
Journal of Computer Science 1 (3): 419-423, 2005
ISSN 1549-3636
© Science Publications, 2005

419

Applying Evolutionary Computing in Case Retrieval Stage

Nabila Nouaouria-Amri and Med Tayeb Laskri

Department of Computer Science, Laboratory of Computer Science (LRI), Research Group on

Artificial Intelligence, University Badji Mokhtar of Annaba, B.P. 12, Annaba (23000), Algeria

Abstract: Case Based Reasoning is a problem solving paradigm which is able to retrieve and reuse
solutions that have worked for similar situations in the past. Past situations and their solutions are
stored in a memory called case base. To find the good experiment in memory is the key of success in
the reasoning. To identify adequate experiment in memory constitutes the process of recall. The study
presents an associative memory model used for a Case-Based Reasoner. The search algorithm is
funded on an evolutionary approach to compute neighbourhood of a new problem then a direct access
is performed.

Keywords: Artificial Intelligence, Case Based Reasoning, Evolutionary Computing, Case Retrieval

INTRODUCTION

“Reasoning is Remembering” is the slogan of most
researchers in Case Based Reasoning field. Case Based
Reasoning (CBR) is a problem solving methodology
founded on reusing old solution that have worked for
similar situations in the past to solve new problem. Past
situations and their solutions are stored in a memory
called case base.
To find the good experiment in memory is the key of
success in the reasoning. The good experiment is the
one that can perform the best inferences. To identify
adequate experiment in memory is the recall process.
Recall is highly influenced by memory organization
and by retrieve strategies. The accuracy (in the sense of
exhaustiveness) and speed of recall task constitute two
important parameters in the performance evaluation of
a CBR system.
Case based reasoning is an Artificial Intelligence
paradigm that can be synergistically combined with
other approaches to facilitate a broad array of tasks [1].
Among those possible combinations, we present in the
following, an approach to perform a quick and
complete recall, in an associative memory, using
evolutionary computing.
The main idea is to compute the neighbourhood of a
new problem by an evolutionary algorithm. This draws
up the boundaries of the search space in the case base.
And then, attains directly this neighbourhood via a
network in an associative memory style.
For a best understanding of the study, we start with a
fast skimming of CBR paradigm, followed by the
memory model proposed. Then the general framework
is depicted. The conclusion section goes over the main
points, it also presents related works and future
direction

CASE BASED REASONING PARADIGM

The idea of CBR is intuitively pleasing because it is
similar to human problem-solving behaviour. People
sketch on past experience while solving new problems
and this approach is both convenient and effective and
it often reduces the burden of depth analysis of the
problem domain [2]. This leads to the advantage
that CBR can be based on shallow knowledge and
does not require significant effort in knowledge
engineering when compared with other approaches
(e.g., rule-based).
Problem solving with CBR proceeds as follows: a new
problem is posed and is described as the problem part
of a new case, sometimes also called the query. Then,
old cases containing problems that are similar to the
new problem are retrieved and the most suitable
solution among retrieved solutions is suggested to
become the solution of the new problem. This solution
is then tested in reality and may lead to a revised
solution worth to be Stored as a new case. This last step
is a form of incremental learning that enables CBR
systems to adapt to changing environments rather
smoothly.
In theory, the basic cycle of CBR is in three phases:
«retrieve, reuse and store». The system looks for a
similar case to the input case, reuse the recovered
solution and finally, store the current case for a future
utilization.
This cycle can be extended to five stages [2, 3]:

Presentation or Specification: A description of the
problem is provided at the entrance of the system. This
description must be suitable to the comparison between
the case in entrance and cases stored in memory

J. Comp. Sci., 1 (3): 419-423, 2005

 420

(uniformity of the representation). One of the key
points of the CBR is the research of applicable cases. It
is what justifies the importance of the process that is
going to label cases with indexes so that they could be
recalled at the appropriate moment. This indexing leans
mainly on the extraction of the most characteristic
descriptors of the case.

Retrieval: The system looks for cases that are best
unified to this description (closest matching cases).
These cases are stored in a case base or case memory
(i.e.: data base of cases). If the case base is organized
according to a particular structure, an algorithm of
research describes then a path in this structure. A phase
of filtering or selection is often performed in order to
eliminate a subset of worst cases. A measure of
similarity can be then used to refine the resemblance
measure between the current case and selected cases.
Then returns ordered cases.

Adaptation: The system uses the current problem and
the matching case to generate a solution to this
problem. The adaptation constitutes the second difficult
point (after the indexing) when conceiving a CBR
system. It is necessary to decide what type of
knowledge it is interesting to transfer from the best case
remembered. We can do a transformational analogy,
consisting in transforming the solution of retrieved case
to adapt it to the current case. Or to proceed by
derivation when adapting the method of solution
generation. Otherwise, the possibility to adapt several
cases to solve a problem, in a simultaneous way or
operating several remembering and simple adaptation to
the different stages of the resolution, has been judged
more creative [5].

Validation: This phase includes the possibility of an
assessment of the solution proposed while testing it in
an either simulated or real environment. The
information returned guides a repair process, in case of
failure of the proposed solution.

Storage: The validated solution is added to the case
base for a future utilization. We can have systems
which store cases systematically in memory. A more
selective memorization is however possible and would
use some specific criteria to judge if the new case is
useful to learn according to the current case memory.
Generally, a case is useful to learn when it can reach a
point of the solution space that was inaccessible before
the arrival of this new case.

THE MEMORY MODEL PROPOSED

In order to function correctly, the case based reasoning
uses cases stored in a case base. This one is supposed to
be representative of the whole problems encountered in
the field. The more it contains cases, the more the case

selected for the reasoning will be similar to the new
case. The elaborate solution will be thus better. But
more the base increases, more prohibitive will be the
calculating cost. This is why techniques of memory
organization and search algorithms are particularly
important in this reasoning mode.
There are several memory organizations according to
which search algorithms exist [2, 3]. The most
frequently used models of memory relying on a
Top-Down search, present some common features [4]:

* They support a structuring of data by regrouping

together related objects.
* They support an efficient retrieval by utilizing

traditional tree search algorithms.
* Traversing a Top-Down memory structure is

performed by answering questions in the internal
nodes in order to choose which path to follow. This
requires a specific order in the answers. In the case
of incomplete information, it could mislead the
utilization of an erroneous path.

* Once a certain cluster of cases has been reached in
the leaf of a tree, it is hard to access neighbouring
clusters containing similar cases.

For those reasons, we will expose another vision of
retrieval problem based on the construction of problem
neighbourhood.
The case memory is indeed, a flat structure on which
we construct a nested structure. There are two types of
node: value node and case node.
Each value node represents a particular value of a
problem attribute (Fig. 1). It is linked to all case nodes
where it occurs.
The case node point out to the case base where the
whole case is stored.
The particularity of this structure is that we reach the
case by its contents (the principle of associative
memories).
Another particularity is that the structure could be
easily and automatically build by simply scanning the
case memory.

The General Framework: The retrieval of applicable
cases can be formulated in how to extract from the
search space a sub-space of cases that are similar to the
problem to resolve. This sub-space is what we call
neighbourhood of the target problem. It is classically
obtained by a search strategy.
The main idea is to compute the neighbourhood of a
new problem by an evolutionary algorithm (Fig. 2).
And then, access directly to this neighbourhood via a
network in an associative memory style.
Every source problem computed by the evolutionary
module will be directly pointed in the search space via
the net.
A case is an entity within which is gathered various
information on a past situation. The term «situation» is
very general. A case is also an entity about which an

J. Comp. Sci., 1 (3): 419-423, 2005

 421

Fig. 1: The Associative Memory

Fig. 2: A Global Vision

inference is possible by situating the new problem with
regard to the definite circumstances in the case.
A case is constituted of descriptors, also called
dimensions, distributed in three categories: the
description of the problem, the solution and issues of
the solution.
The description of the problem includes the context of
the case. The solution is the solution of the problem or
the reaction to this description (for example, the
deliberation of a courthouse, the taken decision, etc.). It
can also describe the used reasoning. The exit of the
case is the description of the context after the
implementation and execution of the solution. This part
of the case is generally omitted and knowledge is
reported on the other stages of the reasoning.
The retrieval step is based on problem description only.
We focus know on the evolutionary module and
propose a coding of problem description.

Coding: When a new problem is posed, the request to
retrieve similar cases is generally, expressed with
dimensions of problem description (Fig. 3).

 Attrib1 Attribi Attribn
 Val1 … Vali … Valn

 Gene1

 Genei

 Genen

Fig. 3: Problem Description as a Chromosome

The coding of problem will be:

Table 1: Matching between CBR and EC Entities
Problem description : pbm Chromosome
Descriptors : di genes
Descriptor values valj Alleles

Pbm = { di } : an array of descriptors.
di = (Attribi,valij): a couple of attribute/value
valij € Domj : each value belongs to a specific domain
which could be symbolic or numeric.

For our experimentation, we have used a sub set of
‘auto import database’, an UCML dataset. We are
interested in:
problem description =<make, bodystyle, horsepower>

Domainemake = {alfa-romero, audi, bmw, chevrolet,
dodge, honda, isuzu, jaguar, mazda, mercedes-benz,
mercury, mitsubishi, nissan, peugot, plymouth, porsche,
renault, saab, subaru, toyota, volkswagen, Volvo}
discrete

So if we make a decimal coding:
Make € [1, 22] � 2 digits

For a binary coding we have:
Make € [00000, 10110] � 5 bits

Domainebodystyle = { hardtop, wagon, sedan, hatchback,
convertible } discrete

So if we make a decimal coding:
Bodystyle € [1, 5] � 1 digit

For a binary coding we have:
bodystyle € [000, 101] � 3 bits

Domainehorsepower = [48, 288] continuous
So if we make a decimal coding:
Horsepower € [48, 288] � 3 digits

For a binary coding we have:
horsepower€ [000110000,100100000] � 9 bits

An example of chromosome could be:

For a decimal coding
1 3 2 0 6 8

Binary coding is longer:
01101 010 001001000

Evolutionary

module

Case base

Search space

Associative

access

Target problem

 Source problem
Source problem

Source problem

Source problem

Idcas8

Idcasi

…

IdcasN

48

Maked

e Poids

bodystyleurie

wagon

hardtop

…

Case

 base
64

288

Honda

BMW

neighbourhood Idcas7

J. Comp. Sci., 1 (3): 419-423, 2005

 422

Which correspond to the description of the following
problem :
 Prob=<nissan, wagon, 68>
 The initial population is randomly generated.
 The selection step is based on a strategy of
similarity to the request (new problem). With a general
shape :

 D(G,Gk) = ∑ wi di(G,Gk) for i € [1, 3]

Where: wi is the weight of the descriptor i (gene i) and
di is the partial distance:

 di = 1-(|Xi-Xi

k|/maximal discard)

Reproduction is essentially made by:
Cross-over: for both binary coding and decimal coding
we have two crossing points. They are separations
between genes.
Mutation of genes: The chromosome mutation
corresponds to the troubling of the entry problem
description in order to generate a neighbourhood.
The fitness function is based on similarity assessment
between the input problem and the actual chromosome.
It has the following form:
Maximizing ∑ D(G,Gk) for k=1 to N (N population
cardinality).

The whole algorithm will be:

The stop criterion = population stabilisation or max
Time

For the following input problem description :
1 3 2 0 6 8

An example of population (with card =5):
For decimal coding:
Ind1 0 9 4 1 1 6 0.76
Ind2 1 1 2 0 7 0 0.96
Ind3 0 4 3 1 6 0 0.76
Ind4 2 2 1 2 0 7 0.58
Ind5 1 4 3 1 1 0 0.84

The last column represents the selection function.

A first simulation with decimal coding leads to results
presented in Fig. 4.

Fig. 4 : Simulation Results

We ought to notice that in our study, both selection
function and fitness function expresses the same
semantic since we aim to retrieve the most similar
problems.

CONCLUSION

Many different approaches of case memory models
have been proposed in literature [6]. However
Evolutionary computing approach seems to be
interesting for multiple reasons [11, 12]:

* Flexible knowledge representation.
* Good computation performances.
* Suitable for space exploration.
* A large scale of applicability.

Up to now their application in CBR was limited to the
adaptation task. An evolutionary approach to case
adaptation is presented in [7]. In [8], case adaptability is
improved by a Genetic Algorithm.
Our approach leans on a memory structure reachable by
the contents. Flexible, easy to construct and having a
uniform knowledge representation according to the
Evolutionary computing module.
It is very important to emphasize that the presented
approach represents a general framework. When
considering a specific application field we have to tune
parameters of our system in order to improve the
convergence.
Since our previous work was on adaptability guided
retrieval memory [9, 10] it is interesting to consider an
extension of the approach where the adaptability
criterion is integrated to the fitness function.

REFERENCES

1. Marling, C. et al., 2002. Case-Based reasoning

Integrations. In AI Magazine, Vol: 23.
2. Kolodner, J., 1993. Case Based Reasoning. Ed.

Morgan Kaufmann.

1. Initialise a population of chromosomes.
2. Evaluate each chromosome in the population.
3. Create offspring problems population by
 crossing then mating the current generation.
4. Evaluate offspring population.
5. if <stop criterion> is satisfied then stop else
 goto 3.

J. Comp. Sci., 1 (3): 419-423, 2005

 423

3. Aamdot, A. and E. Plaza, 1994. Case Based
Reasoning: Foundational Issues, Methodological
Variations and System Approaches. Published in
IOS Press, 7: 39-59.

4. Lenz, M. et al., 1998. Diagnosis and decision
support. In LNAI 1400, Éd. Springer.

5. Kolodner, J., 1992. Judging which is the best case
for a case based reasoner. In DARPA Workshop on
CBR.

6. Nouaouria, N. and M.T. Laskri, 2003. Toward a
formal model of case based reasoning from the
roots. Proc. CESA’2003, Lille France, pp: 9-11.

7. Gomez de Silva Garza, A. and M.L. Maher, 1999.
An Evolutionary Approach to Case Adaptation. 3rd
ICCBR’99, in LNAI 1650, Germany.

8. Purvis, L. and S. Athalye, 1997. Towards
Improving Case Adaptability with a Genetic
Algorithm. 2rd ICCBR’97, in LNAI 1266, USA.

9. Nouaouria, N. and M.T. Laskri, 2005. Adaptability
versus Similarity : Why not the two. In proc. of 9th
UKWCBR, Cambridge, UK.

10. Nouaouria, N. and M.T. Laskri, 2005. Case
Retrieval Nets Augmented with an Adaptability
Criterion. to appear in MJCS, Vol: 18.

11. Pal, S.K. and S.C. Shiu, 1994. Foundations of Soft
Case-Based Reasoning. Ed. John Wiley and Sons
Inc, 2004.

12. Goldberg, D.E., 1994. Genetic algorithms. Ed.
Addison Wesley.

