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Abstract: In this study we propose a framework and a combined temporal partitioning and design 
space exploration method for run time reconfigurable processors. Our objective is to help designers to 
implement an algorithm in limited FPGA area resources while respecting the execution time constraint. 
The algorithm to be implemented is represented by a task graph with different implementation 
alternatives (design points) for each task. We study the effect of hardware resources limitation in the 
choice of the algorithm implementation design point. The proposed method is based on an heuristic 
technique which consists on combining temporal partitioning and task design points selection to obtain 
solutions that satisfy the imposed constraints.  
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INTRODUCTION 

 
 With today’s deep sub-micron technology, the 
state-of-the-art FPGA have exceeded 10 million system 
gates, allowing for multimillion gates FPGAs operating 
at speeds surpassing 400 MHz. Many designs, which 
previously could only achieve speed and cost of density 
goals in ASICs, are converting to much more flexible 
and productive reprogrammable solutions. The major 
developments in FPGA logic density, speed, packaging 
etc. have made implementing a system of processor/s, 
IP blocks, and user logic in an FPGA (System On a 
Programmable Chip: SOPC) a possibility. This 
technology is currently being used for the acceleration 
of a wide variety of applications on a large number of 
systems. It has evolved so much that the real-time 
aspect is not the only objective of the designer[1]. It has 
allowed the association of the flexibility and the 
specificity. Several applications can be realized by 
specialized architectures by simply configuring the 
FPGAs each time the FPGA-based board is supplied.  
 With the advent of new device architectures and 
new software tools, the interest in Run-Time 
Reconfiguration (RTR) or dynamically reconfiguration 
logic has increased. This concept has introduced several 
advantages. It helps the designer to optimize his 
implementation by increasing the functional density of 
the FPGA coprocessor. It offers the possibility of 
sharing in time the available resources in the FPGA 
between the different tasks of an application. This can 
be accomplished by using either total or partial dynamic 
reconfiguration. This later allows the configuration of a 
part of an FPGA design to change while the circuit is 
running. The AT40K40 FPGA family of ATMEL 

allows the reconfiguration of any area of the component 
by modifying the SRAM configuration contents[1]. 
Actually, Xilinx offers this technology for his more 
recent families such as the Virtex-II Pro FPGAs[2-4]. 
 In this study we propose a method for efficient 
management of a given FPGA area resources for a 
particular algorithm by exploiting the dynamic 
reconfiguration for possible use in SOPC. The proposed 
method consists in combining temporal partitioning 
techniques and design points selection of the different 
tasks constituting the algorithm. We aim to resolve the 
temporal partitioning problem for a given application 
while considering the characteristic of multi design 
point of each algorithm task. This can be very useful for 
possibly variable resources available on the FPGA 
when adding a new service or an update[5]. By using 
different alternatives for the algorithm tasks we 
increase the chance to meet the application constraints. 
In fact choosing the best design point for each task may 
not necessarily result in the best overall design. This 
depends on the architectural constraints and the 
dependency constraints among the tasks[6]. 
 
State of the ART in the dynamic reconfiguration 
domain: In literature a lot of interest was given to the 
dynamic reconfiguration and the opportunities given by 
the new FPGA technologies. Works in this field aim To 
reduce the difficulty in managing the dynamically 
reconfigured application and to provide a reliable 
implementation by developing a set of tools and 
associated methodologies addressing many issues 
related to the Dynamic Reconfiguration such as: 
Automatic partitioning of a conventional design, 
Specification of the dynamic constraints, Verification 
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of the dynamic implementation through dynamic 
simulations, Automatic generation of the configuration 
controller, etc.  
 In[7-9] the FSS (FPGA Support System) 
environment which is developed at Manchester 
University is represented. It facilitates the execution of 
hardware-based tasks on a dynamically reconfigurable 
FPGA. It supports the placement, execution and 
removal of blocks on the FPGA. A framework for the 
Design and Implementation of Dynamically and 
Partially Reconfigurable Systems “PaDReH” is 
proposed in[10,11]. It is presented with a design flow 
including partitioning, scheduling and validation. 
Papers[12,13] are related to the integrated design system 
called SPARCS (Synthesis and Partitioning for 
Adaptive Reconfigurable Computing Systems) which is 
developed in the ECECS Department at Cincinnati 
University. It aims to automatically partitioning and 
synthesizing designs for reconfigurable boards with 
multiple field-programmable devices (FPGA). The 
system contains a temporal partitioning tool, a spatial 
partitioning tool, and a high-level synthesis tool. In[14] a 
run-time reconfiguration system for FPGA computing 
resources is proposed; System behaviour and 
architecture are represented as a problem graph, and an 
architecture graph, respectively. The Model-Integrated 
Development Environment for Adaptive Computing 
(MIDE) project of Vanderbilt University[15] has as goal 
to develop high-level system design tools for 
implementing dynamically reconfigurable systems 
using adaptive computing technology. It is aimed at 
embedded systems of weapons like missile guiding 
systems. It uses DSP processors coupled to Virtex 
Xilinx FPGAs. The Berkeley Reconfigurable 
Architectures, Software, and Systems (BRASS) project 
of Berkeley University has proposed SCORE (Stream 
Computations for Reconfigurable Execution)[16], a 
computation model based on the organization of 
reconfigurable systems around the virtualization of 
three main hardware concepts: paged reconfigurable 
hardware, page communication through the use of 
streams, and storage. The Dynamically Reconfigurable 
Hardware Research at Bournemouth University[17,18] 
has proposed the DYNASTY tool, which is a generic 
CAD framework for research in the area of 
reconfigurable system design techniques and 
methodologies. 
 The Specific action « dynamically reconfigurable 
Architectures » of the CNRS (National Center of 
Scientific Research in France) Multi-field themes 
network on SOC provides three main research projects 
in dynamic reconfiguration: ARDOISE, DART and 
DNODE[19]. In difference to ARDOISE, DART and 
DNODE are note based on the use of the dynamically 
reconfigurable FPGA. ARDOISE propose a 
dynamically reconfigurable Architecture dedicated to 
embedded image and signal processing. In[1], an image-
processing application, image rotation, that exploits the 

FPGAs dynamic reconfiguration method is presented. It 
shows that the choice of an implementation, static or 
dynamic reconfiguration, depends on the application 
nature. Paper[20] describes Implementation of 
JPEG2000 Arithmetic Decoder using Dynamic 
Reconfiguration. The target architecture is ARDOISE. 
Works about Dynamic Reconfiguration methods and 
applications presented in[21-23] are also related to the 
ARDOISE architecture. 
 Numerous algorithms for partitioning, scheduling 
and placement of tasks for reconfigurable computing 
devices are proposed in the literature. The paper[24] 
treats in addition to the partitioning, the scheduling of 
the tasks. The advantage of the approach presented in 
this study is the capability to model communication 
between nonadjacent on-chip configurations and 
multiple levels of logic. Other more recent works were 
interested in depth to the time placement problem[25-30]. 
The execution of a task on the reconfigurable device 
leads to the online placement problem, for which a 
method based on free rectangles management and 
heuristics fitting has been proposed in[28] and improved 
in[30,31]. In[25] the authors modeled the time placement as 
a three-dimensional problem. A task is represented by a 
cube in which the X and the Y coordinates represent the 
width and the height of the task in the given FPGA. The 
Z coordinates represents the time at which the task will 
be mapped in the FPGA.  
In spite of the variety and the importance of the state of 
the art, this field remains very active. Many problems 
remain without efficient solutions or have yet to be 
solved and the academic community continues the 
suggestion of new techniques and methods to better 
exploit the dynamic reconfiguration in different 
applications and systems. The handled problems are 
due to new applications needs, environment and 
technology constraints.  
 
Motivations and problem formulation: The actual 
systems for multimedia services have demanding 
applications that can be driven by portability, 
performance, cost, consumption and flexibility. A key 
challenge of mobile computing, for example, is that 
many attributes of the environment vary 
dynamically[32]. The key issue in the design of portable 
multimedia systems is to find a good balance between 
flexibility and high-processing power on one side, and 
area and energy-efficiency of the implementation on the 
other side. the rapid evolution of multimedia services 
and their quality necessitates the use of dedicated 
electronic systems that assure a big level of flexibility 
by giving the possibility for updates and new services 
addition while respecting the application constraints. 
Dynamically reconfigurable systems, usually based on 
dynamically reconfigurable FPGA, present a very 
interesting solution for such problems. In fact, with the 
development of new height performance FPGA families 
it becomes possible to achieve high performance in 
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term of latency at relatively low cost in term of used 
hardware resources. Our research interest is related to 
SORC (system on reconfigurable chip) conception and 
Algorithm Architecture Adequation (AAA) for 
multimedia applications[33]. Resolving problems related 
to the us of dynamic reconfiguration in SOPC is one 
important issue in our work .  
 Critical treatments of a given application are 
usually executed by hardware modules. By considering 
the application constraints and the available hardware 
resources the designers have to choose between 
dynamic reconfiguration and static configuration (or 
ASIC implementation). In this study we consider that 
we have limited reconfigurable hardware resources that 
should be exploited for the implementation of a given 
algorithm. The resources limitation can be caused by 
global consideration related to the system and the 
application constraints or for the fact that the system 
already exists and no extensions are possible whereas 
adding a new service or an update or modification of 
existing service is required (Fig. 1:). 
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Fig. 1: A SOC with run time reconfigurable hardware 

resources 
 
 Our objective is then to be able to run our 
algorithm in this limited FPGA area resources while 
respecting the execution time constraint. The main idea 
consists in considering different implementation 
alternatives for the tasks set of the algorithm to be 
implemented and combining the temporal partitioning 
and tasks design points selection to obtain a solution 
satisfying the constraints (Fig. 2). 
 Different implementation alternatives are possible 
for the same task. They suggest different area-time 
tradeoff points. These different implementations are 
design points in the design space of a task. Choosing 
the best design point for each task may not necessarily 
result in the best overall design. When combining 
several design points we can satisfy different 
application constraints by using an adequate static 
selection method[5] to choose the convenient 
combination of tasks.  

 Exploring a very large design space can be too 
computationally expensive. To limit the number of 
candidate design points in our work we consider tasks 
with average or high granularity. Design space 
exploration of tasks does not concern the operators 
level.  
 The first step in our method is the Static Estimation 
(SE). This step can help the designer to choose between 
static and dynamic implementation. It also gives 
important information that can be used to take decisions 
in the partitioning algorithm progress. In the following 
paragraphs we represent the proposed method and the 
associated tool which integrate the different techniques 
used in this method and support the required input and 
output format.  
 
Static estimation: The principal input of the proposed 
method is a tasks graph with different area and latency 
for each task. Figure 3 represent two possible methods 
to enter the task graph and parameters of the different 
tasks: graphical method and text based method. In this 
figure the number “2” written near the first task means 
that the correspondent task has for the moment two 
design points. Design points can also be introduced by 
using a text editor. Design points are composed of three 
parameters: area, time and consumption. In this work 
we interested only in the two first parameters.  
 The static estimation is done according to an 
iterative process based on a technique of unconstrained 
scheduling. It gives important information about static 
realization. In a first step the algorithm determines the 
As Soon As Possible (ASAP) and the As Late As 
Possible (ALAP) schedules of tasks. In a second step 
the mobility of each task is calculated. The mobility of 
a task (Ti) is calculated as follow: 

Mobility (Ti) = ALAP (Ti) - ASAP (Ti) 
 Between the two scheduling limits ((ASAP) and 
(ALAP)) other schedules can exist. Their number (NM) 
is given by:  
 ∏

=
+=

Nt

i

iTmobilityNM
1

)1)((  ; Nt: number of tasks 
 The possible schedules extraction is based on an 
adequate dependency matrix representing the tasks 
graph. The algorithm excludes the invalid schedule 
which does not respect the dependency constraint by 
reasoning on the dependency matrix values and their 
location in the matrix.  
 The proposed framework shows the ASAP and 
ALAP scheduling results and the different possible 
schedules (Figure 4). It also allows calculation of the 
limit values of area (Amin, Amax : minimum area, 
maximum area) and latency (Lmin, Lmax: minimum 
latency, maximum latency) when using the best area 
design points or the best latency design points of each 
task . 
 Figure 4 represent an example of a task graph and 
the scheduling results for the design points presented in  
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Table 1: Example of design points for a task graph 
T1 (ns,Clb) T2 (ns,Clb) T3 (ns,Clb) T4 (ns,Clb) T5 (ns,Clb) T6 (ns,Clb) T7 (ns,Clb) 
(840,162) 750,128 860,276 875,174 752,220 820,196 650,185 
(560,182) 500,138 700,320 625,235 620,325 560,356 525,235 
(420,276) 375,180 480,400 375,336 465,385 435,396 385,325 
(375,380)       
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Fig. 2: Principle of the proposed method 
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Fig. 3: User interface to enter the tasks graph 
 

 
 
Fig. 4: A screen shot of the scheduling results for the example represented by Table 1 
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Table 1. The mobility of each task of the example is 
given by Table 2. The final scheduling result is 
represented by Table 3.  
 
Table 2: Mobility of tasks for the example represented by Fig. 4 
Task T(1) T(2) T(3) T(4) T(5) T(6) T(7) 
Mobility 0 0 0 0 1 1 1 

 
The proposed partitioning method: The proposed 
method consists in modifying the partitioning algorithm 
presented in[34] to take in to account the different design 
point of tasks constituting the algorithm to be 
implemented. The input of the new partitioning 
algorithm is tasks graph with different area and latency 
for each task, area constraint, memory constraint and 
the reconfiguration time. The output of the algorithm is 
a set of time partitions. The tasks of each partition are 
executed when the partition is mapped on the 
reconfigurable device. We aim to obtain the optimal 
number of temporal segments and to place each task in 
the appropriate partition while satisfying area, memory 
and time constraints. The latency reduction is 
performed by selecting the appropriate design points in 
each algorithm iteration. The different steps of the 
proposed method are summarized by Fig. 5.  
 To obtain the optimal number of partitions the 
algorithm preserves the minimal number of partitions 
for which the area and memory constraints are satisfied 
(Nmin) And verify the possibility to obtain a solution 
that satisfies the time constraint. To determine Nmin the 
algorithm starts by calculating the theoretical minimal 
number of time partitions Nthmin, which is given by :  

)/)))((((
1

minmin �
=

=
Nt

i

ci ATAceilNth  

Nt :  number of tasks in the task graph 
Ti :  task number I 
A (Ti): area of task Ti 
(A (Ti))min: the minimum area of task Ti among the 

different design points of Ti 
Ac:  area constraint (FPGA area) 
ceil is a C++ function. Ceil (x) returns a value 
representing the smallest integer that is greater than or 
equal to x 
 If area and memory constraints are satisfied for at 
least one possible scheduling, Nmin is equal to Nthmin, if 
not we increment the number of partitions. 
 The partitioning process for a specified number of 
partition (N) gives as a result the possible schedules 
that respect the memory and area constraints. The 
constraints test allows identification of the best solution 
that respect the time constraint. If no solution satisfies 
the time constraint a design points selection is 
performed to improve the latency of each partition. The 
constraints test will be applied for the obtained 
solutions. If, also, no satisfactory solution is obtained N 
will be  incremented  and we repeat  the  different  steps  
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Fig. 5: Flow chart of the proposed method 
 
for N = N+1. Before repeating the described steps a test 
called “iteration test” is done. Its objective is to verify if 
the actual number of partitioning (N) allows a feasible 
and improved solution to be obtained. As a simple 
condition to verify the feasibility is that N must be 
smaller than Ntmax which represent the theoretic 
maximal number of partitions. Ntmax is obtained by:  

max ( / )t t TN floor C R=  
Ct:  time constraint 
RT:  reconfiguration time 
Floor is a C++ function. Floor(x) returns a value 
representing the largest integer that is less than or equal 
to x 
 
 Ntmax represents a very coarse criterion. In our 
algorithm we consider a better criterion definition based 
on the time left for the execution of the different tasks 
for a given number of partitions (N). This execution 
time is defined as: 

T t TE C R N= − ×  
 When the number of partitions increases using 
design points with a higher area becomes possible and a 
higher speed can be obtained, but the available 
execution time, ET, decreases. Before studying 
solutions for the actual number of partitions we have to 
verify if ET is sufficient to execute tasks. In this step the 
Static Estimation results are useful.  
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Table 3: Scheduling results for the example represented by Fig. 4 (S(i) : scheduling solution N°i; Ctr (i): control step N°i) 
 Ctr 1 Ctr 2 Ctr 3 Ctr 4 Amin L max Amax L min 
S 1  1 2-5 3-6-7 4 1341 3327 2402 1695 
S 2  1 2-5 3-7 4-6 1341 3327 2402 1755 
S 3 1 2 3-5-6 4-7 1341 3325 2402 1615 
S 4 1 2 3-5 4-6-7 1341 3325 2402 1665 

 
Partitioning process: In the partitioning process for a 
given number of partitions (N) we always start with the 
minimum area design point for each task and we 
identify the possible schedules that respect the memory 
and area constraints. The obtained schedules must 
respect the dependency constraint: a task Ti on which 
another task Tj is dependent has to be placed either in 
the same partition as Tj or in an earlier one.  
 The reconfiguration time and the area, memory and 
time constraints are introduced by using the graphical 
interface represented by Fig. 6.  
 

 
 
Fig. 6: Graphical interface to enter the user constraints 
 
 To respect the area constraint the sum of area costs 
of all the tasks mapped to a temporal partition must be 
less than the area constraint (Ac):  
      A (Pi) ≤ Ac 
A (Pi): area of partition Pi. It is calculated as following: 

( ) ( ), .i i j j
j

A P A T= Φ�  

 
with: , j   i1    if   i j T PΦ = ∈  

  , j   0   if    i j iT PΦ = ∉  
 
 
 Data transfer between partitions take place due to 
dependent tasks belonging to different partitions (figure 
7). This intermediate data needs to be stored between 
partitions and should be less than the memory 
constraint (Mc). For a given partition Pi we have to take 
into account only the available memory resources (Ma) 
which is calculated by: Ma = Mc - Mu 
 (Mu) represents memory resource used by previous 
partitions of Pi to communicate with subsequent 
partitions of Pi. Data used for this communication must 

still be saved until the execution of the concerned 
partitions. In Figure 7 the DATA (D2) will be used by 
the partition P3. For the memory constraint of partition 
P2 we have to subtract the necessary memory resources 
from D2. 
 

 
 
Fig. 7: Data transferring between partitions 
 
 The Partitioning problem resolution starts by 
extracting a dependency vector (DV) from the task 
graph as defined in[34]. In a second step, the algorithm 
builds the dependency matrix D. The matrix D has as 
dimension N(lines) x Nt( columns); with N represent 
the number of partition and Nt represent the number of 
tasks. From this matrix, the algorithm extracts the 
possible schedules of tasks while respecting the 
dependency constraints. 
 
Design point selection: To be able to meet the latency 
constraint the design point’s selection has as objective 
to improve the latency of each partition by exploring 
the different design points of each task constituting the 
considered partition. For a given partition the selection 
problem can be formulated as represented in figure 8. 
We aim to obtain the optimal latency while respecting 
the area and memory constraints.  
Design points of each task is represented in the 
following form:  

( ) ( ) ( )1 1 2 2
1 1 1 1 1 1( ) , ( ) , ( ) , ( ) ,..., ( ) , ( )n nA T L T A T L T A T L T ,  

A(Ti)
j: area of the design point N° j of task i 

L(Ti)
j: latency of the design point N° j of task i 

 
 Area constraint is calculated by considering the 
sum of tasks area in the considered partition. The 
latency of a given solution depends on the execution 
order of tasks (sequential and parallel) and their 
dependency (Fig. 9). It will be the maximal latency 
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among all the paths of the task graph mapped to the 
partition. 
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Fig. 8: Design points selection 
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Fig. 9: An example of tasks dependency  
 
The latency of partition Pi (L (Pi) ) is given by:  

( ) ( ){ }jji
j

i TLPMaxPLat .,Φ=   

with ( ) ( ) ( ), ,. .j i k j k k j
k j

LP T L T L T
≠

= Φ Φ +�   

Where 
 ∅ij = ∅ik =1, if the task (Tj) respectively the task (Tk) 
belongs to the partition (Pi), else ∅ij = ∅ik = 0 
∅jk = 1, if the task (Tk) depends on the task (Tj), else 
∅jk = 0.  
For the example represented by figure 9, the latency is 
calculated as follows:  

1 3 2 4( ) [( ( ) ( )) , ( ( ) ( ))]iL P M ax L P L P L P L P= + +  
We use the same principle to calculate the global 
latency for a given solution (L(Sn)) :  

�
=

=
N

i
in PLSL

1

)()(  

THE PARTITION RESULT REPRESENTATION 
 
 The final result is a set of partition of tasks. Each 
task takes an appropriate design point so that the 
combinations of the different tasks according to the 
partition order correspond to a satisfying solution. The 
final result can be represented graphically as shown in 
Fig. 10. 
 

 
 
Fig. 10: Graphical representation of the final solution 
 

CONCLUSION 
 
 In this study we have described a method and a 
framework that allows facilitating the implementation 
of a given algorithm in a limited run time 
reconfigurable FPGA area. The proposed method 
consists on combining temporal partitioning and a 
selection of task design points to obtain constraint 
satisfying solutions. This is based on the fact that 
choosing the best design point for each task may not 
necessarily result in the best overall design as this 
depends on the architectural constraints and the 
dependency constraints among the tasks. A dedicated 
framework was designed to implement the method with 
graphical interface to be more helpful for the user.  
 Our work currently concerns different aspects that 
aim to improve the effectiveness of the results and to 
concretize the use of DR and the proposed methods in 
several applications. In our work group we are 
interested in the multimedia field represented mainly by 
content based video indexing applications that can be a 
very important application domain for the RD. To 
improve the obtained results of the proposed methods 
for the DR it is necessary to take into account the 
internal structure of the new FPGA devices in terms of 
internal memory and resources and their dispositions. 
This depends on the FPGA family and characteristics 
that  will  be  used  as   a  supplementary  input  for  our   
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methods. It will represent additional conditions to be 
taken into account for result reliability improvement. 
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