
Journal of Computer Science 2 (5): 419-421, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Shakir M. Hussain, Applied Science University, Jordan
419

Key Based Random Permutation (KBRP)

Shakir M. Hussain1 and Naim M. Ajlouni

Applied Science University1, Jordan

Amman Arab University for Graduate Studies, Jordan

Abstract: This study introduces a method for generating a particular permutation P of a given size N
out of N! permutations from a given key. This method computes a unique permutation for a specific
size since it takes the same key; therefore, the same permutation can be computed each time the same
key and size are applied. The name of random permutation comes from the fact that the probability of
getting this permutation is 1 out of N! possible permutations. Beside that, the permutation can not be
guessed because of its generating method that is depending completely on a given key and size.

 Key words: Random permutation, indexing, block cipher, hashaing

INTRODUCTION

 A permutation, also called an "arrangement
number" or "order," is a rearrangement of the elements
of an ordered list S into a one-to-one correspondence
with S itself. The number of permutations on a set of n
elements is given by n! (n factorial)[1,2].
 For example, there are 3! = 3x2x1 = 6 permutations
of {1,2,3}. These permutations are: {1,2,3} , {1,3,2},
{2,1,3} , {2,3,1} , {3,1,2}, and {3,2,1}.
 A list of length n can be tested to see if it is a
permutation of 1, ..., n using the command
PermutationQ[list] in the Mathematica add-on package
DiscreteMath`Combinatorica`[3] .
 Sedgewick[4] summarizes a number of algorithms
for generating permutations, and identifies the
minimum change permutation algorithm of Heap[5] to
be generally the fastest[6]. Ives[7] gave four new
algorithms for permutation enumeration. Johnson[8]
gave another method of enumerating permutations.
 A random permutation is a permutation containing
a fixed number n of a random selection from a given set
of elements. There are two main algorithms for
constructing random permutations. The first constructs
a vector of random real numbers and uses them as keys
to records containing the integers 1 to n. The second
starts with an arbitrary permutation and then exchanges
the ith element with a randomly selected one from the
first i elements for i = 1, ..., n[6,9]. Schemes for
generating permutations and for numbering permutation
have been developed over the years[10-12]. Campbell[13]
gave a simple numbering scheme for calculating the
permutation. Hussain[14] gave a method for generating
permutation from string of bits.

The proposed method: Key Based Random
Permutation (KBRP) is a method that can generate one
permutation of size n out of n! permutations. This

permutation is generated from certain key
(alphanumeric string) by considering all the elements of
this given key in the generation process. The
permutation is stored in one-dimensional array of size
equal to the permutation size (N). The process involves
three consecutive steps: init(), eliminate(), and fill().
First step, init(), is to initialize array of size n with
elements from the given key, by taking the ASCII code
of each element in the key and storing them in the array
consecutively. To complete all elements of the array,
we add elements to the array by adding two consecutive
values of the array until all the elements of the array are
set to values. Finally, all values are set to the range 1 to
N by applying the mode operation.
 The second step, eliminate(), is to get rid of
repeated values by replacing them with value of zero
and keep only one value out of these repeated values.
Last step, fill(), is to replace all zero values with
nonzero values in the range 1 to N which are not exist
in the array. The resulted array now represents the
permutation.

Step1: init()
 Initialization step can be shown as follows:
Let
K: key (string of alphanumeric) of size S
P: array holds permutation with values 1 to N
N: array size
A[i] = K[i] for i=1 to S
P[i] = P[i] + P[i+1] for i=1 to S-1
P[S] = A[1]
While (S < N)
 j = S+1
 For(i = 1 to S-1)
 For(k = i to S-1 && j � N)
 P[i] = P[i] + P[k+1]
 j++
P[i] = P[i] MOD N for i = 1 to N

J. Computer Sci., 2 (5): 419-421, 2006

 420

1

2

3

4

1

2

3

4

Original position
of M

New position of
M

Step2: eliminate()
 In this step, array P contains N values. Repetition
for some values maybe exists; therefore, the repeated
values are examined and replaced with zero. Only one
value out of the repeated values is kept in P. now P has
only distinct values in the range 1 to N and some zero
values are appeared in P. Missing values in the range 1
to N that are not exist in P will be substituted by the
zero elements. This process is shown in the following
algorithm:
Let
L: left of array P
R: right of array P
For all values where L < R
 P[i] = 0 if P[L] = P[i] for i = L+1 to R
 P[j] = 0 if P[R] = P[j] for j = R-1 to L+1
 Increment L by 1
 Decrement R by 1

Step3: fill()
 The final step, fill(), is to replace any zero value in
P by a value in the range 1 to N which is not exist in P.
All zero values will be replaced through a sequence of
one value from the left side of P and one value from the
right side of P and repeating this sequence until all zero
values are gone. The resulted array now contains all
distinct values in the range 1 to N which represents the
permutation stored in P. This process is shown in the
following algorithm:
Let
A: array contains missing values in P
m: number of missing values in A
i = 0
while (i < m)
 j = N
 while(P[i] != 0 && j > 0)
 decrement j
 if(j > 0)
 P[j] = A[i]
 increment i
 k = 1
 while(P[k] != 0 && k � N)
 increment k
 if(k <= N)
 P[k] = A[i]
 increment i

An illustrative example: To illustrate the three steps of
the process of KBRP, let us take the following
example:
KEY: computer
Permutation size: 12
step1, fill() works as follows
array P holds first the ASCII code of the input

99 111 109 112 117 116 101 114

 Then values will be changed to the following

210 220 221 229 233 217 215 99 4 30 431 439 443

Finally, P will hold the following values

6 4 5 1 5 1 11 3 10 11 7 11

 In step2, the repeated values are examined and
replaced with zero and this is done by the function
eliminate(). Now P looks like

6 4 5 1 0 0 0 3 10 0 7 11

 Finally, the function fill() replaces all zero values
with the missing values in P in order to get the final
permutation P.

6 4 5 1 8 2 9 3 10 12 7 11

Application: Permutation is used for encryption. Shiho
and Serge[15] stated that block cipher can be considered
as an instance of a random permutation over a message
block space. In block cipher, permutation is used to
rearrange a message block. This permutation needs to
be random and secret. I have built the method KBRP
that provides randomness and secrecy. Randomness is
available since producing the permutation is completely
depending on the secret key and each key generate one
permutation for a given permutation size. Secrecy of
permutation is comprised in the generating way.
Permutation is used in block cipher as a mapping
function that maps the elements of a message block in
its original position into a new position.. For example, a
permutation, P, of size 4 has four elements P[1], P[2],
P[3], and P[4] whose vales are 3,4,1, and 2
respectively. Any message block M of size 4 can be
rearranged according to the permutation P. this
mapping is shown in Fig. 1.

Fig. 1: Mapping message M with permutation P

 Mapping reflects the relation between original
position and destination position of the message block.
This relation should be weak for the reason of the

J. Computer Sci., 2 (5): 419-421, 2006

 421

difficulty of knowing or guessing the mapping
(permutation). For this reason, I propose a test for the
generated permutation and the sequence set one to
block size (original positions of message block). This
test is the correlation coefficient test (ρ), whose
accepted values are |ρ| < 0.5; otherwise, the
permutation can be easily changed by making a one
right shift and then compute new correlation. Right
shift continues until we get the proper correlation value.
Fig. 2 shows the mapping for the permutation generated
in our illustrative example, P, and then we make one
right shift to get a new permutation, P1. These
permutations are

P

6 4 5 1 8 2 9 3 10 12 7 11

P1

11 6 4 5 1 8 2 9 3 10 12 7

Correlations for P and P1 are 0.587413 and 0.20979
respectively.

Mapping

0

2

4

6

8

10

12

14

D
es

te
na

tio
n

po
si

tio
n

P 6 4 5 1 8 2 9 3 10 12 7 11

P1 11 6 4 5 1 8 2 9 3 10 12 7

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 2: Mapping two permutations into original position

CONCLUSION

 This study introduced a new approach for
generating permutation. This approach depends on
using a specific key and size in order to cover the
randomness and secrecy properties for permutation.
This approach is intended to use permutation in block
cipher; therefore, it is suggested that a statistical test
can be used to consider the permutation for the block
cipher. The weak correlation coefficient reflects the
weak relation between the original position of an
element in a message block and the destination
position. In this paper the new "KBPR" method is
applied with the key "computer" and size = 4.

The correlation test showed a value greater than 0.5;
therefore, the permutation was changed by making a
one right shift to obtain a new one. The modified
permutation was tested and the correlation becomes less
than 0.5 which is considered as a weak relation.

REFERENCES

1. Uspensky, J.V., 1937. Introduction to Mathematical

Probability. New York, McGraw-Hill, pp: 18.
2. Gallian, J.A., 2002. Contemporary Abstract

Algebra. 5/e, Houghton Mifflin, Boston JCSC, 19:
3 (Jan. 2004).

3. <http://mathworld.wolfram.com>
4. Sedgewick, R., 1977. Permutation Generation

Methods. Comput. Surveys, 9: 137-164.
5. Heap, B.R., 1963. Permutations by Interchanges.

Computer J., 6: 293-294.
6. Skiena, S., 1990. Permutations.§1.1 in

Implementing Discrete Mathematics:
Combinatorics and Graph Theory with
Mathematica. Reading, MA: Addison-Wesley, pp:
3-16.

7. Ives, F.M., 1976. Permutation enumeration: Four
new permutation algorithms. Communications of
the ACM, 19: 68-72.

8. Johnson, S.M., 1963. Generation of Permutations
by Adjacent Transpositions. Math. Comput., 17:
282-285.

9. Richard, D., 1964. Algorithm 235: Random
permutation. CACM, 7: 420.

10. Ord-Smith, R.J., 1971. Generation of permutation
sequences. Comput, J., 14: 136-139.

11. Ord-Smith, R.J., 1970. Generation of permutation
sequences. Comput, J., 13: 152-155.

12. Shadan, P., 1961. Permutation ordering and
identification. Math. Mag., 34: 353-358.

13. William, C., 2004. Indexing permutation. Comput,
J., 19: 296-300.

14. Hussain, S., 1998. Dynamic generation of
permutation from a string of bits. Proc. SCCA'98,
Applied Science University, Jordan, 21-22: 158-
160.

15. Shiho, M. and S. Vaudenay. Comparison of
Randomness Provided by Several Schemes for
Block Ciphers.
http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3
/papers/34-smoriai.pdf

