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Abstract: Software maintenance is a task that every development group has to face when the software 
is delivered to the customers’ site, installed and is operational. The time spent and effort required for 
keeping software operational consumes about 40-70% of cost of entire life cycle.  This study proposes 
a four parameter integrated measure of software maintainability using a fuzzy model.  The study also 
includes empirical data of maintenance time of projects which has been used to validate the proposed 
model. 
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INTRODUCTION 
 
 Software maintenance is defined as process of 
modifying existing operational software while leaving 
its primary functions intact.  Every software needs to be 
modified to meet customer’s requirement in its life 
cycle.  Software maintenance encompasses a broad 
range of activities including error corrections, 
enhancement of capabilities, deletion of obsolete 
capabilities and optimization[1]   The value of Software 
can be enhanced by meeting additional requirements, 
making it easier to use, more efficient and employing 
newer technologies.  Maintenance may span for fifteen 
years whereas development may be 1-2 year[2].  Even 
though it is an important task, it is poorly managed.  
The fact that you cannot control ,what you cannot 
measure, makes measurement of maintainability very 
important.   In literature, some metrics have been 
proposed for measuring/predicting maintainability.  In 
1984 a tool was proposed[3] which operated at   
syntactic level.  Then another model[4] was proposed 
which considered design attributes.  Another model was 
proposed[5] which used quality metrics. Software 
Maturity index [SMI][6] considered only modules being 
added or removed.  
 Another model[7]was proposed which considers 
only the design aspect.  A fuzzy model[8] has been 
proposed where, Maintainability is a measure of 
characteristics of software e.g. source code readability, 
documentation quality and cohesiveness among source 
code and documents.  It is also seen that maintainability 
very much depends on the average number of live 
variables in a program and average life span of 
variables.  Presently there is no model that considers the 
effect of these two factors.  Therefore, a model which 
integrates the four factors namely average number of  
Live Variables LV ,average Life Span ( LS ) of 

variables,  the average Cyclomatic Complexity(ACC) 
and the Comments Ratio (CR) and provides a measure 
of maintainability, is proposed.  
 

FACTORS AFFECTING MAINTAINABILITY 
 
Average number of live variables: A live variable is 
live at a particular statement only if it is referenced a 
certain number of statements before or after that 
statement.  The average number of live variables 
( LV ) is the sum of the count of Live Variables 
divided by the count of executable statements (n) 
LV   =  LV/n 

For a program having Modules LV   program  = 
m

LV
m

i
i∑

=1  (1) 

 The more, the average number of live variables, the 
more difficult it would be to develop and to maintain a 
software.     
 
b.  Average live variable span:  The span is the 

number of statements between two successive 
references of the some variable[9,10].  The average 
span size (LS) for a program  could be completed 
using the equation.  

 

LS  program = 
n

LS
n

i
i∑

=1    (2) 

 
c. Comments ratio:  Comment ratio is defined as   
 
CR = (s+c)/c (3) 
 
  Where s denotes total lines of code and c represents 
total number of comment lines.  The lower the ratio, the 
better is the readability, and the better the readability, 
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the better is the maintainability. Comments provide 
better readability and therefore the Comments Ratio is 
an important factor that affects maintainability. 
 
d.  Average cyclomatic complexity: McCabe[11] has 
defined Cyclomatic Complexity as  
 
V = e – n + 2p (4) 
 
 Where e is the number of edges in a program flow 
graph, n the number of nodes and p the number of 
connected components.  If p= 1, then v= ∏ +1 where ∏ 
is the number of predicates in the program.  The 
Average Cyclomatic Complexity (ACC) is defined as 
average of cyclomatic complexities of all modules.  
 
Proposed fuzzy model: There are four inputs to the 
fuzzy model, namely Average Live Variables, Average 
Life Span of variables, Average Cyclomatic 
Complexity and Comments Ratio.  Fig 1 shows the 
Fuzzy Model.  
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Fig 1: Fuzzy model for software maintainability 
 

 
 
Fig. 2: Fuzzification of average live variable 
 
 This   model   considers all four inputs and 
provides   a  crisp value of maintainability using the 
Rule Base.  
 

 
 
Fig. 3: Fuzzification of average life span  
 

 
 
Fig. 4: Fuzzification of average  cyclomatic complexity  
 

 
 
Fig 5: Fuzzification of comment ratio 
 

 
 
Fig 6: Fuzzification of output variable - maintainability 
 
 All inputs can be classified into fuzzy sets viz.  
Low, Medium and High.  The output maintainability is 
classified as Very Good, Good Average, Poor and Very 
Poor.  
 In order to fuzzify the inputs, the following 
membership functions are chosen namely Low, 
Medium and High. They are shown in Fig. 2-5. 
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 Similarly the output variable i.e. maintainability 
has five membership functions as shown in Fig 6. 
 

MATERIALS AND METHODS 
 
i. All the inputs  and outputs were fuzzified as shown 

in Fig. 2 to 6.  
ii. All possible combination of inputs were considered 

which leads to 3 4  i.e. 81 sets.  The maintainability 
in case of all eighty-one combinations is classified 
as either Very Good, Good, Average, Poor or Very 
Poor by expert opinion.  These lead to formation of 
81 rules for the fuzzy model and some of them are 
shown below: 

1.  If (CR is low) and (ACCis low) and ( LV  is low) 

and ( LS  is low) then maintainability is very good.      

2.  If (CR is low) and (ACC is low) and ( LV  is low) 

and ( LS  is med) then maintainability is very good 
. 
. 
. 
. 
 

81.  If (CR is high) and (ACC is high) and ( LV  is 

high) and ( LS  is high) then maintainability is very 
poor.   
 
iii. All eighty one riles are inserted and a rule base is 

created. Depending on a particular set of 
inputs, a rule will be fired.  

iv. Mamdani style of  inference  is used.  
v. Using the rule viewer ,output i.e maintainability is 

observed for a particular set of inputs using the 
MATLAB Fuzzy tool box. 

vi. The output is also calculated theoretically using the 
Centre of gravity. 

 
RESULTS 

 
 Output computation for the model: Let us say we 
have the following inputs to the model. 
ACC=2,CR=12, LV =1, LS =130 
When those inputs are fuzzified we find that ACC=2 
belongs to fuzzy set low with membership grade 1, 
CR=12 belongs to fuzzy set low with membership 
grade 1, LV =1 belongs to fuzzy set low with 

membership grade 1 and LS  = 130 belongs to fuzzy 
set low with membership grade = 0.25 and medium 
with membership grade 0.5.With these inputs, rule 
number 1 and 2 fire.  During composition of these rules 
we get the following 
 
Min (1,1,1,0.25)=0.25 Min (1,1,1,0.5)=0.5 . 

 When these two rules are implicated ,we find that 
the first rule gives maintainability very good to an 
extent of 0.25 and second rule gives the maintainability 
value good to the extent of 0.5.  This is shown in Fig 7. 
   

 
 
Fig. 7: Output computation of maintainability 
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=3.2 
 
Defuzzification:  Defuzzification of the above output 
can be obtained by finding the Centre of Gravity[12] of 
the above fuzzy output.  
 The effect of these rules was observed also by 
simulating the model in MATLAB  Fuzzy Tool Box.  
The maintainability for the above mentioned inputs 
comes out to be 3.2 which is the some as calculated 
above.  The various surface views of the simulated 
model are shown in Fig. 8 and 9. 
 
Empirical validation: In order to validate the model, 
ten procedure oriented software projects of 
undergraduate engineering students were considered.  
They were chosen only when proper set of input 
variables were available.  Some logical errors were 
introduced in these projects and time take for corrective 
maintenance action was measured (Avg. CMT).   The 
maintainability was also calculated using the proposed 
fuzzy model.  The results are shown in Table 1. 
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Fig 8: Surface view with LS  input as x axis and ACC   

taken on y axis and maintainability on z axis 
 

 
 
Fig 9: Surface view with LV  input as x-axis and 

ACC   taken on y-axis and maintainability on z 
axis 

 
Table 1: Values of maintenance time and maintainability  

P.No.  ACC CR LV  LS  Maint Avg.  
      CMT 
1. 8.51 3.92 0.5 25.4 6 17.0 
2. 11.5 7.74 2.5 132 5.39 16.10 
3. 12.6 5.62 1.59 43.8 4.8 15.4 
4. 5.28 8.30 4.41 238 6.87 18.0 
5. 13.7 8.8 3.95 292 7.93 21.10 
6. 7.43 7.32 2.32 118 4.49 15.0 
7. 10.7 9.23 3.14 288 6.49 17.90 
8. 9.37 6.89 3.14 141 6.49 17.20 
9. 7.0 7.0 5.86 298 8 22.0 
10. 10.7 8.8 6 300 10.5 25.2 
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Fig.10: Avg. Live variable vs. avg. corrective 

maintenance time 
 

 
Fig. 11: Avg. life span vs. avg. corrective maintenance 

time 
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Fig. 12: Avg.  cyclomatic complexity vs. avg. 

corrective maintenance time 
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Fig. 13: Comment ratio vs. maintenance time 
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Fig.14: Maintainability vs. avg. corrective 

maintenance time 
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 The values of average corrective maintenance time 
of these projects have been plotted against each of the 
four input metrics namely LV , LS ,ACC & CR in Figs  
10, 11 , 12 & 13respectively. 
  It can be seen there is hardly any co-relation 
between average maintenance  time and the four 
inputs.These four metrics cannot individually predict 
the maintenance time.  
  On the other hand a plot of maintainability versus 
maintenance time is shown in Fig 14. This shows that 
integrated measure of maintainability is strongly co-
related with maintenance  time.  
  Thus the fuzzy model is validated and that the 
integrated value of maintenance gives better results 
than any individual input metric is also verified with the 
help of empirical results.  
 

CONCLUSION 
 
 Maintainability can be estimated with the help of 
fuzzy model and the empirical results prove that the 
integrated measure of maintenance obtained from this 
model shows a strong co-relation to the maintenance 
time.  
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