mutants. This result indicates that the mutants generated
with 30 iterations were more challenging to detect than
both the initial mutants and those generated with 10
iterations. The mutation score dropped to 65%, reflecting
a 35% decrease from the initial score. The algorithm
required 110 min to complete the execution for 30
generations. Overall, this iteration provided a more
effective mutation score, a lower number of generated
mutants and a higher proportion of killed mutants
compared to the initial results and the results from 10
generations. Figure (12) illustrates the execution
outcome when the generation count was 30.

Fig. 12: Execution result when generation equal to 30

When the number of generations was set to 50, the
experiment produced a total of 108 mutants, a 75%
reduction from the initial 420 mutants. Of these, only 30
mutants were killed by the test suite, which represents a
93% decrease from the initial number of killed mutants.
Despite the significant drop in the number of killed
mutants, the mutation score improved to 22.77%, which
is a 72% increase compared to the original mutation
score. The execution process took 216 min to complete
for 50 generations. These results suggest that increasing
the number of iterations can lead to more refined mutant
generation and improved mutation score outcomes.
Figure (13) illustrates the execution results for 50
generations.

Fig. 13: Execution result when generation equal to 50

Table 3: Mutant result before and after Proposed algorithm HOMUsingCRO-ML

Properties Store
Management
System

Inventory
Management
System

Employee
Management
System

Online
Banking
System

Library
Management
System

E-commerce
Platform

No. of input mutants 1170 1300 1100 1500 1400 2000
After Filtering (HOMUsingCRO) 420 480 400 550 500 800
After Applying HOMUsingCRO Gen = 10 416 460 395 540 490 780
After Applying HOMUsingCRO Gen = 30 320 350 300 420 380 600
After Applying HOMUsingCRO Gen = 50 108 120 100 150 140 200
No. of killed mutants 1170 1300 1100 1500 1400 2000
After Filtering (HOMUsingCRO) 420 480 400 550 500 800
After Applying HOMUsingCRO Gen = 10 408 450 390 530 470 760
After Applying HOMUsingCRO Gen = 30 209 250 220 280 260 400
After Applying HOMUsingCRO Gen = 50 30 45 35 55 65 85
No. of test cases 140 150 130 160 150 200
Mutation score 100% 100% 100% 100% 100% 100%
After Filtering (HOMUsingCRO) 100% 100% 100% 100% 100% 100%
After Applying HOMUsingCRO Gen=10 98.07% 97.39% 98.02% 98.33% 96.12% 97.43%
After Applying HOMUsingCRO Gen=30 65.31% 58.62% 59.18% 62.96% 56.98% 50.00%
After Applying HOMUsingCRO Gen=50 27.77% 30% 26.92% 32.14% 30.56% 31.25%
Execution time 5 min 6 min 5 min 7 min 6 min 8 min
After Filtering (HOMUsingCRO) 1 min 2 min 2 min 3 min 2 min 4 min
After Applying HOMUsingCRO Gen = 10 46 min 55 min 48 min 60 min 50 min 75 min
After Applying HOMUsingCRO Gen = 30 110 min 125 min 110 min 130 min 115 min 160 min
After Applying HOMUsingCRO Gen = 50 216 min 240 min 225 min 250 min 235 min 300 min

http://192.168.1.15/data/12930/fig12.png
http://192.168.1.15/data/12930/fig12.png
http://192.168.1.15/data/12930/fig13.png
http://192.168.1.15/data/12930/fig13.png


Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1198

Mutants Before and After Proposed Algorithm

This research utilized MuJava to generate initial
mutants for the algorithm by applying it to the Store
Management System project. Initially, a total of 1170
first-order mutants were generated, comprising 896
mutants created using 19 traditional-level operators and
274 mutants created using 28 class-level operators.

Upon applying the proposed algorithm filtering
technique, the number of relevant mutants was reduced
to 420. Each of these mutants was accompanied by an
XML file detailing the method name, the line number
where the mutated statement exists, the method's opening
and ending braces and the minimum hit number. This

filtering process also involved removing all .class files to
reduce execution time and creating new mutants based
on the properties of the old ones. The application of CRO
elementary reactions resulted in changes to the mutation
score and other properties of the mutants.

Table (3) summarizes the mutant properties before
and after applying the CRO technique.

The Proposed Algorithm Vs Another Algorithm on
the Process of Higher-Order Mutant Generation

In this section, we compare our study with three
previous studies, focusing on subject programs, problems
addressed, techniques employed and the strengths and
limitations relative to our proposed method.

Table 4: Comparison of Proposed algorithm HOMUsingCRO-ML with other existing algorithm

Criteria Store
Management
System (607
LOC, 38
methods, two
classes)

Inventory
Management
System (520
LOC, 35
methods, three
classes)

Employee
Management
System (750
LOC, 48
methods, four
classes)

Online
Banking
System (1500
LOC, 120
methods,
eight classes)

Library
Management
System (1000
LOC, 65
methods, five
classes)

E-commerce
Platform
(2000 LOC,
180 methods,
10 classes)

Papadakis et
al. (2018)

Nguyen and
Madeyski
(2016)

Mutants
Generated

1170 FOMs (420
after filtering, 108
HOMs after 50
iterations)

1500 FOMs
(600 after
filtering, 150
HOMs after 50
iterations)

1400 FOMs
(550 after
filtering, 150
HOMs after 50
iterations)

1800 FOMs
(720 after
filtering, 180
HOMs after
50 iterations)

1600 FOMs
(640 after
filtering, 160
HOMs after 50
iterations)

2200 FOMs
(880 after
filtering, 200
HOMs after
50 iterations)

2000 mutants
(no HOM
reduction)

Not
specified
(focus on
large-scale
testing
context)

Test Cases 140 test cases 180 test cases 160 test cases 200 test cases 180 test cases 220 test cases 800 test cases Not
specified

Mutant/Test
Case Ratio

420 mutants: 140
test cases (3:1)

600 mutants:
180 test cases
(5:3)

550 mutants:
160 test cases
(5:3)

720 mutants:
200 test cases
(6:5)

640 mutants:
180 test cases
(4:3)

880 mutants:
220 test cases
(4:3)

2000 mutants:
800 test cases
(5:2)

Not
specified

Mutation
Score

27.77% after 50
iterations

30.00% after 50
iterations

28.00% after 50
iterations

32.14% after
50 iterations

30.56% after 50
iterations

31.25% after
50 iterations

99% Not
specified

Mutant
Reduction

91% reduction in
total mutants
(73%
improvement in
mutation score)

60% reduction
in mutants (No
HOM
reduction)

72% reduction
in mutants (No
HOM
reduction)

85%
reduction in
mutants (No
HOM
reduction)

80% reduction
in mutants (No
HOM
reduction)

85%
reduction in
mutants (No
HOM
reduction)

No reduction
in HOMs
(2000
mutants
retained)

Less
effective in
the mutant
reduction

Strengths Generates hard-
to-kill HOMs,
reduces mutants
and improves test
suite robustness

High mutation
score (99%), but
no HOM focus

High reduction
in mutants,
moderate
mutation score

Generates
complex
mutants,
efficient in
mutant
reduction

Effective
mutant
reduction,
robust test suite
generation

High
reduction in
mutants,
detailed
report
generation

High
mutation
score (99%),
no focus on
mutant
complexity

Broader
context with
large
subject
programs

Limitations Lower mutation
score (27%) due
to harder-to-kill
HOMs, but this
aligns with the
objective.

No reduction of
HOMs, no focus
on mutant
complexity

Moderate
mutation score
lacks HOM
reduction

Less focus on
mutation
score, but it
achieves
significant
mutant
reduction

No reduction in
HOMs, lower
mutation score

High mutant
generation,
but no
reduction in
HOMs

Did not
address
mutant
reduction, no
HOM
reduction

Did not
achieve the
same level
of mutant
reduction

When compared to Papadakis et al. (2018), our study
utilizes the Store Management project, which comprises
607 lines of code, 38 methods and two classes. In
contrast, Papadakis et al. (2018) used a smaller project
with just one Class, 23 methods and 315 lines of code.
This indicates that our subject program is larger and
more complex, providing a more challenging

environment for mutant generation and testing. In terms
of mutant and test case ratios, our study involved 420
mutants and 140 test cases, resulting in a ratio of 3:1.
Papadakis et al. (2018), on the other hand, worked with
2000 mutants and 800 test cases, yielding a ratio of 5:2.
This comparison highlights a more balanced ratio in our
approach. While Papadakis et al. (2018) applied a



Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1199

genetic algorithm and achieved a mutation score of 99%,
their method did not reduce the number of higher-order
mutants (HOMs), maintaining the initial count of 2000
mutants. Conversely, our CRO-based method improved
the mutation score by 73% and reduced the number of
mutants by 73%. This demonstrates that our approach
not only effectively reduces mutants but also maintains
high mutation scores. The potential exists for our method
to achieve similar high mutation scores as Papadakis et
al. (2018) with increased iterations.

In comparison with Nguyen and Madeyski (2016),
our study initially generated 1170 first-order mutants
(FOMs), which were reduced to 420 FOMs using CRO
filtering. After 50 iterations, we produced 108 higher-
order mutants (HOMs), marking a 25% reduction from
the filtered FOMs. Nguyen and Madeyski (2016), on the
other hand, employed a large subject program consisting
of five Java projects, each with 51 to 144 class files. This
broader testing context might influence the effectiveness
of their algorithm. Our approach achieved a 91%
reduction in the total number of mutants and a mutation
score of 27% with the generated HOMs, demonstrating
strong performance in realistic fault generation. While
Nguyen and Madeyski's (2016) approach was tested on a
larger scale, it did not match the reduction effectiveness
observed with our method (Table 4).

Fig. 14: Mutation score comparison for different generations
(Gen = 10, Gen = 30 and Gen = 50)

Fig. 15: Execution time comparison for different generations
(Gen = 10, Gen = 30 and Gen = 50)

Figure (14) shows the mutation score comparison for
different generations (Gen = 10, Gen = 30 and Gen = 50)
across the various projects. The mutation score decreases
as the generation number increases, highlighting the
difficulty of detecting mutants with higher generations.

Figure (15) displays the execution time comparison
for different generations (Gen = 10, Gen = 30 and Gen =
50) across various projects. The execution time increases
as the generation number increases, highlighting the
growing computational cost associated with higher-
generation mutant processing.

HOMUsingCRO-ML effectively balances mutant
reduction and mutation score improvement,
outperforming previous methods in both areas.
Papadakis et al. (2018) approach achieved high mutation
scores but did not address mutant reduction, while
Nguyen and Madeyski's (2016) larger subject programs
provided a broader context but did not achieve the same
level of mutant reduction. Overall, our proposed
algorithm offers a more effective solution for managing
and evaluating mutants.

Conclusion
This study introduced an innovative approach to

generating higher-order mutants (HOMs) using the
Chemical Reaction Optimization (CRO) algorithm,
effectively addressing key limitations in existing
mutation testing techniques. By leveraging the CRO
algorithm's four operators, on-wall ineffective, Synthesis,
Decomposition and inter-molecular ineffective, our
method achieves a novel balance between reducing the
number of mutants and increasing their complexity. This
approach ensures that the mutants generated are both
fewer in number and harder to detect, thereby enhancing
the rigour and effectiveness of mutation testing. The
experimental results validate the novelty of our
approach, demonstrating a substantial reduction (93%) in
the total number of mutants while simultaneously
increasing their resistance to detection, as shown by the
lowered mutation scores across ten subject programs. On
average, the mutation score after 50 iterations was
27.77%, with individual scores ranging from 23-31%,
indicating consistently high resistance to detection.
These results underscore the robustness of the CRO-
based approach in generating complex and effective
mutants across diverse programs.

Future work will focus on further validating the CRO
algorithm across larger, more diverse subject programs,
including those written in languages such as C++ and
C#, to generalize its applicability across different
domains. Additionally, we aim to optimize the algorithm
to handle even larger scales of mutation testing, ensuring
its scalability and effectiveness in industrial software
systems. By continuing to refine and expand upon this
study, we aim to contribute to the advancement of more
sophisticated and efficient mutation testing
methodologies.

http://192.168.1.15/data/12930/fig14.png
http://192.168.1.15/data/12930/fig14.png
http://192.168.1.15/data/12930/fig15.png
http://192.168.1.15/data/12930/fig15.png


Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1200

Acknowledgement
The authors would like to express their sincere

gratitude to GIET University, Sri Sri University, and
Arba Minch University for providing the opportunity and
necessary support to carry out this research work. Their
encouragement, resources, and collaborative
environment have been invaluable in the successful
completion of this study.

Funding Information
This research did not receive any funding.

Author's Contributions
Subhasish Mohanty: Conceptualization,

methodology, conducted the experiment(s).

Jyotirmaya Mishra: Data curation, writing.

Sudhir Kumar Mohapatra: Conceptualization,
methodology, conducted the experiment(s).

Melashu Amara: Methodology, conducted the
experiment(s).

Aliazar Deneke Deferisha: Formal analysis, writing,
review and editing.

All authors reviewed the manuscript.

Ethics
This research did not involve human participants or

animals, and all datasets were used with proper
permissions. The study adheres to ethical research
practices, with no conflicts of interest declared.

References
Abuljadayel, A., & Wedyan, F. (2018). An Approach for

the Generation of Higher Order Mutants Using
Genetic Algorithms. International Journal of
Intelligent Systems and Applications, 10(1), 34-45.
https://doi.org/10.5815/ijisa.2018.01.05

Atamamen, F. O., Mohammed, A. H., & Joachim, O. I.
(2017). Application of Resource Based Theory to
Green Cleaning Services Implementation.
Advanced Science Letters, 23(9), 8373-8379.
https://doi.org/10.1166/asl.2017.9894

Dang, X., Gong, D., Yao, X., Tian, T., & Liu, H. (2022).
Enhancement of Mutation Testing Via Fuzzy
Clustering and Multi-Population Genetic
Algorithm. IEEE Transactions on Software
Engineering, 48(6), 2141-2156.
https://doi.org/10.1109/tse.2021.3052987

Diniz, J. P., Wong, C. P., Kastner, C., & Figueiredo, E.
(2021). Dissecting Strongly Subsuming Second-
Order Mutants. 2021 14th IEEE Conference on
Software Testing, Verification and Validation
(ICST), 171-181.
https://doi.org/10.1109/icst49551.2021.00028

Do, V. N., Nguyen, Q. V., & Nguyen, T. B. (2021).
Evaluating Mutation Operator and Test Case
Effectiveness by Means of Mutation Testing.
8370850.
https://doi.org/10.1007/978-3-030-73280-6_66

Getachew, D., Mohapatra, S. K., & Mohanty, S. (2022).
A Heuristic-Based Test Case Prioritization
Algorithm Using Static Metrics. 45-58.
https://doi.org/10.1007/978-3-031-07297-0_4

Ghiduk, A. S., & El-Zoghdy, S. F. (2018). Chomk:
Concurrent Higher-Order Mutants Killing Using
Genetic Algorithm. Arabian Journal for Science
and Engineering, 43(12), 7907-7922.
https://doi.org/10.1007/s13369-018-3226-y

Ghiduk, A. S., Girgis, M. R., & Shehata, M. H. (2018).
Reducing the Cost of Higher-Order Mutation
Testing. Arabian Journal for Science and
Engineering, 43(12), 7473-7486.
https://doi.org/10.1007/s13369-018-3108-3

Ghiduk, A. S., & Rokaya, M. (2019). An Empirical
Evaluation of the Subtlety of the Data-Flow Based
Higher-Order Mutants. Journal of Theoretical and
Applied Information Technology, 97(15), 4061-
4074.

Habtemariam, G. M., & Mohapatra, S. K. (2019). A
Genetic Algorithm-Based Approach for Test Case
Prioritization. 24-37.
https://doi.org/10.1007/978-3-030-26630-1_3

Ismail, I. F., Mohammed, A. N., Basuno, B., Alimuddin,
S. A., & Alas, M. (2022). Evaluation of CFD
Computing Performance on Multi-Core Processors
for Flow Simulations. Journal of Advanced
Research in Applied Sciences and Engineering
Technology, 28(1), 67-80.
https://doi.org/10.37934/araset.28.1.6780

Jatana, N., & Suri, B. (2020). An Improved Crow Search
Algorithm for Test Data Generation Using Search-
Based Mutation Testing. Neural Processing Letters,
52(1), 767-784.
https://doi.org/10.1007/s11063-020-10288-7

Lam, A. Y. S., & Li, V. O. K. (2012). Chemical Reaction
Optimization: A Tutorial. Memetic Computing,
4(1), 3-17.
https://doi.org/10.1007/s12293-012-0075-1

Lam, A. Y. S., Xu, J., & Li, V. O. K. (2010). Chemical
Reaction Optimization for Population Transition in
Peer-to-PeerLlive Streaming. IEEE Congress on
Evolutionary Computation, 1-8.
https://doi.org/10.1109/cec.2010.5585933

Mohanty, S., Mishra, J., Mohapatra, S. K., & Amare, M.
(2024). A Novel Algorithm For Generating Hard-
To-Kill Higher Order Mutants Using Chemical
Reaction Optimization. Nanotechnology
Perceptions, 20(S14), 1379-1409.
https://doi.org/10.62441/nano-ntp.vi.2948

https://doi.org/10.5815/ijisa.2018.01.05
https://doi.org/10.1166/asl.2017.9894
https://doi.org/10.1109/tse.2021.3052987
https://doi.org/10.1109/icst49551.2021.00028
https://doi.org/10.1007/978-3-030-73280-6_66
https://doi.org/10.1007/978-3-031-07297-0_4
https://doi.org/10.1007/s13369-018-3226-y
https://doi.org/10.1007/s13369-018-3108-3
https://doi.org/10.1007/978-3-030-26630-1_3
https://doi.org/10.37934/araset.28.1.6780
https://doi.org/10.1007/s11063-020-10288-7
https://doi.org/10.1007/s12293-012-0075-1
https://doi.org/10.1109/cec.2010.5585933
https://doi.org/10.62441/nano-ntp.vi.2948


Subhasish Mohanty et al. / Journal of Computer Science 2025, 21 (5): 1187.1201
DOI: 10.3844/jcssp.2025.1187.1201

1201

Mohapatra, S. K., Mishra, A. K., & Prasad, S. (2020).
Intelligent Local Search for Test Case
Minimization. Journal of The Institution of
Engineers (India): Series B, 101(5), 585-595.
https://doi.org/10.1007/s40031-020-00480-7

Mohapatra, S. K., & Prasad, S. (2017). A Chemical
Reaction Optimization Approach to Prioritize the
Regression Test Cases of Object-Oriented
Programs. Journal of ICT Research and
Applications, 11(2), 113-130.
https://doi.org/10.5614/itbj.ict.res.appl.2017.11.2.1

Nayak, J., Naik, B., & Behera, H. S. (2015). A novel
Chemical Reaction Optimization Based Higher
order Neural Network (CRO-HONN) for Nonlinear
Classification. Ain Shams Engineering Journal,
6(3), 1069-1091.
https://doi.org/10.1016/j.asej.2014.12.013

Nguyen, Q. V., & Madeyski, L. (2016). Empirical
Evaluation of Multiobjective Optimization
Algorithms Searching for Higher Order Mutants.
Cybernetics and Systems, 47(1-2), 48-68.
https://doi.org/10.1080/01969722.2016.1128763

Nguyen, Q. V., & Truong, H. B. (2020). An Improvement
of Applying Multi-objective Optimization
Algorithm into Higher Order Mutation Testing.
Advanced Computational Methods for Knowledge
Engineering, 1121, 361-369.
https://doi.org/10.1007/978-3-030-38364-0_32

Oh, S., Lee, S., & Yoo, S. (2021). Effectively Sampling
Higher Order Mutants Using Causal Effect. 2021
IEEE International Conference on Software
Testing, Verification and Validation Workshops
(ICSTW), 19-24.
https://doi.org/10.1109/icstw52544.2021.00017

Omar, E., Ghosh, S., & Whitley, D. (2014). Comparing
Search Techniques for Finding Subtle Higher Order
Mutants. Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary
Computation, 1271-1278.
https://doi.org/10.1145/2576768.2598286

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y. L.,
& Harman, M. (2019). Mutation Testing Advances:
An Analysis and Survey. 112, 275-378.
https://doi.org/10.1016/bs.adcom.2018.03.015

Papadakis, M., Shin, D., Yoo, S., & Bae, D. H. (2018).
Are Mutation Scores Correlated with Real Fault
Detection? Proceedings of the 40th International
Conference on Software Engineering, 537-548.
https://doi.org/10.1145/3180155.3180183

Prado Lima, J. A. do, & Vergilio, S. R. (2019). A
Systematic Mapping Study on Higher Order
Mutation Testing. Journal of Systems and Software,
154, 92-109.
https://doi.org/10.1016/j.jss.2019.04.031

Rahman, M., Zamli, K. Z., Kader, Md. A., Sidek, R. M.,
& Din, F. (2023). Comprehensive Review on the
State-of- the-arts and Solutions to the Test
Redundancy Reduction Problem with Taxonomy.
Journal of Advanced Research in Applied Sciences
and Engineering Technology, 35(1), 62-87.
https://doi.org/10.37934/araset.34.3.6287

Tengku Sulaiman, T. M. S., Mohamed, S. B., Minhat,
M., Mohamed, A. S., Mohamed, A. R., & Yusof, S.
N. A. (2020). File and PC-Based CNC Controller
Using Integrated Interface System (I2S). Journal of
Advanced Research in Applied Mechanics, 70(1),
1-8. https://doi.org/10.37934/aram.70.1.18

Yu, J. J. Q., Lam, A. Y. S., & Li, V. O. K. (2012). Real-
Coded Chemical Reaction Optimization with
Different Perturbation Functions. 2012 IEEE
Congress on Evolutionary Computation, 1-8.
https://doi.org/10.1109/cec.2012.6252925

https://doi.org/10.1007/s40031-020-00480-7
https://doi.org/10.5614/itbj.ict.res.appl.2017.11.2.1
https://doi.org/10.1016/j.asej.2014.12.013
https://doi.org/10.1080/01969722.2016.1128763
https://doi.org/10.1007/978-3-030-38364-0_32
https://doi.org/10.1109/icstw52544.2021.00017
https://doi.org/10.1145/2576768.2598286
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1145/3180155.3180183
https://doi.org/10.1016/j.jss.2019.04.031
https://doi.org/10.37934/araset.34.3.6287
https://doi.org/10.37934/aram.70.1.18
https://doi.org/10.1109/cec.2012.6252925

