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Abstract: Neural networks have been widely used for many applications in digital communications. 
They are able to give solutions to complex problems due to their nonlinear processing and their 
learning and generalization. Neural networks are one of the key technologies for the communication 
domain and accordingly a special effort may be expected to be paid to real time hardware 
implementation issues.  In this study, it is proposed a digital hardware implementation of a neural 
system based on a multilayer perceptron (MLP). The neural system is used for the nonlinear adaptive 
prediction of nonstationary signals such as speech signals. The implemented architecture of the MLP is 
generated using a generic elementary neuron (EN). The polynomial approximation method is used to 
implement the sigmoidal activation function. The back-propagation algorithm is used to implant the 
prediction task. The circuit implementation architecture is detailed, for achieving real-time prediction 
for speech signals. The designed ASIC circuit includes a neural network block, an on-chip learning 
block and a memory used for storing the synaptic weights for updating. 
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INTRODUCTION 
 
 Many physical signals, such as speech, are 
generated from a nonlinear mechanism and have 
statistically nonstationary properties, which make the 
task of their prediction difficult. Artificial neural 
networks have been widely used as powerful tools for 
modelling nonlinear dynamical systems. They are also 
able to give solutions to complex problems in digital 
communications due to their nonlinear processing, 
parallel distributed architecture, capacity of learning 
and generalisation and the efficient hardware 
implementation. A neural network is well suited for the 
nonlinear prediction of nonstationary signals by virtue 
of the distributed nonlinearity built into its design and 
the ability of the network to learn from its environment.  
 Digital implementation of neural networks on 
configurable systems was presented by[1,2]. Also, 
several commercial hardware solutions that can be used 
to implement neural circuits have reached the market[3]. 
The learning algorithm implementation remains the 
main difficulty when an autonomous system is planned 
regarding the running frequency. The implementation 
of the nonlinear activation function of neurons and its 
derivative used by the learning algorithm, is often 
solved by a linear approximation[4-6] but no 
implementation method has emerged as a universal 
solution[7].  

 In this study we propose a hardware 
implementation of a neural system, used for prediction 
in time-series. An adequate and optimal architecture is 
used for the implementation of the learning algorithm. 
As a final result, we propose a digital hardware 
implementation of a neural prediction circuit on digital 
ASIC. 
 
Problem position – brief presentation: Neural 
networks are able to give solutions to complex 
problems in digital communications due to their 
nonlinear processing, parallel distributed architecture, 
capacity of learning and generalization and efficient 
hardware implementations[8]. In this paragraph we 
describe a neural system for the nonlinear adaptive 
prediction of non-stationary signals and demonstrate its 
application to a speech signal[9,10]. The neural network 
used here is a multilayer perceptron (MLP) trained with 
the backpropagation algorithm. This structure is not 
recursive; it permits days reduction of training and 
gives a big gain in the time of the hardware 
implementation. 
 
The prediction system: The system is modeled 
through the use of a feedforward multilayered neural 
network fitted with tapped delay lines at its input. 
Figure 1 shows a schematic diagram of the neural 
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network and its environment. The purpose of the design 
is to filter a set of samples Y, of the input signal S that 
is represented by equation: 
Y = [S(t), S(t-1), S(t-2), S(t-3), …]T.  
 The subscript T denotes transposition. These 
samples give the past of the signal at the variation of a 
discrete time t. The aim of the operation is to produce a 
prediction SP(t+1) of the signal one step into the future. 
SP(t+1) value is used to update the weight values in the 
neurons network. The prediction error is injected into 
the learning bloc. 
 An example of a similar predictor was given by[9]. 
The pipelined recurrent neural network (PRNN) gives 
satisfactory results but is relatively complex for 
hardware implementation. A non-recurrent neural 
network may be less complex and easier to implant the 
entire prediction system on silicon chip. 
 

 
      Fig. 1: The neural network and its environment 
 
The non-recurrent neural network: The structure of 
the neural network used in the design consists of a non-
recurrent fully connected multilayer perceptron (MLP). 
The proposed MLP architecture presents three layers. 
The first layer is the input layer composed by p 
neurons. The hidden layer is the second and is 
composed by q neurons used for intermediate calculus. 
The output layer, the third one, is composed by a 
unique neuron and calculates the predicted value. 
 Let W1 and W2 denote the synaptic weight matrix 
respectively for the first and second layers.  
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The activation function for every neuron in each layer 
is the sigmoid binary function described by  f (x) = 

1/[1+exp(-x)], where x is the internal potential of each 
neuron.  
Let X1 the output vector of the second layer, calculated 
by: X1 = f (W1·Y). Assume X2 the output of the third 
layer expressed as: X2 = f (W2·X1). 
 A learning algorithm calculates, at each time step, 
the weight correction factors ∆W1 and ∆W2 in order to 
update the weight matrixes W1 and W2. The error 
function is calculated by comparison between the 
estimated and the real value of the sample, e(t) = S(t) – 
SP(t+1) = S(t) – X2. 
 The prediction task of a nonstationary time series, 
such as speech signals, needs a continuous learning. 
Owing to the fact that we cannot estimate the neurons 
error in the hidden layer, we chose the backpropagation 
learning algorithm detailed in[11] to correct the synaptic 
weights. The new matrixes are calculated according to 
the following equations: W1new = W1 + ∆W1   and   
W2new = W2 + ∆W2. 
In our case the backpropagation algorithm used for 
training the neural network is performed by the 
equations:  
∆Wk,h

(3) = -a·δk
(3)·yh

(2)  : update weights in the third layer 

∆Wk,h
(2) =-a·δk

(2)·yh
(1)  : update weights in the second                      

layer 
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 Wk,h is the synaptic weight between the neuron k of 
previous layer and the neuron h of the considered layer. 
“δ” represents the output error of a neuron. "a" is the 
learning rate and v is the potential of each neuron 
before activation. The numbers between parentheses 
represent the layer number and “y” represents the 
neuron’s output.  
 

SIMULATION RESULTS 
 
 Three different speech signals, denoted by S1, S2 
and S3 were used to test the nonlinear predictor. These 
signals are registrations sampled at 8 KHz and coded on 
8 bits. The amplitude of the signals is normalized to be 
in the definition domain of the function f. 
 The numbers p and q of neurons in the first and 
second layer are determined by an optimization 
procedure in order to minimize the square error 
function E expressed by:  
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 Optimal parameters obtained are p=2 and q=12[12]. 
Figure 2-4 represent the temporal representation of the 
various signals. The curve with stars ‘�’ represents the 
real signal stacked with the predicted signal represented 
with cross ‘x’. The error curve represents the difference 
between signals with a continuous line. 
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 The error signal is of reduced amplitude. There is a 
very light gap between the signals. This gap is due to 
the procedure of weights update which makes late by 
re-injection of the error signal. 
 That is why the maximal value of the error is not 
significant. Moreover this value does not exceed 31%. 
The mean value of the error is lower than 4% and the 
square error is lower than 0.32 %. Table 1 shows the 
mean, the mean square and the maximum value of the 
prediction error. 
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Fig. 2: Nonlinear prediction of the speech signal S1 
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Fig. 3: Nonlinear prediction of the speech signal S2 
 

1470 1480 1490 1500 1510 1520 1530 1540 1550
-0.4

-0.2

0

0.2

0.4

0.6

0.8

Number of Samples

S
ig

na
l A

m
pl

itu
de

Predicted signal S3
Actual signal S3   
Error              

 
Fig. 4: Nonlinear prediction of the speech signal S3 

Table 1: The prediction error 
Signal  Mean absolute          Mean       Max. Absolute  
         Error  �e�  (squared error) E          Error �e� 
S1            2.2%        0.8 10-3            15% 
S2            3.4%        2.4 10-3            22% 
S3            3.1%        3.2 10-3            31% 
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Fig. 5: f is the sigmoid function and f ’ is its first 

derivative 
 
 

 

 

 

 

 

 
Fig. 6: Polynomial approximation of the function f on 

[-5, -4] 
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Fig. 7: Representation of the approximation error 
 
Implementation of the activation function: For 
hardware implementation, many constraints must be 
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considered, such as the nonlinearity of the activation 
function, the silicon area and the time delay. The most 
popular activation function is the sigmoid, often used 
with gradient-descendent type learning algorithms[11,13-

16] as represented in Fig. 5. There are different 
possibilities to implement this function such as look-up 
tables or piecewise linear approximation. Moreover, by 
using the gradient descent algorithm, it is necessary to 
use the first derivative of the activation function 
described by:  

( ) ( ) ( )' 1f x f x f x= −� �� �  

 The operation realized by an artificial neuron unit 
in a multilayer perceptron is described by:  

Output = f (
1

n

i i
i

w x
=

⋅� ) 

where xi is the input of the neuron, wi is the synaptic 
weight related to the considered input, f is the neuron 
activation function and n is the total number of all 
inputs.  
 The implementation of the neuron’s nonlinear 
activation function and their derivatives used by the 
learning algorithm, is often solved by a piecewise linear 
approximation [4,5,7,17-20]. However, no implementation 
method has emerged as a universal solution. For 
hardware implementation, the efficiency criteria for a 
successful approximation are the achieved accuracy, 
speed and area resources. If the circuit is on-chip 
learning, the multiplier used by the learning algorithm 
(or used by the neuron to multiply the inputs with 
weights) could also be used in a time-sharing manner 
for computing an approximation of the sigmoid 
function. In this paragraph, we propose a polynomial 
approximation of the sigmoid activation function and 
its derivative used in artificial neural networks.  
 
Preliminary study: Let PN the set of polynoms of 
degree less or equal to integer N. Let p* an element of 
PN, the approximate of the function f in the interval [a, 
b]. It is important to note that the Taylor development 
of the function f for a given point in the interval is in 
general not satisfactory because the Taylor 
development gives a local and not a global 
approximation.  
 
Table 2:  Polynomial approximation of  the sigmoid function f 
Interval Polynom P1(x) 
[-5, -4] 0.01129·x + 0.06248 
]-4, -3] 0.02943·x + 0.13404 
]-3, -2] 0.07177·x + 0.25602 
]-2, -1] 0.14973·x + 0.41285 
]-1,  0] 0.23105·x + 0.49653 
]0, 1] 0.23105·x + 0.50346 
]1, 2] 0.14973·x + 0.58714 
]2, 3] 0.07177·x + 0.74097 
]3, 4] 0.02943·x + 0.86595 
]4, 5] 0.01129·x + 0.93751 

 
 The following two theorems are fundamental 
results[21-23]. The first one is obtained thanks to 

Weierstrass and the second to Chebyshev. Let's find an 
approximation   of   a continuous function f on interval 
[a, b]. 
 Using the approximation theorem announced by 
Weierstrass, it is showing that:  for any ε>0, there exist 
a polynom P such that: Sup[a,b] | f (x) – P(x) | ≤ ε . 
 Meaning that, any continuous function can be 
approximated uniformly by a polynom. But, it gives us 
no information about the polynom’s degree. 
Bernstein[23] announces that the polynom degree can be 
as large as we want. 
 Now we may use the Chebyshev theorem: P*N is 
the best uniform approximation polynom for f on [a, b], 
in the set of polynoms of degree less than or equal to N, 
if and only if are existing N+2 points xi such that:  
a ≤ x0 < x1 < x2 < …< xN+1 ≤ b 
verifying: 
P*N (xi) – f (xi) = (-1)i [P*N(x0) – f (x0)] =  ± Sup[a,b] | 
P*N(x) – f (x) | 
 
Sigmoid function approximation: The sigmoid is a 
continuous function and strictly monotonous on ]-∞, 
+∞[. In practice, we may consider that this function 
tends to 0 on ]-∞, -5] and to 1 on [+5, +∞[. For 
complexity reasons, we consider only polynoms of 
degree equal to one. We apply the preceding theorems 
to find the best approximation of the sigmoid function 
on the intervals [-5, -4] to[4, 5] by a step of one. It is 
supposed that the function is constant on ]-∞, -5] and 
on [+5, +∞[. 
 Let’s present an example of approximation 
procedure within the interval [-5, -4]. The same 
procedure was applied to find the approximate of the 
function on the rest of the interval fragments. 
Let P1 (x) = a·x +b be the approximation of f on [-5, -4]. 
The maximal error ε is reached in three points on the 
interval. Furthermore, the convexity of the function f in 
[-5, -4] implies that the 2 extreme points with the 
greatest error are the edges of the interval (Fig. 6).  
 Let’s define α as the third point where this 
maximal error is reached, we have: 
f (-5) – p1(-5) = - ε,  
f (α) – p1(α) =  ε , 
f (-4) – p1(-4) = - ε. 
 As the error is maximal at α point, then: f ’ (α)–
p1’(α)=0. 
We deduce easily the values: a = 0.01129, α = - 4.5, b = 
0.06248 and ε = 0.0006. 
 This means that when the degree of the polynom is 
one, the function f is approximated on [-5, -4] by the 
polynom P1(x) = 0.01129·x + 0.06248 and the 
maximum error (ε = 0.0006) is reached at the points -5, 
-4.5 and -4. 
 We apply the same procedure for the rest of the 
intervals. The detailed piecewise approximation results 
of the sigmoid function f are shown in Table 2.  
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Table 3: Average and maximum errors of the sigmoid function approximations 
Approximation Domain Mean ε Max ε Maximum 
A low-based approximation [17]  2.47% 4.90%  
Approximation of Alippi and Storti-Gajani [18]  0.87% 1.89%  
PLAN Approximation  [19]  0.59% 1.89%  
CRI Approximation  [5], q = 0  2.41% 11.9% 11.9% 
CRI Approximation  [5], q = 1 [-8,8[ 1.20% 3.78%  
CRI Approximation  [5], q = 2  0.92% 2.45%  
CRI Approximation  [5], q = 3  0.85% 2.06%  
Approximation of Tommiska [7], sig_336p  0.33% 0.77%  
Approximation of Tommiska [7], sig_337p  0.17% 0.39%  
Our approximation [-5,5[ 0.20% 1.11% 1.11% 
Approximation of Zhang et al. [4]  0.77% 2.16% 2.16% 
Approximation of Tommiska [7], sig_235p [-4,4[ 0.69% 1.51%  
Approximation of Tommiska [7], sig_236p  0.40% 0.77%  
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Fig. 8: Representation of the derivative approximation 

error 
 

 
Fig. 9: General architecture of the artificial digital EN 
 
 The error approximation is represented on Fig. 7. 
The mean error is 0.2%. The maximum approximation 
error is 1.11%. Because of the error limitation, we 
accept this approximation. 
A comparison between the sigmoid approximation 
result described in this work and others same 
approximations is resumed in Table 3. 
 By comparison, we can see that although the used 
intervals of cut are different, the maximal error for our 
approximation always remains lower than that found by 
the other authors. 
 
Approximation of the first derivative function: By 
application of the same technique, the function 
g(x)=f’(x) = f (x) [1- f (x)] can be approximated by a 
polynom of degree one. The approximate function P1(x) 
= a·x +b is found at each fragment of the interval. 

On the interval [-5, -4] for example, we obtain: a = 
0.01101, α =-4.5, b = 0.06107 and ε = 0.0006. 
 
Table 4: Polynomial approximation of the derivative function f ’ 
Interval     Polynom P1(x) 
[-5, -4]  0.01101·x + 0.06107 
]-4, -3]  0.02751·x + 0.12623 
]-3, -2]  0.05981·x + 0.22213 
]-2, -1]  0.09161·x + 0.28729 
]-1, -1/2]  0.07678·x + 0.27442 
]-1/2, 0]  0.02999·x + 0.25175 
]0, 1/2] -0.02999·x + 0.25175 
]1/2, 1] -0.07678·x + 0.27442 
]1, 2] -0.09161·x + 0.28729 
]2, 3] -0.05981·x + 0.22213 
]3, 4] -0.02751·x + 0.12623 
]4, 5] -0.01101·x + 0.06108 

 
 The detailed approximation results of the first 
derivative function f ’ are shown in Table 4. The error 
of derivative approximation is represented on Fig. 8. 
The maximum error is inferior to 0.5%. This error is 
very limited and the approximation is retained. We can 
say that this function is faithfully reproduced. 
 
Digital implementation: The principal advantage of a 
digital implementation over the analogical one is the 
flexibility of the design flow. In this paragraph, we 
describe the digital implementation of the predictor 
system. The main parts of the target ASIC are: the 
neural network and the learning algorithm. A memory 
is used to store the synaptic weights for updating. A 
controller synchronizes all the parts of the circuit. The 
neural network system is based on a generic elementary 
neuron (EN).  
 
The elementary neuron: Using HDL description of 
one EN, we generate an architecture composed of a 
MAC unit, multiplexers and the sigmoid calculus block 
which is composed of a multiplier and an adder. The 
general architecture of the digital artificial neuron is 
shown in Fig. 9.  
 A local control unit allows the synchronizing 
between different blocks. A “Start” signal triggers the 
calculation process by activating the EN processes. 
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   Fig. 10: Using the generic elementary neuron,  
                 we may construct any layer 
 

 
 

Fig. 11: The learning block 
 
‘End’ signal indicates the end of the process. Except the 
first layer, each neuron on each layer has two inputs 
bus: the input samples and the synaptic weights. The 
EN outputs will be connected to the next neurons of the 
next layer. It communicates the calculated value and its 
internal potential. The neuron’s potential value will be 
used by the learning block. 
 
Neural network Implementation: The EN’s 
architecture is then used to build the entire multilayer 
perceptron (MLP). Each layer is connected to the next 
one. Each  layer   contains   the   appropriate number  of  
elementary neurons (p and q). A global control unit 
commands and controls all the neurons and the circuit 
blocks in the design. The signal “Start” triggers the 
process. When all the neurons of one layer finish, by 

raising to high all the “End” signals, the next layer is 
triggered. A logic “And” gate controls this process. 
Synaptic weights are stored in an on-chip RAM 
memory. The output neurons and the synaptic weights 
are communicated to the learning block.  
 

 
 

        Fig. 12: Layout of the speech prediction ASIC 
 
 The memory used is a static Single Port RAM. It is 
used a 0.35�m pre-designed circuit. The delay time is 4 
ns. Figure 10 represents a neuron’s network architecture 
with the generic EN.  
 
Learning algorithm implementation: The prediction 
system needs a real time gradient-descendent algorithm 
type for learning. We chose the backpropagation 
algorithm[11] as expressed. 
 The learning algorithm used here is the well known 
backpropagation algorithm[11,13]. The arithmetic 
operations used to perform the equations are addition, 
subtraction and multiplication. This module, 
performing the learning algorithm, has the inconvenient 
of a relatively very slow circuit because of many 
arithmetic multiplications built on it. It is the critical 
part in the circuit. Figure 11 shows the detailed 
architecture of the learning block. 
 The learning block, reads the synaptic weights from 
the memory to perform the calculus. Then it stores the 
new synaptic weights in the memory to be reused next 
process for prediction. The block calculating f ’ is a 
simple implementation of a linear function using a 
ROM. The ROM contains the constants needed for 
calculating the approximation per segment as described 
in Table 4. 
 
Tests and circuit design: Neural networks systems are 
known to be able to extract and restore information 
from a wrong or disturbed data. This ability is due to 
the capability of the neural network to learn from the 
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environment and its distributed non-linearity built into 
its design.  
 The ASIC circuit was designed using 0.35µm 
CMOS technology. The circuit area is about 8 mm2 and 
contains 250 thousand logic gates. Figure 12 shows the 
layout of the ASIC. 
 The minimum delay time is about 25 ns, specifying 
a maximum frequency of 40 MHz. The critical path is 
maximized on the learning block, where many 
arithmetic operations are processed. Circuit emulation 
shows that it is possible to reach 50 MHz. The 
procedure of prediction creates some mistakes in 
calculation, but the stability of the process is assured. 
 

CONCLUSION 
 
 In this work, a neural system used for time series 
predictions has been designed and hardware 
implemented with a fully digital manner. The system 
implemented is an interconnection between a neural 
network, a memory, a controller and a learning module. 
The neural network part is built on an elementary 
generic neuron (EN). The device is on-chip learning. 
Considering the robustness of the ASIC 
implementation, we observe process stability with some 
little generated calculus errors, when we use 
frequencies greater than 40 MHz. The ASIC area is 
about 8 mm2 using 0.35 µm technology. 
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