
Journal of Computer Science 2 (4): 355-362, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Chokri Souani, Laboratoire de Microélectronique et Instrumentation �EI, Faculté des Sciences de
Monastir, Boulevard de l’environnement, 5019 Monastir, Tunisie, Tel: +216 73 500 280
Fax: +216 73 500 278

355

Digital Hardware Implementation of a Neural System

Used for Nonlinear Adaptive Prediction

1Hassène Faiedh, 1Chokri Souani, 2Kholdoun Torki and 1Kamel Besbes
1Laboratoire de Microélectronique et Instrumentation �EI, Faculté des Sciences de Monastir, Boulevard

de l’environnement, 5019 Monastir, Tunisie
2Techniques de l’Informatique et de la Microélectronique pour l’architecture d’ordinateurs (TIMA)

Institut National Polytechnique de Grenoble (INPG), 46 Avenue Félix Viallet, 38031 Grenoble, France

Abstract: Neural networks have been widely used for many applications in digital communications.
They are able to give solutions to complex problems due to their nonlinear processing and their
learning and generalization. Neural networks are one of the key technologies for the communication
domain and accordingly a special effort may be expected to be paid to real time hardware
implementation issues. In this study, it is proposed a digital hardware implementation of a neural
system based on a multilayer perceptron (MLP). The neural system is used for the nonlinear adaptive
prediction of nonstationary signals such as speech signals. The implemented architecture of the MLP is
generated using a generic elementary neuron (EN). The polynomial approximation method is used to
implement the sigmoidal activation function. The back-propagation algorithm is used to implant the
prediction task. The circuit implementation architecture is detailed, for achieving real-time prediction
for speech signals. The designed ASIC circuit includes a neural network block, an on-chip learning
block and a memory used for storing the synaptic weights for updating.

Key words: Digital hardware implementation, artificial neural networks, multilayer perceptron, on-

chip learning, nonlinear adaptive prediction

INTRODUCTION

 Many physical signals, such as speech, are
generated from a nonlinear mechanism and have
statistically nonstationary properties, which make the
task of their prediction difficult. Artificial neural
networks have been widely used as powerful tools for
modelling nonlinear dynamical systems. They are also
able to give solutions to complex problems in digital
communications due to their nonlinear processing,
parallel distributed architecture, capacity of learning
and generalisation and the efficient hardware
implementation. A neural network is well suited for the
nonlinear prediction of nonstationary signals by virtue
of the distributed nonlinearity built into its design and
the ability of the network to learn from its environment.
 Digital implementation of neural networks on
configurable systems was presented by[1,2]. Also,
several commercial hardware solutions that can be used
to implement neural circuits have reached the market[3].
The learning algorithm implementation remains the
main difficulty when an autonomous system is planned
regarding the running frequency. The implementation
of the nonlinear activation function of neurons and its
derivative used by the learning algorithm, is often
solved by a linear approximation[4-6] but no
implementation method has emerged as a universal
solution[7].

 In this study we propose a hardware
implementation of a neural system, used for prediction
in time-series. An adequate and optimal architecture is
used for the implementation of the learning algorithm.
As a final result, we propose a digital hardware
implementation of a neural prediction circuit on digital
ASIC.

Problem position – brief presentation: Neural
networks are able to give solutions to complex
problems in digital communications due to their
nonlinear processing, parallel distributed architecture,
capacity of learning and generalization and efficient
hardware implementations[8]. In this paragraph we
describe a neural system for the nonlinear adaptive
prediction of non-stationary signals and demonstrate its
application to a speech signal[9,10]. The neural network
used here is a multilayer perceptron (MLP) trained with
the backpropagation algorithm. This structure is not
recursive; it permits days reduction of training and
gives a big gain in the time of the hardware
implementation.

The prediction system: The system is modeled
through the use of a feedforward multilayered neural
network fitted with tapped delay lines at its input.
Figure 1 shows a schematic diagram of the neural

J. Computer Sci., 2 (4) : 355-362, 2006

 356

network and its environment. The purpose of the design
is to filter a set of samples Y, of the input signal S that
is represented by equation:
Y = [S(t), S(t-1), S(t-2), S(t-3), …]T.
 The subscript T denotes transposition. These
samples give the past of the signal at the variation of a
discrete time t. The aim of the operation is to produce a
prediction SP(t+1) of the signal one step into the future.
SP(t+1) value is used to update the weight values in the
neurons network. The prediction error is injected into
the learning bloc.
 An example of a similar predictor was given by[9].
The pipelined recurrent neural network (PRNN) gives
satisfactory results but is relatively complex for
hardware implementation. A non-recurrent neural
network may be less complex and easier to implant the
entire prediction system on silicon chip.

 Fig. 1: The neural network and its environment

The non-recurrent neural network: The structure of
the neural network used in the design consists of a non-
recurrent fully connected multilayer perceptron (MLP).
The proposed MLP architecture presents three layers.
The first layer is the input layer composed by p
neurons. The hidden layer is the second and is
composed by q neurons used for intermediate calculus.
The output layer, the third one, is composed by a
unique neuron and calculates the predicted value.
 Let W1 and W2 denote the synaptic weight matrix
respectively for the first and second layers.

W1 =

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

),(1...)1,(1
.....
.....
.....

),1(1...)1,1(1

pqWqW

pWW
 and W2 =

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

),1(2
.
.
.

)1,1(2

qW

W

The activation function for every neuron in each layer
is the sigmoid binary function described by f (x) =

1/[1+exp(-x)], where x is the internal potential of each
neuron.
Let X1 the output vector of the second layer, calculated
by: X1 = f (W1·Y). Assume X2 the output of the third
layer expressed as: X2 = f (W2·X1).
 A learning algorithm calculates, at each time step,
the weight correction factors ∆W1 and ∆W2 in order to
update the weight matrixes W1 and W2. The error
function is calculated by comparison between the
estimated and the real value of the sample, e(t) = S(t) –
SP(t+1) = S(t) – X2.
 The prediction task of a nonstationary time series,
such as speech signals, needs a continuous learning.
Owing to the fact that we cannot estimate the neurons
error in the hidden layer, we chose the backpropagation
learning algorithm detailed in[11] to correct the synaptic
weights. The new matrixes are calculated according to
the following equations: W1new = W1 + ∆W1 and
W2new = W2 + ∆W2.
In our case the backpropagation algorithm used for
training the neural network is performed by the
equations:
∆Wk,h

(3) = -a·δk
(3)·yh

(2) : update weights in the third layer

∆Wk,h
(2) =-a·δk

(2)·yh
(1) : update weights in the second

layer
δK

(2) = [δi
(3)·Wi,k

(3)]·f ’(vk
(2)) : output error of the second layer

)1(

1

)2(
,

)2(
m

P

layerm
mkk yWv ⋅= �

∈
 : the potential of neurons

 Wk,h is the synaptic weight between the neuron k of
previous layer and the neuron h of the considered layer.
“δ” represents the output error of a neuron. "a" is the
learning rate and v is the potential of each neuron
before activation. The numbers between parentheses
represent the layer number and “y” represents the
neuron’s output.

SIMULATION RESULTS

 Three different speech signals, denoted by S1, S2
and S3 were used to test the nonlinear predictor. These
signals are registrations sampled at 8 KHz and coded on
8 bits. The amplitude of the signals is normalized to be
in the definition domain of the function f.
 The numbers p and q of neurons in the first and
second layer are determined by an optimization
procedure in order to minimize the square error
function E expressed by:

samplesofNumber

ne
E

samplesofNumber

n

)(

1

2�
==

 Optimal parameters obtained are p=2 and q=12[12].
Figure 2-4 represent the temporal representation of the
various signals. The curve with stars ‘�’ represents the
real signal stacked with the predicted signal represented
with cross ‘x’. The error curve represents the difference
between signals with a continuous line.

J. Computer Sci., 2 (4) : 355-362, 2006

 357

 The error signal is of reduced amplitude. There is a
very light gap between the signals. This gap is due to
the procedure of weights update which makes late by
re-injection of the error signal.
 That is why the maximal value of the error is not
significant. Moreover this value does not exceed 31%.
The mean value of the error is lower than 4% and the
square error is lower than 0.32 %. Table 1 shows the
mean, the mean square and the maximum value of the
prediction error.

1390 1400 1410 1420 1430 1440 1450 1460 1470
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Samples

S
ig

na
l A

m
pl

itu
de

Predicted signal S1
Actual signal S1
Error signal

Fig. 2: Nonlinear prediction of the speech signal S1

1570 1580 1590 1600 1610 1620 1630 1640

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Samples

S
ig

na
l A

m
pl

itu
de

Predicted signal S2
Actual signal S2
Error

Fig. 3: Nonlinear prediction of the speech signal S2

1470 1480 1490 1500 1510 1520 1530 1540 1550
-0.4

-0.2

0

0.2

0.4

0.6

0.8

Number of Samples

S
ig

na
l A

m
pl

itu
de

Predicted signal S3
Actual signal S3
Error

Fig. 4: Nonlinear prediction of the speech signal S3

Table 1: The prediction error
Signal Mean absolute Mean Max. Absolute
 Error �e� (squared error) E Error �e�
S1 2.2% 0.8 10-3 15%
S2 3.4% 2.4 10-3 22%
S3 3.1% 3.2 10-3 31%

-4 -2 0 2 4
0,0

0,2

0,4

0,6

0,8

1,0

f '(x)

f(x)

Fig. 5: f is the sigmoid function and f ’ is its first

derivative

Fig. 6: Polynomial approximation of the function f on

[-5, -4]

-4 -2 0 2 4
-0,020

-0,015

-0,010

-0,005

0,000

0,005

0,010

0,015

0,020

Fig. 7: Representation of the approximation error

Implementation of the activation function: For
hardware implementation, many constraints must be

ε

-ε

-ε

J. Computer Sci., 2 (4) : 355-362, 2006

 358

considered, such as the nonlinearity of the activation
function, the silicon area and the time delay. The most
popular activation function is the sigmoid, often used
with gradient-descendent type learning algorithms[11,13-

16] as represented in Fig. 5. There are different
possibilities to implement this function such as look-up
tables or piecewise linear approximation. Moreover, by
using the gradient descent algorithm, it is necessary to
use the first derivative of the activation function
described by:

() () ()' 1f x f x f x= −� �� �

 The operation realized by an artificial neuron unit
in a multilayer perceptron is described by:

Output = f (
1

n

i i
i

w x
=

⋅�)

where xi is the input of the neuron, wi is the synaptic
weight related to the considered input, f is the neuron
activation function and n is the total number of all
inputs.
 The implementation of the neuron’s nonlinear
activation function and their derivatives used by the
learning algorithm, is often solved by a piecewise linear
approximation [4,5,7,17-20]. However, no implementation
method has emerged as a universal solution. For
hardware implementation, the efficiency criteria for a
successful approximation are the achieved accuracy,
speed and area resources. If the circuit is on-chip
learning, the multiplier used by the learning algorithm
(or used by the neuron to multiply the inputs with
weights) could also be used in a time-sharing manner
for computing an approximation of the sigmoid
function. In this paragraph, we propose a polynomial
approximation of the sigmoid activation function and
its derivative used in artificial neural networks.

Preliminary study: Let PN the set of polynoms of
degree less or equal to integer N. Let p* an element of
PN, the approximate of the function f in the interval [a,
b]. It is important to note that the Taylor development
of the function f for a given point in the interval is in
general not satisfactory because the Taylor
development gives a local and not a global
approximation.

Table 2: Polynomial approximation of the sigmoid function f
Interval Polynom P1(x)
[-5, -4] 0.01129·x + 0.06248
]-4, -3] 0.02943·x + 0.13404
]-3, -2] 0.07177·x + 0.25602
]-2, -1] 0.14973·x + 0.41285
]-1, 0] 0.23105·x + 0.49653
]0, 1] 0.23105·x + 0.50346
]1, 2] 0.14973·x + 0.58714
]2, 3] 0.07177·x + 0.74097
]3, 4] 0.02943·x + 0.86595
]4, 5] 0.01129·x + 0.93751

 The following two theorems are fundamental
results[21-23]. The first one is obtained thanks to

Weierstrass and the second to Chebyshev. Let's find an
approximation of a continuous function f on interval
[a, b].
 Using the approximation theorem announced by
Weierstrass, it is showing that: for any ε>0, there exist
a polynom P such that: Sup[a,b] | f (x) – P(x) | ≤ ε .
 Meaning that, any continuous function can be
approximated uniformly by a polynom. But, it gives us
no information about the polynom’s degree.
Bernstein[23] announces that the polynom degree can be
as large as we want.
 Now we may use the Chebyshev theorem: P*N is
the best uniform approximation polynom for f on [a, b],
in the set of polynoms of degree less than or equal to N,
if and only if are existing N+2 points xi such that:
a ≤ x0 < x1 < x2 < …< xN+1 ≤ b
verifying:
P*N (xi) – f (xi) = (-1)i [P*N(x0) – f (x0)] = ± Sup[a,b] |
P*N(x) – f (x) |

Sigmoid function approximation: The sigmoid is a
continuous function and strictly monotonous on]-∞,
+∞[. In practice, we may consider that this function
tends to 0 on]-∞, -5] and to 1 on [+5, +∞[. For
complexity reasons, we consider only polynoms of
degree equal to one. We apply the preceding theorems
to find the best approximation of the sigmoid function
on the intervals [-5, -4] to[4, 5] by a step of one. It is
supposed that the function is constant on]-∞, -5] and
on [+5, +∞[.
 Let’s present an example of approximation
procedure within the interval [-5, -4]. The same
procedure was applied to find the approximate of the
function on the rest of the interval fragments.
Let P1 (x) = a·x +b be the approximation of f on [-5, -4].
The maximal error ε is reached in three points on the
interval. Furthermore, the convexity of the function f in
[-5, -4] implies that the 2 extreme points with the
greatest error are the edges of the interval (Fig. 6).
 Let’s define α as the third point where this
maximal error is reached, we have:
f (-5) – p1(-5) = - ε,
f (α) – p1(α) = ε ,
f (-4) – p1(-4) = - ε.
 As the error is maximal at α point, then: f ’ (α)–
p1’(α)=0.
We deduce easily the values: a = 0.01129, α = - 4.5, b =
0.06248 and ε = 0.0006.
 This means that when the degree of the polynom is
one, the function f is approximated on [-5, -4] by the
polynom P1(x) = 0.01129·x + 0.06248 and the
maximum error (ε = 0.0006) is reached at the points -5,
-4.5 and -4.
 We apply the same procedure for the rest of the
intervals. The detailed piecewise approximation results
of the sigmoid function f are shown in Table 2.

J. Computer Sci., 2 (4) : 355-362, 2006

 359

Table 3: Average and maximum errors of the sigmoid function approximations
Approximation Domain Mean ε Max ε Maximum
A low-based approximation [17] 2.47% 4.90%
Approximation of Alippi and Storti-Gajani [18] 0.87% 1.89%
PLAN Approximation [19] 0.59% 1.89%
CRI Approximation [5], q = 0 2.41% 11.9% 11.9%
CRI Approximation [5], q = 1 [-8,8[1.20% 3.78%
CRI Approximation [5], q = 2 0.92% 2.45%
CRI Approximation [5], q = 3 0.85% 2.06%
Approximation of Tommiska [7], sig_336p 0.33% 0.77%
Approximation of Tommiska [7], sig_337p 0.17% 0.39%
Our approximation [-5,5[0.20% 1.11% 1.11%
Approximation of Zhang et al. [4] 0.77% 2.16% 2.16%
Approximation of Tommiska [7], sig_235p [-4,4[0.69% 1.51%
Approximation of Tommiska [7], sig_236p 0.40% 0.77%

-4 -2 0 2 4
-0,020

-0,015

-0,010

-0,005

0,000

0,005

0,010

0,015

0,020

Fig. 8: Representation of the derivative approximation

error

Fig. 9: General architecture of the artificial digital EN

 The error approximation is represented on Fig. 7.
The mean error is 0.2%. The maximum approximation
error is 1.11%. Because of the error limitation, we
accept this approximation.
A comparison between the sigmoid approximation
result described in this work and others same
approximations is resumed in Table 3.
 By comparison, we can see that although the used
intervals of cut are different, the maximal error for our
approximation always remains lower than that found by
the other authors.

Approximation of the first derivative function: By
application of the same technique, the function
g(x)=f’(x) = f (x) [1- f (x)] can be approximated by a
polynom of degree one. The approximate function P1(x)
= a·x +b is found at each fragment of the interval.

On the interval [-5, -4] for example, we obtain: a =
0.01101, α =-4.5, b = 0.06107 and ε = 0.0006.

Table 4: Polynomial approximation of the derivative function f ’
Interval Polynom P1(x)
[-5, -4] 0.01101·x + 0.06107
]-4, -3] 0.02751·x + 0.12623
]-3, -2] 0.05981·x + 0.22213
]-2, -1] 0.09161·x + 0.28729
]-1, -1/2] 0.07678·x + 0.27442
]-1/2, 0] 0.02999·x + 0.25175
]0, 1/2] -0.02999·x + 0.25175
]1/2, 1] -0.07678·x + 0.27442
]1, 2] -0.09161·x + 0.28729
]2, 3] -0.05981·x + 0.22213
]3, 4] -0.02751·x + 0.12623
]4, 5] -0.01101·x + 0.06108

 The detailed approximation results of the first
derivative function f ’ are shown in Table 4. The error
of derivative approximation is represented on Fig. 8.
The maximum error is inferior to 0.5%. This error is
very limited and the approximation is retained. We can
say that this function is faithfully reproduced.

Digital implementation: The principal advantage of a
digital implementation over the analogical one is the
flexibility of the design flow. In this paragraph, we
describe the digital implementation of the predictor
system. The main parts of the target ASIC are: the
neural network and the learning algorithm. A memory
is used to store the synaptic weights for updating. A
controller synchronizes all the parts of the circuit. The
neural network system is based on a generic elementary
neuron (EN).

The elementary neuron: Using HDL description of
one EN, we generate an architecture composed of a
MAC unit, multiplexers and the sigmoid calculus block
which is composed of a multiplier and an adder. The
general architecture of the digital artificial neuron is
shown in Fig. 9.
 A local control unit allows the synchronizing
between different blocks. A “Start” signal triggers the
calculation process by activating the EN processes.

J. Computer Sci., 2 (4) : 355-362, 2006

 360

 Fig. 10: Using the generic elementary neuron,
 we may construct any layer

Fig. 11: The learning block

‘End’ signal indicates the end of the process. Except the
first layer, each neuron on each layer has two inputs
bus: the input samples and the synaptic weights. The
EN outputs will be connected to the next neurons of the
next layer. It communicates the calculated value and its
internal potential. The neuron’s potential value will be
used by the learning block.

Neural network Implementation: The EN’s
architecture is then used to build the entire multilayer
perceptron (MLP). Each layer is connected to the next
one. Each layer contains the appropriate number of
elementary neurons (p and q). A global control unit
commands and controls all the neurons and the circuit
blocks in the design. The signal “Start” triggers the
process. When all the neurons of one layer finish, by

raising to high all the “End” signals, the next layer is
triggered. A logic “And” gate controls this process.
Synaptic weights are stored in an on-chip RAM
memory. The output neurons and the synaptic weights
are communicated to the learning block.

 Fig. 12: Layout of the speech prediction ASIC

 The memory used is a static Single Port RAM. It is
used a 0.35�m pre-designed circuit. The delay time is 4
ns. Figure 10 represents a neuron’s network architecture
with the generic EN.

Learning algorithm implementation: The prediction
system needs a real time gradient-descendent algorithm
type for learning. We chose the backpropagation
algorithm[11] as expressed.
 The learning algorithm used here is the well known
backpropagation algorithm[11,13]. The arithmetic
operations used to perform the equations are addition,
subtraction and multiplication. This module,
performing the learning algorithm, has the inconvenient
of a relatively very slow circuit because of many
arithmetic multiplications built on it. It is the critical
part in the circuit. Figure 11 shows the detailed
architecture of the learning block.
 The learning block, reads the synaptic weights from
the memory to perform the calculus. Then it stores the
new synaptic weights in the memory to be reused next
process for prediction. The block calculating f ’ is a
simple implementation of a linear function using a
ROM. The ROM contains the constants needed for
calculating the approximation per segment as described
in Table 4.

Tests and circuit design: Neural networks systems are
known to be able to extract and restore information
from a wrong or disturbed data. This ability is due to
the capability of the neural network to learn from the

Memory

Neural
network

block

 The back-
 propagation

 block

J. Computer Sci., 2 (4) : 355-362, 2006

 361

environment and its distributed non-linearity built into
its design.
 The ASIC circuit was designed using 0.35µm
CMOS technology. The circuit area is about 8 mm2 and
contains 250 thousand logic gates. Figure 12 shows the
layout of the ASIC.
 The minimum delay time is about 25 ns, specifying
a maximum frequency of 40 MHz. The critical path is
maximized on the learning block, where many
arithmetic operations are processed. Circuit emulation
shows that it is possible to reach 50 MHz. The
procedure of prediction creates some mistakes in
calculation, but the stability of the process is assured.

CONCLUSION

 In this work, a neural system used for time series
predictions has been designed and hardware
implemented with a fully digital manner. The system
implemented is an interconnection between a neural
network, a memory, a controller and a learning module.
The neural network part is built on an elementary
generic neuron (EN). The device is on-chip learning.
Considering the robustness of the ASIC
implementation, we observe process stability with some
little generated calculus errors, when we use
frequencies greater than 40 MHz. The ASIC area is
about 8 mm2 using 0.35 µm technology.

REFERENCES

1. Hammerstrom, D.A., 1995. Digital VLSI

Architecture for Real-World Applications. An
Introduction to Neural and Electronic Networks,
second edition, Academic Press, pp: 335- 358.

2. Ramacher, U., J. Beichter, W. Raab, J. Anlauf, N.
Brüls, U. Hachmann and M. Wessling, 1991.
Design of a 1st generation Neurocomputer: VLSI
Design of Neural Networks. Kluwer Academic
Publishers, Boston, MA, pp: 271-310.

3. Morgado, F.D., A. Antunes and A.M. Mota, 2004.
Artificial neural networks: A review of commercial
hardware. Engg. Appl. Artif. Intell., 17: 945- 952.

4. Zhang, M., S. Vassiliadis and J.G. Delgado-Frias,
1996. Sigmoid generators for neural computing
using piecewise approximations. IEEE Trans.
Computers, 45: 1045-1049.

5. Basterrextea, K., J.M. Tarela and I. Del Campo,
2001. Approximation of Sigmoid Function and the
Derivative for Artificial Neurons, Advances in
neural networks and applications. WSES Press,
Athens, pp: 397-401.

6. Faiedh, H., Z. Gafsi, K. Torki and K. Besbes, 2001.
Digital hardware implementation of sigmoid
function and its derivative for artificial neural
networks. IEEE Proc. 13th Intl. Conf. on
Microelectronics, ICM’2001, Rabat, Morocco, Oct.
29-31, pp: 189-192.

7. Tommiska, M.T. Efficient digital implementation
of the sigmoid function for reprogrammable logic.
IEEE Proc. Computer and Digital Techniques, 150:
403- 411.

8. Ibnkahla, M., 2000. Applications of neural
networks to digital communications-A survey.
Signal Process., 80: 1185- 1215.

9. Haykin, S. and L. Li, 1995. Nonlinear adaptive
prediction of non stationary signals. IEEE Trans.
Signal Process., 43: 526-535.

10. Mandic, D.P. and J.A. Chambers, 1999. Toward an
optimal PRNN-based nonlinear predictor. IEEE
Trans. Neural Networks, 10: 1435-1442.

11. Hérault, J. and C. Jutten, 1994. Réseaux neuronaux
et traitement du signal. Hermés, Paris.

12. Faiedh, H., Z. Gafsi, M. Mhiri and K. Besbes,
2001. Non-recurrent low-complexity neural
network for the speech prediction, Advances in
neural networks and applications. WSES Press,
Athens, pp: 53-57.

13. Widrow, B. and S.D. Stearns, 1985. Adaptive
Signal Processing. Prentice-Hall, Englwood Cliffs,
NJ.

14. Rumelhart, D.E., L.L. McClelland and the PDP
Research Group, 1986. Parallel distributed
processing exploration in the microstructure of
cognition. Vol. I, II and III. A Bradford book, MIT
Press, Cambridge, MA.

15. Le, Y.C., 1987. Modèle connexionniste de
l’apprentissage. PhD Thesis. Paris VI University.

16. Willams, R.J. and D. Zipser, 1989. A learning
algorithm for continually running fully recurrent
neural networks, Neural Comput., 1: 270-280.

17. Myers, D.J. and R.A. Hutchinson, 1989. Efficient
implementation of piecewise linear activation
function for digital VLSI neural networks.
Electron. Lett., 25: 1662-1663.

18. Alippi, C. and G. Storti-Gajani, 1991. Simple
approximation of sigmoidal functions: realistic
design of digital neural networks capable of
learning. Proc. IEEE Int. Symp. on Circuits and
Systems, Singapore, Jun. 11-14, pp: 1505-1508.

19. Amin, H., K.M. Kurtis and B.R. Hayes-Gill, 1997.
Piecewise linear approximation applied to
nonlinear function of a neural network. IEE Proc.
Circuits, Devices Sys., 144: 313-317.

20. Basterrextea, K., J.M. Tarela and I. Del Campo,
2002. Digital design of a sigmoid approximator for
artificial neural networks. Electron. Lett., 38:
35-37.

21. Rémés, E., 1934. Sur un procédé convergent
d’approximations successives pour déterminer les
polynômes d’approximation. C.R. Acad. Sci. Paris,
198: 2063-2065.

22. Laurent, P.-J., 1972. Approximation et
optimisation, Collection Enseignement des
Sciences, 13, Hermann, Paris.

J. Computer Sci., 2 (4) : 355-362, 2006

 362

23. Muller, J.M., 1989. Arithmétiques des ordinateurs,
opérateurs et fonctions élémentaires, Masson, Paris.

24. Bhatnagar, H., 2000. Advanced ASIC chip
synthesis. Kluwer Academic Publishers, London.

25. Castro, J.L., C.J. Mantaset and J.M. Benitez, 2000.
Neural Networks with a continuous squashing
function in the output are universal approximators.
Neural Networks, 13: 561-563.

26. Faiedh, H., Z. Gafsi, K. Torki and K. Besbes, 2004.
Digital hardware implementation of a neural
network used for classification. IEEE Proc. 16th
Intl. Conf. Microelectronics, ICM’2004, Tunis,
Tunisia, Dec. 6-8, pp: 551-554.

27. Gao, X.M., X.Z. Gao, J.M.A. Tanskanen and S.J.
Ovaska, 1997. Power prediction in mobile
communication systems using an optimal neural-
network structure. IEEE Trans. Neural Networks,
8: 1446-1455.

28. Gaski, D.D.and L. Ramachandran, 1994.
Introducing to high-level synthesis. IEEE Design
and Test of Computers, 11: 44-54.

29. Hikawa, H., 1999. Frequency-based multilayer
neural network with on chip learning and enhanced
neuron characteristics. IEEE Trans. Neural
Networks, 10: 545-553.

30. Narenda, K.S., 1996. Neural networks for control.
IEEE Proc., 84: 1385-1406.

31. Schmid, A., Y. Leblebici and D. Mlynek, 1999.
Mixed analogue-digital artificial-neural-network
with on chip learning. Circuits, Devices and
Systems. IEE Proc., 146: 345-349.

32. Smith, M.J.S., 1999. Application-specific
Integrated Circuits. Addison-Wesley VLSI Systems
Series.

33. Souani, C., 2000. Synthèse d’un système temps-
réel à architecture hétérogène pour la parole et
l’image. PhD Thesis, Sciences Faculty of Monastir,
Tunisia.

34. Walker, R.A. and S. Chaudhuri, 1995. Introduction
to the scheduling problem. IEEE Design and Test
of Computers, 12: 60-69.

