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Abstract: The advent of widespread distributed computing environment, such as information systems 
and computational grids computing has enabled a new generation of applications that are based on 
seamless access, aggregation and interaction. The dramatic side of the story is a strong presence of the 
plea that those decentralized Grids are potentially affected by a number of primitives derived from their 
anatomy, in that, they are inherently large, complex, heterogeneous and dynamic, globally aggregating 
a large number of independent computing and communication resources. This has clearly exposed an 
essential exigency for a vital change to how these applications are developed and managed, which has 
motivated researchers to consider other techniques used by biological systems to deal with such 
problems. This is referred to as autonomic computing, which is defined by Ganek and Corbi[1] “… as a 
collection and integration of technologies that enable the creation of an information technology 
computing infrastructure for the next era of computing—e-business on demand …”. This study 
presents a computational model to support just-in-time and on-demand services for autonomic 
computing. Service reservation and job schedule systems are employed in this model to estimate the 
required services in advanced. Intelligent classification is utilized to cluster consumers into groups 
sharing the same behaviour and hence offer the required services for each consumer in advance, 
according to the group’s usage pattern of application services. To this end, a machine learning 
middleware service based on Self-Organizing Maps (SOM) is designed, developed and implemented to 
carry out the intelligent classification for the autonomic computing. A case-study scenario of intelligent 
connected homes is demonstrated in this study to show the usability of such system. 
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INTRODUCTION 
 
 Over the coming years, many are anticipating grid-
computing infrastructures, utilities and services to 
become an integral part of the future socio-economical 
fabric. Though, the realization of such a vision will be 
very much affected by a host of factors including; cost 
of access and ownership, reliability, dependability, 
interpretability, the ubiquitous nature and security of 
grid services. Many commentators contend that the 
autonomic computing vision[1] will offer a crucial 
paradigm shift to delegating vital functions of systems’ 
self-management including: configuration, healing, 
tuning and protecting to the software itself, along with 
curbing the ever increasing complexity.  
 In particular, autonomic computing research is 
exploring and developing models of bio-inspired 
taxonomies to support distributed systems’ lifetime 
management and unpredictability by delegating many of 
the system’s management and maintenance tasks to the 
software itself including: resource management, job 
scheduling, services failure prediction, load-balancing, 

QoS, services reservations and resources discovery and 
availability[1-4].  
 A prevailing design model of autonomic computing 
systems is one of a model-based architecture with roots 
in applied control theory, for which control and 
autonomy are encoded as rules. Such rules are generally 
embedded in meta-software systems (agents)[5] 
exhibiting the advocated autonomic systems’ 
capabilities such as; self-management, self-
optimization, self-tuning, self-organizing, self-
configuration, self-tuning and/or self-healing.  
 To this end, autonomic computing is expected to 
perform the intelligent behavior of predicting the 
patterns for the embedded environment, taking into 
consideration the boundaries (rules) and nature of the 
environment applications. Therefore, unsupervised 
machine learning techniques are here proposed to be 
used to develop and refine a given target system’s 
operational regulation (rules). Hence, this study will 
introduce the motivations for a machine learning utility 
and associated middleware to capture and evolve 
knowledge models (sources) from the infrastructure 
operating systems. Such knowledge models can then be 
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used by our developed autonomic middleware control 
services to regulate (govern) a target software system. 
In particular, the study will focus on the presentation of 
an architectural model and machine learning 
middleware services. As an example, the Self-
Organising Maps (SOM) for feature extraction, 
classification and clustering is applied to the on-demand 
home-networked appliances scenario, in which the 
SOM service is used to classify types of consumers in 
accordance to each of their respective usage models, 
which are expressed as classes/features and services 
dependencies. The generated models are invoked by 
self-managing infrastructure middleware services in 
support of an on-demand and Just-in-Time deployment 
and activation of required services. This is conducted in 
line with learnt/extracted usage models and the baseline 
architecture of specified services federations 
(assemblies) and discovering and activating additional 
services on-demand.  
 
Motivations and related work: Many applications of 
the autonomic computing model in grid computing have 
been widely reported by major IT players including; 
Sun Microsystems, Hewlett-Packard and IBM as a way 
forward for a highly automated computing systems[1]. 
This takes the form of creating both hardware and 
software that can diagnose and solve network problems, 
thus improving high-availability, while reducing IT 
operation costs[1].  
 In particular, autonomic computing research is 
exploring and developing models to hide distributed 
systems lifetime management. This includes resource 
management, job scheduling, services failure prediction, 
load-balancing, QoS and services reservation and 
discovery. A prevailing design model of autonomic 
computing systems is one of a model and goal-based 
approach, where the rules are developed through a 
given domain analysis, data mining and/or heuristics. 
 An autonomic computing standard model has been 
well-defined by many researchers[2-5], which consists of 
four units inside the knowledge system and two units 
(sensors and effectors) outside the knowledge system 
responsible for collecting data and execute an actions, 
as shown in Fig. 1. The four units inside the knowledge 
system are:  
*  The monitor function provides the mechanisms that 

collect, aggregate, filter and report details collected 
from a managed resource. 

* The analyze function provides the mechanisms that 
correlate and model complex situations.  

* The plan function provides the mechanisms that 
construct the actions needed to achieve goals and 
objectives. The planning mechanism uses policy 
information to guide its work. 

* The execute function provides the mechanisms that 
control the execution of a plan with considerations 
for dynamic updates. 

  
Fig. 1: Autonomic computing model[2-5]   
 
Much research is now underway, adopting the use of 
machine learning to support a range of autonomic 
behavior including other general QoS improvements. 
For instance, Chen et al.[6] report on their application of 
the C4.5 decision tree algorithm and data mining to 
categorize causes of failure in large Internet sites such 
as eBay. Candea, et al.[7] present an Automatic Failure-
Path Inference (AFPI) as an application-generic and 
automatic technique for dynamically discovering the 
failure dependency graphs of componentized Internet 
applications. Chen et al.[8] demonstrate a new approach 
in using machine learning to manage the failures and 
evolution in large, complex distributed systems using 
runtime paths. 
 As will be discussed in the following sections, our 
study uses a Self-Organizing Maps (SOM) algorithm to 
underpin autonomic middleware service for on-demand 
service reservation and provision. This SOM-based 
classification maps users’ to networked services 
requirements, which is then used by the middleware to 
anticipate service requests and starts reservation of 
required services including their required dependencies. 
 
Just-in-time and on-demand grid services 
provisioning model: Grid services and applications 
necessitate a range of management processes for 
bridging the interaction between the consumers and 
services/infrastructures. In addition, such management 
processes are vital for hiding some of the system 
complexity from the consumers. Therefore, 
management processes manage the QoS in order to 
improve response time, fidelity, interpretability and 
reliability. Just-in-time and on-demand services are 
another way that management process can be utilized to 
reduce the interaction between the users and the 
system’s resources by adjusting the resources to request 
and prepare services prior to the users’ requests. For 
such systems, the use of autonomic computing services 
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is essential in order to perform the automated 
management processes. Autonomic services are 
proposed to be run inside the middleware as one of its 
core functions for the Open Grid Services Architecture 
(OGSA). 
 In this study, we focus on a practical scenario of 
using machine learning middleware services to support 
autonomic computing in order to anticipate users’ 
requirements for networked services and appliances. 
Intuitively, this expected to reduce the unnecessary and 
redundant invocation of processes and hence reduces 
the response time. A service reservation is much more 
useful for the management of an advanced on-demand 
service. Therefore the middleware needs to be more 
specific in the provision of the services required. To 
achieve this goal, clustering and classifying users 
according to their usage patterns are suggested. An 
unsupervised learning technique is adopted by this 
approach in order to perform the intelligent 
classification. This method of classification is much 
applicable in our case, where the target of hypothesis is 
unknown until the final trained model is built. Next 
sections describe the On-Demand Services Model.  
 
On-demand service components: On-Demand Service 
(ODS) requires integration of diversity of components 
to perform the demanded jobs. These components are 
shown in Fig. 2, which can be summarized in the 
following points:  
* Consumer: This represents software or human agent 

requesting a given set of the resources.  
* Request services agent: This manages and handles 

all consumers’ requests. A semantic support for 
meta-model sharing between consumer and the 

system is used to support open standard 
interoperation.  

* Discovery service: This supports services discovery 
within a given (virtual or physical container (host). 
This provides service for request services container 
and job schedule service.  

* Monitoring service: This monitors the consumer 
behavior, activities and usage. The collected 
information is provided to the autonomic 
computing unit for intelligence processes. 

* Autonomic computing: This unit offers an 
intelligent layer to the ODS system. This can 
provide self-organizing, self-configuration, self-
protection and self-configuration capabilities.  

* Group: This defines a number of consumers or 
members which share the same behavior or 
patterns.  

* Service reservation service: This queue and handles 
all the required services for a given consumers as 
soon as they are login prior to services requests. 
The recorded information includes list of required 
services, time of operation and contract 
information. This unit forwards this information to 
job schedule service. 

* Job schedule service: This unit schedules the 
request of services, according to the received 
information from services reservation unit. The 
requested services or resources are passed to the 
discovery unit at the required time of invocation.  

* Resource container: This contains all the deployed 
resources from services and infrastructures by the 
providers.  

 

 
Fig. 2: On-demand service 
On-demand service scenario: An advanced on-
demand services scenario starts by sending a request 
from the consumer, as shown in the UML activity 
diagram in Fig. 3. The middleware scrutinizes the status 
of the consumer, which can be defined by the ODS as a 
new consumer or registered consumer. The ODS system 
is considered as one of the middleware services. If the 

consumer status is new, then the process can be 
described in the following points:  
* System analyzes the request and sends it to the 

discovery service.  
* A discovery service in turn begins the discovery 

process within target resources container.  



J. Computer Sci., 2 (6):521-527, 2006 

 524 

* After finding the demanded services, the necessary 
services’ invocation processes will be initiated. 

* The result of the requested task will be presented to 
the consumer as results or actions.  

 At the same time the monitoring service is working 
to record all consumers’ demands and activities in order 
to save it in the consumer profile, inside the logger as 
shown in Fig. 3. This information is passed to the 
autonomic computing service inside the middleware 
system. The autonomic computing here is responsible 
for performing an intelligent classification process. The 

classification service depends on the consumer activity, 
behavior, pattern, and service usage to classify them to 
one of the classified groups. The classified group is 
clustered at the first run of the system according to the 
common parameters between the consumers and then an 
adjustment process starts to adjust the groups. The 
group indicates the shared behavior or activities 
between the consumers in the same group. After the 
classification process for the new consumer completes, 
it is then considered a registered consumer. 

 

 
Fig. 3: ODS-UML activity diagram 
 
On the other hand, the system deals with the registered 
consumer as describe in the following points:  
* The middleware starts gathering the group 

information of the requested consumer. The consumer 
sends his group ID with his demands of the required 
services to help service reservation function to 
arrange the demanded services in advance.  

* The service reservation unit sends a request with all 
demanded services to the job schedule unit. This 
request consists of information regarding the time for 
executing each service, contract, service information 
and consumers’ information. 

* The job schedule service manages the execution of 
the consumers’ demanded tasks. This is done by 
scheduling the execution of each service. The job 
schedule service sends the demanded service to the 
discovery service to find and invoke the aimed 
process. On the other hand, the job schedule service 
provides the system with advanced information 
regarding the expected load on each service. This 
information is used to anticipate the load on the 

services. In this way, the system has the time to 
establish its plans, strategies and policies to overcome 
fault tolerance problems according to the overload. 
Load balancing, replication, mirroring and other 
methods can be used in solving such problems of fault 
tolerance depending on the information that is 
provided by the job schedule service. 

 
SOM implementation and outline SOM algorithm: 
The concepts of the SOM are out of the scope of this 
study and there are many references on the using of 
SOM in different applications[9-12]. The SOM toolbox 
for Matlab is an effective software tool for the 
visualization of high-dimensional data. It converts 
complex, non-linear statistical relationships between 
high-dimensional data items into simple geometric 
relationships on a low-dimensional display[12].  
 The SOM is initialized using either random or 
linear initialization. To train the map, SOM uses 
sequential or batch algorithms by using som_make 
function. The resulting visual map shows the 
neighbourhood between the neurons and the input 
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training samples updating the Best Matching Unit 
(BMU). The quantization error can be measured using 
som_quality function which supplies two measures: 
average quantization error and topographic error. The 
SOM model delivers logic decisions from the visual 
maps, benefiting from the labelling features in 
som_autolabel and som_addlabels functions, hence we 
can build a programming model using the SOM method 
and outputting decisions from calculating BMU for a 
given data vectors using som_bmus function and other 
related useful functions provided by the toolbox. 
 SOM classification comprises efficient, mostly 
accurate mean as a visual data analysis for the maps, 
While in our approach we have to reduce the role of 
administration to the minimum. Thus we opted to use 
other classification algorithms like K-Nearest 
Neighbourhood (KNN)[13], which is suitable for similar 
cases. A special MatLab function would implement 
KNN classifier using arbitrary distance matrix. Despite 
its sub optimality, the asymptotic performance of the 
NN rule is good and the rule is simple. Given a set of 
labelled training examples, T and an unseen test point x, 
computing the squared distance in the input space from 
x to each of the examples in T. Discarding all training 
cases, except for the K cases which are closest to the 
test point. The test point is assigned to the most 
numerous class amongst this K-NN. A probability 
distribution over classes is also easily constructed. The 
probability of class i (p_i) is simply specified by:  
p_i = n_i / sum_j { n_j}  
Where n_j is number of nearest neighbours in class j. 
KNN function is also supported in MatLab SOM 
Toolbox: 
 [C,P]=knn(d,Cp,[K]) 
Where  C: is a matrix of size N*K of integers 

indicating the class decision for data items 
according to the KNN rule for each K.  

  P: is a matrix of size N*k*K, which represent 
the number of prototypes for each classifier  
d: is an N*P matrix which is pre-calculated 
dissimilarity (distance matrix)  
Cp: is a Px1 vector that contains integer class 
labels, in our case (OMAR, …, YASIR)  

 
Case-study: just-in-time service provisioning for 
intelligent connected home scenario: To elucidate the 
idea of just-in-time and on-demand services based on 
user usage classification, a “connected home devices” 
scenario is adopted. The intelligent connected home 
machines or smart home devices are the next generation 
of home devices, which depend on local and remote 
services to be available on-time in order to generate a 
comfortable environment for users. In order to improve 
the usability and QoS of such technology, the system 
should provide services with a short response time. To 
achieve this, an ODS is suggested to be adopted in this 
scenario.  

 The scenario starts by training the machine learning 
service with users’ usage data. After the training phase, 
the machine learning service clusters the users into a 
number of groups depending on their usage. Then, the 
system is ready to receive information regarding the 
new users in order to classify him/her/it into one of the 
groups. In order to get such information, on-the-fly[14,15] 

sensors are utilized to collect information for the new 
users and store this data within the user profile inside 
the logger. The benefit after classifying the users to one 
of the existing groups is to anticipate the required 
services for each user according to the group behavior. 
These results are provided to the service reservation 
system with the required information as explained 
before. This system determines the required services, 
time of operation, required resources, dependency and 
other stuff, which is required to perform the demanded 
tasks. The expected services are sent to the job schedule 
service. The job schedule system in this stage is 
responsible for planning a timetable to execute the 
services, anticipating the load on each service and 
recover from fault conditions before occurrence by 
passing an alert to one of the fault tolerance services as 
shown in Fig. 4. 
 The Self-Organizing Map (SOM) is adopted in this 
scenario to carry out the classification process. SOM is 
selected since it is one of the unsupervised learning 
techniques. Such a technique is required in this case due 
to the absence of known target data. The data collected 
from the middleware repository is employed to feed the 
SOM services with the required data for classifying the 
user to one of the existing group.  
 

 
Fig. 4: Illustration of the connected home case study 
 
Results of SOM classification for connected home 
machine: The experiment was conducted using a .Net 
prototype, machine learning middleware service using 
the Matlab SOM library[9]. As illustrated by Fig. 5-8, 
the results represent classifications for different types of 
users and devices. Figure 5 shows many correlations 
between devices, which are obtained after the training 
phase which included 1000 input sample data and 10 
trainees. As shown in Fig. 5, a sample of these 
correlations can be summarized as follows: 
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* Lights and PlayStation II correlation  
* Video and Coffee Machine correlation  
* Video CD and Fans correlates  
* Vacuum cleaner and Washing machine correlation  
 Figure 6, represents U-Matrix distribution of labels 
for the connected home devices. Figure 7 shows a 
shaped U-Matrix with coloured regions exhibiting three 
clear clusters of the map. Figure 8, demonstrates the 
Probability Distribution Function (PDF) of the input 
vectors. The critical analysis of this approach depends 
on selecting and scaling the correct data for training the 
system, because using un-normalised data might 
produce inaccurate user classification. Therefore, 
selecting the adequate training data is the vital to get 
right classified model.  
 At runtime, the machine learning middleware 
service, along with the training data (user and device 
classification) can classify logged users according to 
known users (one of the seven classified regions). These 
classes specify the user types and their usage model, 
such as the device usage order and time of usage. This 
is used in this case study to guide the autonomic 
middleware services for service reservation and 
provisioning. 
 

 
Fig. 5: SOM visual classification 
 

 
Fig. 6: U-Matrix distribution of labels 

 

 
Fig. 7: U-map of SOM maps resulted data 
 

 
Fig. 8: Probability Distribution Function PDF of the 

input vectors 
 

CONCLUSION AND FUTURE WORK 
 
 Just-in-time and on-demand services for grid and 
planetary scale environments are presented in this study. 
Such services are adopted to improve the QoS, 
reliability and fidelity of the systems, along with 
reducing the interaction of the consumers with the 
system. Autonomic computing services are utilized in 
this case to perform the intelligent stuff inside the 
middleware for on-time and on-demand services. On-
Demand Services (ODS) model is described in this 
study depending on using service reservation, job 
schedule services and monitoring system.  
 Users’ classifications according to their usage are 
selected in this scenario to improve the performance of 
job scheduling and services reservation. Machine 
learning is utilized to perform the automated 
classification tasks. Due to the absence of classification 
targets an unsupervised learning technique is used in 
this case. SOM, as an unsupervised learning technique, 
is adopted to be used as a web service integrated with 
autonomic computing service for the OGSA. VS.Net 
and Matlab functions are used to develop the 
framework for the user classification process. This 
model is employed to predict the type and pattern of the 
new user. The goal of predicting the new user is to 
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determine the required services in advance. This assists 
in making the system plan, managing and controlling its 
resources to give better service and overcome the 
failure, due to overloading resources. The connected 
home scenario is adopted to demonstrate the idea of 
classifying users according to their device usage in 
order to show the potential of such system. 
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