
Journal of Computer Science 1 (3): 437-444, 2005
ISSN 1549-3636
8 2005 Science Publications

437

Quality Metric Development Framework (qMDF)

1 K. Mustafa and 2R. A. Khan

1Department of Information Technology, Al Husain Bin Talal University, Jordan
2Department of Computer Science, Jamia Millia Islamia, N. Delhi, India

Abstract: Several object-oriented metrics have been developed and used in conjunction with the
quality models to predict the overall quality of software. However, it may not be enough to propose
metrics. The fundamental question may be of their validity, utility and reliability. It may be much
significant to be sure that these metrics are really useful and for that their construct validity must be
assured. Thereby, good quality metrics must be developed using a foolproof and sound framework /
model. A critical review of literature on the attempts in this regard reveals that there is no standard
framework or model available for such an important activity. This study presents a framework for the
quality metric development called Metric Development Framework (qMDF), which is prescriptive in
nature. qMDF is a general framework but it has been established specially with ideas of object-oriented
metrics. qMDF has been implemented to develop a good quality design metric, as a validation of
proposed framework. Finally, it is defended that adaptation of qMDF by metric developers would yield
good quality metrics, while ensuring their construct validity, utility, reliability and reduced
developmental effort.

Keywords: Object Oriented Metrics, Quality Models, OO Paradigm, OO Structure

INTRODUCTION

Several research works in the object oriented design
metrics arena were produced in recent years[1-9, 14,17,31-

35]. However, widespread adaptation of object oriented
metrics in numerous application domains should only
take place if metrics may be shown to be theoretically
valid, in the sense that they accurately measure the
attributes of software for which they were designed to
measure and have also been validated empirically[10].

But there is a general agreement among the experts that
metrics have not been even validated theoretically and
what to talk of experimental validation. Most of the
metrics are accepted by practitioners on ‘heavy usages
and popularity’ and by academic experts on empirical
validation. In such a scenario many of the available
metrics may not be used properly and have been
discarded. Reasons may be that these could not find a
place among practitioners or not found to be valid by
experts on empirical findings. Now the question is
‘Why such metrics which could not become acceptable,
were developed?’- leading to all the efforts on
development going vain. Therefore, there appears a
need for such development to be sound enough and
backed by valid procedures to avoid such embarrassing
situations. That is, a sound and standard framework or
model for metrics development may be quite useful.
And that it could lead to the development of good
quality metrics.

Development of object oriented metrics: It is evident
from the review of literature that few of the researchers
have proposed the criteria for developing the desired
metrics. We could not explore a standard framework or
model for designing object oriented metrics. Therefore,
it appeared worthwhile for looking at major
developments and discover the direct or indirect use of
criteria, methods, guideline etc. Some of the major
attempts have been critically reviewed (SATC’s
Approach[11], Jagdish Bansiya and Carl Devis’s
Attempt[2], Kitchenham’s Approach[12], Abreu’s
Approach[14] and Victor’s Approach[15]) and the feeling
gets confirmed that there are no known comprehensive
and complete models or frameworks or concerned
approach that may be used to design quality object
oriented metrics. In order to further assure the
conclusion, a question regarding the availability of
standard framework for designing the desired metrics
was posed to various researchers and practitioners.
Their responses were analyzed and conclusion was
drawn that no such framework is available, and no
major attempts on its development has been
reported. Despite the apparent diversity of object
oriented design framework, an opportunity to work out
a desired framework for designing the object oriented
metrics is knocking. The need to have a framework that
may be used for development of quality metrics
motivates the proposal of an appropriate framework.
However, a set of common and desired features for

J. Computer Sci., 1 (3): 437-444, 2005

 438

development of object oriented metrics can be drawn
from the reported attempts on development of metrics.
Applying object oriented metric to new paradigms such
as object oriented domain has been a dominant feature
of academic research up to the present day[16,17]. The
researchers community has developed a considerable
number of object oriented metrics. The basic premise
behind the development of object oriented metrics is
that they can serve as early predictors of classes that
contain faults or that are costly to maintain. CK suit is
the most referred and most commercially used metrics
collection tool available. Dr. Linda Rosenberg[11] at
SATC validated the six CK metrics and found that the
main features the metrics are incorporating the
coverage of all the object oriented concepts. External
complexity and internal object structure was found to
be the much desired feature for designing the object
oriented metrics[11]. Victor Laing[15] with Dr. Linda
Rosenberg working for NASA at SATC suggest
Orthogonality as one of the important characteristics of
the desired metrics to be used for object oriented
technology to find the minimal set of metrics. Abreu[18]

proposed MOOD set of metrics, which allow the use of
the attributes of the object oriented paradigm to be
evaluated and reviewed. Abreu strongly suggests that
metrics definition and dimension should be justified as
it plays an important role in designing the object
oriented metrics[14]. System size independence and
language independence was also found to be the major
contributor for designing the desired metrics[14].

Kitchenham’s work in the direction of designing the
object oriented metrics reveal that the dimensional
consistency and use of correct unit and scale type be the
essential feature of the design metrics[12]. It was
suggested that the developed metrics must preserve all
intuitive notions about the attributes and the way in
which the metrics distinguish between entities[13].

Quality metrics: The researchers generally conclude
that a good design metrics should possess all the object
oriented characteristics. As the basic question regarding
the design of constructs, effective use of constructs to
decrease the architectural complexity, psychological
complexity, application specific design and
enhancement tests through structure may be raised at
the time of designing the quality metrics. There are
researchers’ views that ‘design metrics are liable to
cover all the quality factors’ and that it may enable us
to tackle many pertinent questions. To minimize the
resource, usage and improve upon cost effectiveness the
minimal set of metrics appears to be the generic feature
of design metrics. The inherent use of a relevance and
value of good design metrics for the same system
would not vary with time and people but with major

paradigm shift in the field of software development. It
is also evident that the metrics are supposed to preserve
all the intuitive notions about the attributes and
the way in which the metrics distinguish
between the entities.
Therefore it appears that a set of essential and desirable
features may be identified and hence assured by metric
developers for the best cause of software
engineering. The following abstractions may be listed
as the essential features for designing the quality
metrics:

Compliance: The ability to cover all aspects of quality
factors and the design characteristics[1].

Orthogonality: The ability to represent different aspects
of the system under measurement[15].

Formality: The ability to get the same value for the
same systems for different people at different times
through precise, objective and unambiguous
specification[14].

Minimality: The ability to be used with the minimum
number of metrics[15].

Implementability/Usability: The implementation
technology independent ability.

Accuracy: A quantitative measure of the magnitude of
error, preferably expressed as a function of relative
error[25].

Validity: Validity refers to the degree to which a study
accurately reflects or assesses the specific concept
that the researcher is attempting to measure.

Reliability: The probability of failure free software
operation for a specified period of time in a
specified environment.

Interpretability: The ease with which the user may
understand and properly use and analyze the
metrics results.

It also appears relevant that the desired metrics should
focus on internal object structure that reflects the
complexity of each individual entity and on external
complexity that measures the interactions among
entities. In spite of these essential features of design
metrics, some desired features has also been
investigated.
There is no doubt that to ensure better processes a
‘framework, method or roadmap’ is generally used and
have been found to be handy and quite fruitful. Further,
it becomes evident through our explorations that a little

J. Computer Sci., 1 (3): 437-444, 2005

 439

work has been reported on the subject. There is an
ample opportunity and necessity as well, to work out a
framework that may be prescriptive in nature and be
easily usable to end up in the ‘development of good
quality metrics’.

The framework qMDF: Taking into account the need
and significance of a roadmap or framework for
developing metrics with ‘essential and desirable
features’, an integrated and prescriptive framework
qMDF is hereby proposed. qMDF has been attempted to
be highly implementable and prescriptive in nature. It
has been structured into a hierarchical description
including premises, generic guidelines and metric
development process to be followed in order as follows.

Premises: The following premises has been considered
when the proposed framework is being used to design
the quality metrics:

∗ Five quality indicators comprising efficiency,

complexity, understandability, reusability and
testability/maintainability cover all the factors that
affects the software quality.

∗ An integrated approach to measurement of
software quality is feasible and would prove to
be optimal.

∗ A common set of features for the desired metrics
may be used to form the basis for its development.

∗ The recourse optimization in SDLC depends on the
early use of metrics and uncovering of errors as far
as possible.

∗ The approach to measurement should be more
applicable to identifying low quality software than
the high quality code.

Generic guidelines: The guidelines before following
the process to develop the metrics may be listed as
follows:

∗ Assure compliance/ adherence to collect a common

set of essential and desirable features for the
proposed metric.

∗ Identify and persist with all the attributes of good
quality software.

∗ Identify and persist with all the quality factors
affecting specifically the quality of object oriented
software being measured/ predicted.

∗ Correlate the identified attributes with quality
factors and accordingly design the metric.

∗ Assure to control somehow all the extraneous and
intervening factors that may affect metric based
prediction.

Metric development process: The development
process of the metrics is comprised of seven phases
together with prescriptive steps for each and has been
depicted pictorially in qMDF, Fig. 1. Such a framework
has been proposed on the basis of integral and basic
components for designing good quality metrics. The
first phase starts with the conceptualization. Planning
for the desired metrics is treated as an important task
and has been putforth as a second phase, followed by
the phases termed as designing, validation, testing,
review and revision and packaging. An attempt has
been made to symbolically represent the spirit of
designing a metric and make the framework
prescriptive in nature followed by a brief description of
each o f the phases comprising the depicted
steps in the special reference to development of
metrics (Fig. 1).

Conceptualization: One of the foremost task of any
comprehensive problem-solving activity is
conceptualization. That is the initial brainstorming
activity envisaged and undertaken to understand the
problem, jot down ideas for solution and to realize
problem-related facts. Which in turn may be precisely
stated and represented in meaningful formats, under the
aegis of specifications. Importance of this phase lies in
the fact it serves as the basis for evolving initial set of
specifications to subsequent phases of development.

Planning: It is mandatory to have a plan, if one wants
to succeed in a problem solving situation and hence
also for development of metrics. A precisely defined
plan provides guidance to the developer as it works as a
roadmap. There is no doubt, that a metric will have
little value if it is designed outside a well-developed
structural framework.

Designing: Software metrics are an integral part of the
state-of-the-practice in software engineering. Well
designed metrics with documented objectives may help
the organization to obtain the information it needs to
continue to improve its products, process and services
while maintaining a focus on what is important to that
organization. Thus, designing is the most important and
critical step towards the development of desired
quality design metrics.

Validation: Theoretical validation of software metrics
provides the supporting evidence as to whether
 a measure really captures the internal attributes
that it purports to measure. The main goal of
theoretical validation is to assess whether a metric
actually measures what it purports to measure[19].

J. Computer Sci., 1 (3): 437-444, 2005

 440

In the context of an empirical study, the theoretical
validation of metrics establishes their construct validity,
i.e. it 'proves' that they are valid measures for the
constructs that are used as variables in the study.
Unfortunately, as Van den Berg and Van den Broek[20]

remark, even though several attempts have been made
at proposing methods and principles to carry out the
theoretical validation of metrics (mainly in the context
of software engineering), there is not yet a standard,
accepted way of theoretically validating a software
metric. However, the most general approach that may
be adapted is analytical.

Testing: Common wisdom, intuition, speculation and
proof of concepts may not be reliable sources of
credible knowledge[22], hence it is necessary to place the
metrics under testing. Testing is one of the best
empirical research strategies, performed through
quantitative analysis of experimental data on
implementation[23]. Testing is crucial for the success of
any software measurement project[10,12].

Review and revision: This phase is informal and has
been placed as the sixth phase with free-to-enter at any
of the earlier phases. Basic idea of such a prescription is
to have adequate enough exposure and then turn back
for better review, in the light of all the previous phases.
However, informal reviews and revisions may be
carried out at any of the stages in the metric
development process.

Packaging: This phase is the last and conclusive phase,
of the metric development process. During this phase
the developed metric is prepared with the needed
accessories to become a ready-to-use product, like any
other usable product.

qMDF tryout: The metric development process
prescribed in qMDF has been followed to develop an
integrated design metric. As an outcome of the ‘in-
order’ successful implementation, an integrated class
based metric, WCC (Weighted Class Complexity
Metric) has been developed and validated using ten
commercial software projects[36,21]. A glimpse of the
activities undertaken in developing a metric using the
framework may be had in the following descriptions.
There appeared to be a need for developing a single
integrated object oriented metric, encompassing all the
object oriented design constructs, which may be used in
the early stage of development to give a good indication
of software quality. The ability to cover all aspects of
quality factors and the design characteristics, to
represent different aspects of the system under
measurement, to get the same value for the same
systems for the different people at different time, to be

used with the minimum number of metrics, to have an
empirical validation and ability of failure free operation
are identified as the essential features of the desired
object oriented metric.
Early estimation of quality is feasible only with the
early use of object oriented design metrics. Mapping
the identified object oriented design characteristics with
quality attributes makes the development of design
quality metrics feasible. The use of qMDF also supports
the feasibility of the development of such metrics. The
generic feature of the developed design metric is its use
to minimize the recourse, usage, improvement upon
cost effectiveness and attain enhanced quality. A sound
basis in the form of object oriented design attributes,
concepts, metrics exists to pave the way for the
development of a new metric. Moreover, it also become
clear that the inputs required for measures may be
available well in advance in the design phase.

As for as metric attributes are concerned, some of the
important attributes related to the metric have been
identified for the proposed metric. Such attributes
include the following important inherent characteristics:

∗ Qualitative interpretation;
∗ Catering to all aspects of object oriented design;
∗ Covering all quality factors;

��������

J. Computer Sci., 1 (3): 437-444, 2005

 441

∗ Early usability in SDLC; and
∗ Optimizing the quality estimation processes.

Software Assurance Technology Center, SATC, has
proposed five of quality differentiators/attributes for the
coding and design phase. These are, Efficiency,
Complexity, Understandability, Reusability and
Testability/ Maintainability. It is evident from the
discussion that no universally agreed-upon definition
for each of high-level quality attributes exists. It was
observed that each of the design constructs affect
certain quality attributes. This is depicted in Fig. 2. We
considered the SATC’s five quality factors to carry
forward the development, as these five quality factors
cater the overall quality of the software system.
Dr. Linda Rosenberg[11], at SATC (NASA), described
three aspects of object-oriented paradigm:
Encapsulation, Polymorphism and Inheritance.
Polymorphism and Inheritance are two aspects unique
to the object oriented approach, while encapsulation is
not. Therefore, the three fundamental properties
required for an object oriented approach was considered
and in the process of development of an integrated
metric. Numerous software metrics related to software
quality assurance have been proposed in past and are
still being proposed. General review of metrics
suggested by various researchers/practitioners
(MOOD[18]/ MOOSE[28]/ QMOOD[1] / EMOOSE[29] etc.)
and evaluation of object oriented concepts by these
suggested metrics has been presented in[21].

A critical examination of the existing design
metrics revealed that all metrics have relevance with
respect to a class, i.e. all metrics eventually conduct
measures taking class as a basis. This is hardly
surprising as ‘class’ is the fundamental concept of
object oriented software[21,33,34]. It appeared that the
Dromey’s model[30] is more appropriate for the
development of a good quality metric with the help of
qMDF, as it maps the identified set of design
characteristics and quality attributes.
The survey result depicts that all the metrics have
relevance with respect to a class. This motivated effort
towards developing a single class based metric,
Weighted Class Complexity (WCC), which would give
a cumulative measure of all the aspects of object
oriented design and would thereby give an indication of
‘quality’ of a class in terms of complexity. This single
metric when averaged would enable computing the
average complexity of software and finally the quality.
The simplest relationship that evolves out of it is as
follows:

The complexity in this context has more of a
physiological meaning rather than complexity as a
quality attribute. Thus WCC should take into account
each/or most of the design constructs, i.e. WCC should
be integrated with an encapsulation, inheritance,
coupling and cohesion factors. Supporting evidence has
been presented in authors’ own study[21], as to whether
a measure really captures the internal attributes that it
purports to measure. A sound theoretical basis is given
and advocated for the validity to support the claim.

A representative (randomly selected) sample of data
was used to validate the proposed metric as per
experimental design and statistical analysis of data
gathered through the tryout has been interpreted. For
this, a set of ten projects was used in the software
industry. We labelled the applications as: System A,
System B, System C, System D, System E, System F,
System G, System H, System I and System J. All these
systems were commercial software implemented in
C++/Java and consisted of approximately 10-20 classes.
The industry professionals themselves have used full-
scale code analysis system for estimating the quality of
these systems. Table 1 summarizes the quality ranking
of these software systems given by industry
professionals.
In order to investigate the correlations and relationships
between the object oriented metric WCC and software
quality, a correlation and a multiple linear regression
analysis has been conducted for ten projects. Table 2
summarizes the results of the correlation analysis for
the integrated metric set over the ten software systems.
The column lists the correlation values for each pair of
metrics in the integrated metric set and rows list the
system. In the table Metric 1 ^ Metric 2 shows the
correlation between Metric 1 and Metric 2.

The multiple linear regression model was fitted to the
minimal set of the metric and shown in equation 1 for
system A, B, C, D, E, F, G, H, I and J respectively and
the results are given in Table 3.

WCC= a + bRFC*Level (RFC*Level) + bLCOM LCOM (1)

The standardized beta weight (βi’s) and raw score beta
weight (bi’s) has been calculated and shown in Table 3.
 The computed standardized beta weights (βi’s) in
Table 3 for all the systems show that the RFC*Level
component has most significant contribution on WCC.
It is also evident from the raw score beta weights (bi’s).
LCOM component also has a considerable significant
contribution on WCC which is depicted through both

 � WCC
 Ave. Complexity of S/W =
 Number of classes (total)

J. Computer Sci., 1 (3): 437-444, 2005

 442

the beta weight (βi’s) and raw score beta weight (bi’s).
Examining the F ratio in Table 3, it is clear that the
regression shown in equation 1 is significant at .01 level
of significance for the Systems A, D, E, F, H and J and
at .05 for the Systems B, C, G and I.

Table 1: Quality Ranking of Systems
Projects (Systems) Classes Quality Ranking
A 11 Low
B 9 Low
C 12 Low
D 19 High
E 18 High
F 15 Low
G 10 Low
H 11 Low
I 9 Low
J 11 Low

Table 2: Correlation Analysis Summary

 WCC^ WCC^ LCOM^
Systems LCOM (RFC* Level) (RFC* Level)
A .02 .88 -.06
B .28 .98 .13
C .24 .59 .01
D .57 .46 .23
E .45 .99 .29
F .21 .25 .67
G .82 .88 .66
H .54 .59 .61
I .68 .98 .53
J .78 .88 .66

Table 3: Regression Analysis Summary

 βRFC bRFC

 *Level βLCOM *Level bLCOM a F ratio
A .88 .07 .70 .21 1.94 16.5
B .95 .16 .77 .15 2.68 6.11
C .58 .23 .58 .78 1.87 4.18
D .35 .49 .17 .07 -1.17 .29
E .93 .17 .75 .98 .35 9.11
F .43 .07 .44 .45 1.50 4.21
G .59 .42 .65 2.07 -.45 5.91
H .41 .29 .41 .94 2.28 14.22
I .85 .22 .85 .71 1.62 6.19
J .73 .35 .60 1.06 1.15 15.11

Table 4: χ2 Test Observations

 High Low Total
WCC 8A 2B 10
Industry Rating 2C 8D 10
Total 10 10 20
Value of χ2 is 5.0

Examining Table 2 shows that for all the systems, all of
the metrics are highly correlated with each other, with
WCC and (FRC*Level) being the most significantly
correlated. In order to further assure, χ2 test has been
used for testing the null hypothesis stated as follows:

H0: Quality estimates obtained through WCC are not
significantly comparable/close to those obtained from
industrial quality experts.

Ha: Quality estimates obtained through WCC are
significantly comparable/close to those obtained from
industrial quality experts.

WCC values of all the ten projects have been tested
using the Chi-Square Test (χ2). The Chi-Square test
observations for all the ten systems are listed in Table 4
by using equation 2 applicable for small samples, as
frequencies of cells are fewer than 10. The assumptions
made for WCC values are low for less than or equal to
four and high for greater than four and the degree of
freedom may be calculated by using the formula
df=(row-1)(column-1).

 N[|AD-BC|-N/2]2 (2)

 (A+ B)(C+D)(A+C)(B+D)

In equation 2, A, B, C and D are being replaced by 8A,
2B, 2C and 8D respectively. The computed value of χ2 is
greater than the critical value of χ2 for 1 degree of
freedom at .05 level of significance, which is 3.84. The
test indicates that there is a significant relationship
between the WCC value and industry rating for quality
of all the systems at the .05 level of significance.
Hence, the null hypothesis is rejected and it leads to the
inference that ‘WCC gives quite comparable result
regarding quality for all the systems to those obtained
by using full-scale code analyzer, by the organization’.
Further, the proposed metric may be used to discover
the underlying errors in software design at the early
stage of software development life cycle leading to
reduce effort on quality assurance and avoidance of
unnecessary overhead. It may also help to evaluate the
quality of software and provide the cost estimates of a
software project that facilitate the estimation and
planning of new activities. The metric may be used to
determine the effect of the object technology; especially
re-use technology applied in the software development
according to some quantitative evaluation such as
productivity, quality, lead-time, maintainability, etc.

Observations: A close look at the components
constructing the theoretical framework, studies and
experimental tryout related to the design metrics led to
the following observations:
∗ Strong theoretical basis for designing the metric is

required.
∗ A low-level design metrics may be defined in

terms of design characteristics.

χ2=

J. Computer Sci., 1 (3): 437-444, 2005

 443

∗ Quality of software may be assessed as an

aggregation of the framework’s individual high-
level quality attributes.

∗ A minimal set of metric is required to be developed
to cover all the aspects of design characteristics
and quality factors.

∗ If the metrics is non-size metrics, it should allow
comparisons across different projects.

∗ Metrics should be defined in such a way that
different people at different times or places get the
same values for the same systems.

∗ Metrics development process avoids the
development of a metrics with subjective rating
like very low, low, average, high very high etc.

∗ The development process helps to evaluate the
quality of software and provide the cost estimates
of a software project, which facilitate the
estimation and planning of new activities.

∗ The developed metrics will be able to indicate the
faulty classes in early stage of development life
cycle to decrease the rework.

∗ Viable experiments should be designed to validate
the developed metric.

∗ Pre-tryout and tryout should be conducted on
developed metric and the result gained from tryout
be analyzed and interpreted.

∗ Informal review and revisions should be carried out
throughout entire phases of metric development
process.

∗ A metric usages guideline, a brief introduction and
the metric computation mechanism should be
provided to the user of that metric.

Apart from above concrete observations, it appeared
conclusive that qMDF works well, at least in the cited
experimental tryout, as assured by the quality of WCC.
In the absence of any other framework it may be used
by metric developers across the fraternity and in turn
gets standardized and may be improved.
Further, experimental tryouts and statistical analyses at
a large scale with typical representative samples may be
needed to standardize the metric WCC. More
developmental activities using the framework may be
carried out by the researchers and practitioners. Review
of already developed or underdevelopment metrics may
be guided by the framework, and this framework may
form the basis for the development of better-refined
roadmaps/models.

REFERENCES

1. Bansiya J., 2002. A Hierarchical Model for

object- oriented Design Quality Assessment, IEEE
Transaction on software engineering, 28: 4-17.

2. Dumke, R. Reiner, 1995. A Measurements

framework for Object- Oriented Software
Development, submitted to Annals of software
Engineering , Vol. 1.

3. Henderson Sellers, B., 1995. Identifying internal
and external characteristics of classes likely to be
useful as structural complexity metrics,
Proceedings of 1994 intern. Conf. On Object
Oriented Information Systems OOIS 94, London,
Springer-Verlag, London, pp: 227-230.

4. Abreu, F. Brito and Carapuca, Rogerio, 1993.
Candidate Metrics for Object- Oriented Software
within a Taxonomy Framework, Proceedings of
AQUIS’93 (Achieving Quality In Software),
Venice, Italy, October 1993: selected for reprint in
the Journals of Systems and Software, 23: 87- 96.

5. Letha Etzkom and Harry Delugach, 2000. Towards
a Semantic Metrics Suite for Object-Oriented
Design, 0-7695-0774-3/00 IEEE, pp: 71-80.

6. Tahvildari Ladan and Kontogiannis Kostas, 2003.
A Metric-Based Approach to Enhance Design
Quality Through Meta-Pattern Transformations,
Proceedings of the Seventh European Conference
On Software Maintenance And Reengineering
(CSMR’03) 0-7695-1902-4/03 IEEE, pp: 183-192.

7. Tahvildari Ladan and Kontogiannis Kostas, 2003.
A Metric-Based Approach to Enhance Design
Quality Through Meta-Pattern Transformations,
Proceedings of the Seventh European Conference
On Software Maintenance And Reengineering
(CSMR’03) 0-7695-1902-4/03 IEEE, pp: 183-192.

8. El Emam Khaled, 2001. A Primer On Object-
Oriented Measurement, 1530-1435/01 IEEE, pp:
185-187.

9. Irwin Warwick and Churcher Neville, 2003. Object
Oriented Metrics: Precision Tools and
Configurable Visualizations, Proceedings of the
Ninth International Software Metrics Symposium
(METRICS’03) 1530-1435/03 IEEE, pp: 112-123.

10. Schneidewind N. F., 1992. Methodology for
validating software metrics, IEEE Software
Engineering, 18: 410-422.

11. Rosenberg Linda, Software Quality Metrics for
Object Oriented System Environments, A report of
SATC’s research on OO metrics.

12. Kitchenham B.A, N. Fenton and S. L. Pfleeger,
1995. Towards a framework for software
measurement validation, IEEE Transaction
Software Engineering, 21: 929-944.

13. Rachel Harrison, 1998. An Evaluation of the
MOOD Set of Object Oriented Software Metrics,
IEEE Transaction on Software Engineering,
vol. 24.

J. Computer Sci., 1 (3): 437-444, 2005

 444

14. Marinescu Radu and Rat¸iu Daniel, 2004.

Quantifying the Quality of Object-Oriented
Design: the Factor-Strategy Model Proceedings of
the 11th Working Conference on Reverse
Engineering (WCRE’04) 1095-1350/04IEEE,
pp: 192-201.

15. Laing, V, C. Coleman and Manager SATC, 2001.
Principal Components of Orthogonal Object
Oriented Metrics (323-08-14), White paper
Analyzing the Results of NASA Object
Oriented Data.

16. Fenton, N. And M. Neil, 1999. New Directions in
Software Metrics, Fenton’s Web Page,.

17. Van Gurp, J., 2000. Automating Software
Architectures Assessment, Lillchammer, Norway.

18. Brito, Abreu. F. and Carpuca, Rogerio, 1994.
Candidate Metrics for Object Oriented Software
within a Taxonomy Framework., Proceeding of
AQUIS’93, Venice, Italy, October 1993; selected
for reprint in the Journal of Systems and Software,
23: 87- 96.

19. Fenton, N. E. and S. L. Pfleeger, 1997. Software
Metrics: A Rigorous & Practical Approach,
International Thomson Computer Press, London,
United Kingdom .

20. Van Den Berg and Van Den Broek, 1996.
Axiomatic Validation in the Software Metric
Development Process, Chapter 10: Software
Measurement, Edited by Austin Melton, Thomson
Computer Press.

21. Khan, R. A., K. Mustafa and S. Yadav, 2004.
Quality Assessment of Object Oriented Code in
Design Phase, Proceedings, QAI 4th Annual
International Software Testing Conference,
Pune, India.

22. Basili, V., F. Shull and F. Lanubile, 1999. Building
knowledge through families of experiments,
IEEE Transactions on Software Engineering,
25: 435-437 .

23. Robson, C. , 1993. Real world research: A resource
for social scientists and Practitioners-researchers,
Blackwell.

24. Wohlin, C., P. Runeson, M. Höst, M. Ohlson,
B. Regnell and A. Wesslén, 2000. Experimentation
in Software Engineering: An Introduction, Kluwer
Academic Publishers.

25. Fairly Richard, 2003. Software Engineering
Concepts, Tata McGraw-Hill.

26. Khan, R. A. and K. Mustafa, 2004. A review of
SATC research on OO Metrics, Proceedings,
National Conference on Software Engineering
Principles and Practices, Patiala, India.

27. Dagpinar Melis and H. Jahnke Jens, 2003.

Predicting Maintainability with Object-Oriented
Metrics - An Empirical Comparison, Proceedings
of the 10th Working Conference on Reverse
Engineering (WCRE’03) 1095-1350/03 IEEE,
pp: 155-164.

28. Chidamber, S. R. and C.F. Kemerer, 1993.
MOOSE: Metrics for Object Oriented Software
Engineering, Workshop on Processes and Metrics
for Object-Oriented Software Development
(OOPSLA'93), Washington DC, EUA.

29. Henry, Li W., S. D. Kafura, R. Schulman,
1995. Measuring Object-Oriented Design, JOOP,
pp: 48-55.

30. Dromey, R. G., 1995. A Model for Software
Product Quality, IEEE Transaction on Software
Engineering , 21: 146-162.

31. Bruntink Magiel and Deursen Arie van, 2004.
Predicting Class Testability using Object-Oriented
Metrics, Proceedings of the Fourth IEEE
International Workshop on Source Code Analysis
and Manipulation (SCAM’04) 0-7695-2144-4/04
IEEE, pp: 136-145.

32. Evanco William M., 2003. Comments on -The
Confounding Effect of Class Size on the Validity
of Object-Oriented Metrics, IEEE Transactions On
Software Engineering, 29: 630-650.

33. El Emam Khaled, Benlarbi SaõÈda, Goel Nishith
and N. Rai Shesh, 2001. The Confounding Effect
of Class Size on the Validity of Object-Oriented
Metrics, IEEE Transactions On Software
Engineering, 27: 630-650.

34. Ferenc Rudolf, Siket Istv´an and Gyim´othy Tibor,
2004. Extracting Facts from Open Source
Software, Proceedings of the 20th IEEE
International Conference on Software Maintenance
(ICSM’04) 1063-6773/04 IEEE, pp: 60-69.

35. Bluemke Ilona, 2001. Object oriented metrics
useful in the prediction of class testing complexity,
1089-6503/01IEEE, pp: 130-136.

36. Khan, R. A. and K. Mustafa, 2004. High Level
Design Quality Assessment of Object Oriented
Codes, accepted for publication in the proceedings
in 2nd International Workshop on Verification and
Validation of Enterprise Information System
VVEIS Porto, Portugal.

