
Journal of Computer Sciences 1 (4): 538-542, 2005
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Manimala Puri, 2IT Department, D.Y.Patil, COE, Pune, India

538

Measurement of Software Maintainability Using a Fuzzy Model

1K.K. Aggarwal, 1Yogesh Singh, 1Pravin Chandra and 2Manimala Puri

1GGS Indraprastha University, Delhi, India, 1SIT, GGS Indraprastha University, Delhi, India
1SIT, GGS Indraprastha University, Delhi, India, 2IT Department, D.Y.Patil, COE, Pune, India

Abstract: Software maintenance is a task that every development group has to face when the software
is delivered to the customers’ site, installed and is operational. The time spent and effort required for
keeping software operational consumes about 40-70% of cost of entire life cycle. This study proposes
a four parameter integrated measure of software maintainability using a fuzzy model. The study also
includes empirical data of maintenance time of projects which has been used to validate the proposed
model.

Key words: Software maintainability, average live variable, average. life span, cyclomatic

complexity, comment ratio, fuzzy model

INTRODUCTION

 Software maintenance is defined as process of
modifying existing operational software while leaving
its primary functions intact. Every software needs to be
modified to meet customer’s requirement in its life
cycle. Software maintenance encompasses a broad
range of activities including error corrections,
enhancement of capabilities, deletion of obsolete
capabilities and optimization[1] The value of Software
can be enhanced by meeting additional requirements,
making it easier to use, more efficient and employing
newer technologies. Maintenance may span for fifteen
years whereas development may be 1-2 year[2]. Even
though it is an important task, it is poorly managed.
The fact that you cannot control ,what you cannot
measure, makes measurement of maintainability very
important. In literature, some metrics have been
proposed for measuring/predicting maintainability. In
1984 a tool was proposed[3] which operated at
syntactic level. Then another model[4] was proposed
which considered design attributes. Another model was
proposed[5] which used quality metrics. Software
Maturity index [SMI][6] considered only modules being
added or removed.
 Another model[7]was proposed which considers
only the design aspect. A fuzzy model[8] has been
proposed where, Maintainability is a measure of
characteristics of software e.g. source code readability,
documentation quality and cohesiveness among source
code and documents. It is also seen that maintainability
very much depends on the average number of live
variables in a program and average life span of
variables. Presently there is no model that considers the
effect of these two factors. Therefore, a model which
integrates the four factors namely average number of
Live Variables LV ,average Life Span (LS) of

variables, the average Cyclomatic Complexity(ACC)
and the Comments Ratio (CR) and provides a measure
of maintainability, is proposed.

FACTORS AFFECTING MAINTAINABILITY

Average number of live variables: A live variable is
live at a particular statement only if it is referenced a
certain number of statements before or after that
statement. The average number of live variables
(LV) is the sum of the count of Live Variables
divided by the count of executable statements (n)
LV = LV/n

For a program having Modules LV program =
m

LV
m

i
i∑

=1 (1)

 The more, the average number of live variables, the
more difficult it would be to develop and to maintain a
software.

b. Average live variable span: The span is the

number of statements between two successive
references of the some variable[9,10]. The average
span size (LS) for a program could be completed
using the equation.

LS program =
n

LS
n

i
i∑

=1 (2)

c. Comments ratio: Comment ratio is defined as

CR = (s+c)/c (3)

 Where s denotes total lines of code and c represents
total number of comment lines. The lower the ratio, the
better is the readability, and the better the readability,

J. Computer Sci., 1 (4): 538-542, 2005

 539

the better is the maintainability. Comments provide
better readability and therefore the Comments Ratio is
an important factor that affects maintainability.

d. Average cyclomatic complexity: McCabe[11] has
defined Cyclomatic Complexity as

V = e – n + 2p (4)

 Where e is the number of edges in a program flow
graph, n the number of nodes and p the number of
connected components. If p= 1, then v= ∏ +1 where ∏
is the number of predicates in the program. The
Average Cyclomatic Complexity (ACC) is defined as
average of cyclomatic complexities of all modules.

Proposed fuzzy model: There are four inputs to the
fuzzy model, namely Average Live Variables, Average
Life Span of variables, Average Cyclomatic
Complexity and Comments Ratio. Fig 1 shows the
Fuzzy Model.

Knowledge Date Base

 Data Base Rule Base

LV

LS

ACC

CR

Fuzz
ifica
tion
Mod
ule

Inferen
ce
Engine

Defuzz
ifica-
tion
Module

Mai
ntain
-
Abil
ity

Fig 1: Fuzzy model for software maintainability

Fig. 2: Fuzzification of average live variable

 This model considers all four inputs and
provides a crisp value of maintainability using the
Rule Base.

Fig. 3: Fuzzification of average life span

Fig. 4: Fuzzification of average cyclomatic complexity

Fig 5: Fuzzification of comment ratio

Fig 6: Fuzzification of output variable - maintainability

 All inputs can be classified into fuzzy sets viz.
Low, Medium and High. The output maintainability is
classified as Very Good, Good Average, Poor and Very
Poor.
 In order to fuzzify the inputs, the following
membership functions are chosen namely Low,
Medium and High. They are shown in Fig. 2-5.

J. Computer Sci., 1 (4): 538-542, 2005

 540

 Similarly the output variable i.e. maintainability
has five membership functions as shown in Fig 6.

MATERIALS AND METHODS

i. All the inputs and outputs were fuzzified as shown

in Fig. 2 to 6.
ii. All possible combination of inputs were considered

which leads to 3 4 i.e. 81 sets. The maintainability
in case of all eighty-one combinations is classified
as either Very Good, Good, Average, Poor or Very
Poor by expert opinion. These lead to formation of
81 rules for the fuzzy model and some of them are
shown below:

1. If (CR is low) and (ACCis low) and (LV is low)

and (LS is low) then maintainability is very good.

2. If (CR is low) and (ACC is low) and (LV is low)

and (LS is med) then maintainability is very good
.
.
.
.

81. If (CR is high) and (ACC is high) and (LV is

high) and (LS is high) then maintainability is very
poor.

iii. All eighty one riles are inserted and a rule base is

created. Depending on a particular set of
inputs, a rule will be fired.

iv. Mamdani style of inference is used.
v. Using the rule viewer ,output i.e maintainability is

observed for a particular set of inputs using the
MATLAB Fuzzy tool box.

vi. The output is also calculated theoretically using the
Centre of gravity.

RESULTS

 Output computation for the model: Let us say we
have the following inputs to the model.
ACC=2,CR=12, LV =1, LS =130
When those inputs are fuzzified we find that ACC=2
belongs to fuzzy set low with membership grade 1,
CR=12 belongs to fuzzy set low with membership
grade 1, LV =1 belongs to fuzzy set low with

membership grade 1 and LS = 130 belongs to fuzzy
set low with membership grade = 0.25 and medium
with membership grade 0.5.With these inputs, rule
number 1 and 2 fire. During composition of these rules
we get the following

Min (1,1,1,0.25)=0.25 Min (1,1,1,0.5)=0.5 .

 When these two rules are implicated ,we find that
the first rule gives maintainability very good to an
extent of 0.25 and second rule gives the maintainability
value good to the extent of 0.5. This is shown in Fig 7.

Fig. 7: Output computation of maintainability

Maintainability =

() ()

() ()∫ ∫ ∫ ∫
∫∫∫ ∫

+++++

+++++
5.2

0

3

5.2

5

3

6

5

6

5

5

3

5.2

0

3

5.2

5.025.

5.025.

dxcmxdxdxcmxdx

dxxcmxdxxdxxcxmdxx

() ()

() ()∫ ∫ ∫ ∫
∫∫∫ ∫

+−++−+

+−++−+
5.2

0

3

5.2

5

3

6

5

6

5

5

3

5.2

0

3

5.2

35.05.015.025.

35.05.015.025.

dxxdxdxxdx

dxxxdxxdxxxdxx

=

[] []
6

5

2
5
3

3

5.2

2
5.2

00

6

5

235

3

23

5.2

235.2

0

2

3
2
5.05.0

2
5.025.0

2
3

3
5.0

2
5.0

23
5.0

2
25.0









+

−
++








−+−









+

−
+








+








−+









xxxxxx

xxxxxx

=3.2

Defuzzification: Defuzzification of the above output
can be obtained by finding the Centre of Gravity[12] of
the above fuzzy output.
 The effect of these rules was observed also by
simulating the model in MATLAB Fuzzy Tool Box.
The maintainability for the above mentioned inputs
comes out to be 3.2 which is the some as calculated
above. The various surface views of the simulated
model are shown in Fig. 8 and 9.

Empirical validation: In order to validate the model,
ten procedure oriented software projects of
undergraduate engineering students were considered.
They were chosen only when proper set of input
variables were available. Some logical errors were
introduced in these projects and time take for corrective
maintenance action was measured (Avg. CMT). The
maintainability was also calculated using the proposed
fuzzy model. The results are shown in Table 1.

J. Computer Sci., 1 (4): 538-542, 2005

 541

Fig 8: Surface view with LS input as x axis and ACC

taken on y axis and maintainability on z axis

Fig 9: Surface view with LV input as x-axis and

ACC taken on y-axis and maintainability on z
axis

Table 1: Values of maintenance time and maintainability

P.No. ACC CR LV LS Maint Avg.
 CMT
1. 8.51 3.92 0.5 25.4 6 17.0
2. 11.5 7.74 2.5 132 5.39 16.10
3. 12.6 5.62 1.59 43.8 4.8 15.4
4. 5.28 8.30 4.41 238 6.87 18.0
5. 13.7 8.8 3.95 292 7.93 21.10
6. 7.43 7.32 2.32 118 4.49 15.0
7. 10.7 9.23 3.14 288 6.49 17.90
8. 9.37 6.89 3.14 141 6.49 17.20
9. 7.0 7.0 5.86 298 8 22.0
10. 10.7 8.8 6 300 10.5 25.2

Average live variables vs avg
corrective maintenance time

0

20

40

1 2 3 4 5 6 7 8 9 10

project number

Avg. CMT
LV

Fig.10: Avg. Live variable vs. avg. corrective

maintenance time

Fig. 11: Avg. life span vs. avg. corrective maintenance

time

Average cyclomatic complexity vs
Avg corrective maintenance time

0

20

40

1 2 3 4 5 6 7 8 9 10 11

project number

Avg. CMT
ACC

Fig. 12: Avg. cyclomatic complexity vs. avg.

corrective maintenance time

Comment Ratio vs avg corrective
maintenance time

0

20

40

1 2 3 4 5 6 7 8 9 10

project number

Avg. CMT
CR

Fig. 13: Comment ratio vs. maintenance time

maintainability vs average
maintenance time

0
20

40

1 3 5 7 9 11

project number

Avg. CMT
Maint

Fig.14: Maintainability vs. avg. corrective

maintenance time

J. Computer Sci., 1 (4): 538-542, 2005

 542

 The values of average corrective maintenance time
of these projects have been plotted against each of the
four input metrics namely LV , LS ,ACC & CR in Figs
10, 11 , 12 & 13respectively.
 It can be seen there is hardly any co-relation
between average maintenance time and the four
inputs.These four metrics cannot individually predict
the maintenance time.
 On the other hand a plot of maintainability versus
maintenance time is shown in Fig 14. This shows that
integrated measure of maintainability is strongly co-
related with maintenance time.
 Thus the fuzzy model is validated and that the
integrated value of maintenance gives better results
than any individual input metric is also verified with the
help of empirical results.

CONCLUSION

 Maintainability can be estimated with the help of
fuzzy model and the empirical results prove that the
integrated measure of maintenance obtained from this
model shows a strong co-relation to the maintenance
time.

REFERENCES

1. Lamb, D.A., 1988. Software Engineering: Planning

for Change. Prentice Hall, Engineering Cliffs, NJ.
2. Aggarwal, K.K. and Yogesh Singh, 2005. Software

Engineering. Rev. Sec. Edn., New Age
International Publisher.

3. Berns, G., 1984. Assessing Software
Maintainability. Communications of the ACM, 27:
14-23.

4. Sneed, H. and A. Mercy, 1985. Automated
Software Quality Assurance. IEEE Trans. Software
Eng., 11Bi,9: 909-916.

5. Wake, S. and S. Henry, 1988. A model based on
software quality factors which predicts
maintainability. Proc. Conf. Software Maintenance,
pp: 382-387.

6. Software Engineering Standards, 1994 Edition,
IEEE.

7. Muthanna, S., K. Kontogiannis and B. Stacey,
2000. A maintainability model for industrial
software systems using design level metrics. Proc.
Seventh Working Conf. Reverse Eng.,Nov. 23-25,
pp: 248-256.

8. Aggarwal, K.K., Yogesh Singh, Jitender Kumar
Chhabra, 2003. A multiple parameter software
complexity measure. J. CSI, 33: 22-30.

9. Elshoff J.L.L., 1978. An investigation into the
effects of the counting method used on software
science measurements. ACM SIGPLA Notices, 13:
30-45.

10. Aggarwal, K.K. and Yogesh Singh, 1994. A
modified approach for software science measures.
ACM SIGSOFT Software engineering Notes,
USA.

11. McCabe, T.J., 1976. A complexity measure. IEEE
Trans. Software Eng., SE-2: 308-319.

12. Roger Jang and Ned Gulley, 1995. Fuzzy Logic
Toolbox for MATLAB. User’s Guide. The Math
Works Inc., USA.

