
Journal of Computer Science 2 (6): 521-527, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Wail M. Omar, Faculty of Applied Sciences, Sohar University, Oman
521

Autonomic Middleware Services for Just-In-Time Grid Services Provisioning

1,2Wail M. Omar, 1A. Taleb-Bendiab and 1Yasir Karam

1Liverpool John Moores University, Liverpool, UK
 2Sohar University, Sohar, Oman

Abstract: The advent of widespread distributed computing environment, such as information systems
and computational grids computing has enabled a new generation of applications that are based on
seamless access, aggregation and interaction. The dramatic side of the story is a strong presence of the
plea that those decentralized Grids are potentially affected by a number of primitives derived from their
anatomy, in that, they are inherently large, complex, heterogeneous and dynamic, globally aggregating
a large number of independent computing and communication resources. This has clearly exposed an
essential exigency for a vital change to how these applications are developed and managed, which has
motivated researchers to consider other techniques used by biological systems to deal with such
problems. This is referred to as autonomic computing, which is defined by Ganek and Corbi[1] “… as a
collection and integration of technologies that enable the creation of an information technology
computing infrastructure for the next era of computing—e-business on demand …”. This study
presents a computational model to support just-in-time and on-demand services for autonomic
computing. Service reservation and job schedule systems are employed in this model to estimate the
required services in advanced. Intelligent classification is utilized to cluster consumers into groups
sharing the same behaviour and hence offer the required services for each consumer in advance,
according to the group’s usage pattern of application services. To this end, a machine learning
middleware service based on Self-Organizing Maps (SOM) is designed, developed and implemented to
carry out the intelligent classification for the autonomic computing. A case-study scenario of intelligent
connected homes is demonstrated in this study to show the usability of such system.

Key words: Autonomic computing, intelligent middleware, Self-Organizing Map (SOM), Grid

Computing

INTRODUCTION

 Over the coming years, many are anticipating grid-
computing infrastructures, utilities and services to
become an integral part of the future socio-economical
fabric. Though, the realization of such a vision will be
very much affected by a host of factors including; cost
of access and ownership, reliability, dependability,
interpretability, the ubiquitous nature and security of
grid services. Many commentators contend that the
autonomic computing vision[1] will offer a crucial
paradigm shift to delegating vital functions of systems’
self-management including: configuration, healing,
tuning and protecting to the software itself, along with
curbing the ever increasing complexity.
 In particular, autonomic computing research is
exploring and developing models of bio-inspired
taxonomies to support distributed systems’ lifetime
management and unpredictability by delegating many of
the system’s management and maintenance tasks to the
software itself including: resource management, job
scheduling, services failure prediction, load-balancing,

QoS, services reservations and resources discovery and
availability[1-4].
 A prevailing design model of autonomic computing
systems is one of a model-based architecture with roots
in applied control theory, for which control and
autonomy are encoded as rules. Such rules are generally
embedded in meta-software systems (agents)[5]
exhibiting the advocated autonomic systems’
capabilities such as; self-management, self-
optimization, self-tuning, self-organizing, self-
configuration, self-tuning and/or self-healing.
 To this end, autonomic computing is expected to
perform the intelligent behavior of predicting the
patterns for the embedded environment, taking into
consideration the boundaries (rules) and nature of the
environment applications. Therefore, unsupervised
machine learning techniques are here proposed to be
used to develop and refine a given target system’s
operational regulation (rules). Hence, this study will
introduce the motivations for a machine learning utility
and associated middleware to capture and evolve
knowledge models (sources) from the infrastructure
operating systems. Such knowledge models can then be

J. Computer Sci., 2 (6):521-527, 2006

 522

used by our developed autonomic middleware control
services to regulate (govern) a target software system.
In particular, the study will focus on the presentation of
an architectural model and machine learning
middleware services. As an example, the Self-
Organising Maps (SOM) for feature extraction,
classification and clustering is applied to the on-demand
home-networked appliances scenario, in which the
SOM service is used to classify types of consumers in
accordance to each of their respective usage models,
which are expressed as classes/features and services
dependencies. The generated models are invoked by
self-managing infrastructure middleware services in
support of an on-demand and Just-in-Time deployment
and activation of required services. This is conducted in
line with learnt/extracted usage models and the baseline
architecture of specified services federations
(assemblies) and discovering and activating additional
services on-demand.

Motivations and related work: Many applications of
the autonomic computing model in grid computing have
been widely reported by major IT players including;
Sun Microsystems, Hewlett-Packard and IBM as a way
forward for a highly automated computing systems[1].
This takes the form of creating both hardware and
software that can diagnose and solve network problems,
thus improving high-availability, while reducing IT
operation costs[1].
 In particular, autonomic computing research is
exploring and developing models to hide distributed
systems lifetime management. This includes resource
management, job scheduling, services failure prediction,
load-balancing, QoS and services reservation and
discovery. A prevailing design model of autonomic
computing systems is one of a model and goal-based
approach, where the rules are developed through a
given domain analysis, data mining and/or heuristics.
 An autonomic computing standard model has been
well-defined by many researchers[2-5], which consists of
four units inside the knowledge system and two units
(sensors and effectors) outside the knowledge system
responsible for collecting data and execute an actions,
as shown in Fig. 1. The four units inside the knowledge
system are:
* The monitor function provides the mechanisms that

collect, aggregate, filter and report details collected
from a managed resource.

* The analyze function provides the mechanisms that
correlate and model complex situations.

* The plan function provides the mechanisms that
construct the actions needed to achieve goals and
objectives. The planning mechanism uses policy
information to guide its work.

* The execute function provides the mechanisms that
control the execution of a plan with considerations
for dynamic updates.

Fig. 1: Autonomic computing model[2-5]

Much research is now underway, adopting the use of
machine learning to support a range of autonomic
behavior including other general QoS improvements.
For instance, Chen et al.[6] report on their application of
the C4.5 decision tree algorithm and data mining to
categorize causes of failure in large Internet sites such
as eBay. Candea, et al.[7] present an Automatic Failure-
Path Inference (AFPI) as an application-generic and
automatic technique for dynamically discovering the
failure dependency graphs of componentized Internet
applications. Chen et al.[8] demonstrate a new approach
in using machine learning to manage the failures and
evolution in large, complex distributed systems using
runtime paths.
 As will be discussed in the following sections, our
study uses a Self-Organizing Maps (SOM) algorithm to
underpin autonomic middleware service for on-demand
service reservation and provision. This SOM-based
classification maps users’ to networked services
requirements, which is then used by the middleware to
anticipate service requests and starts reservation of
required services including their required dependencies.

Just-in-time and on-demand grid services
provisioning model: Grid services and applications
necessitate a range of management processes for
bridging the interaction between the consumers and
services/infrastructures. In addition, such management
processes are vital for hiding some of the system
complexity from the consumers. Therefore,
management processes manage the QoS in order to
improve response time, fidelity, interpretability and
reliability. Just-in-time and on-demand services are
another way that management process can be utilized to
reduce the interaction between the users and the
system’s resources by adjusting the resources to request
and prepare services prior to the users’ requests. For
such systems, the use of autonomic computing services

J. Computer Sci., 2 (6):521-527, 2006

 523

is essential in order to perform the automated
management processes. Autonomic services are
proposed to be run inside the middleware as one of its
core functions for the Open Grid Services Architecture
(OGSA).
 In this study, we focus on a practical scenario of
using machine learning middleware services to support
autonomic computing in order to anticipate users’
requirements for networked services and appliances.
Intuitively, this expected to reduce the unnecessary and
redundant invocation of processes and hence reduces
the response time. A service reservation is much more
useful for the management of an advanced on-demand
service. Therefore the middleware needs to be more
specific in the provision of the services required. To
achieve this goal, clustering and classifying users
according to their usage patterns are suggested. An
unsupervised learning technique is adopted by this
approach in order to perform the intelligent
classification. This method of classification is much
applicable in our case, where the target of hypothesis is
unknown until the final trained model is built. Next
sections describe the On-Demand Services Model.

On-demand service components: On-Demand Service
(ODS) requires integration of diversity of components
to perform the demanded jobs. These components are
shown in Fig. 2, which can be summarized in the
following points:
* Consumer: This represents software or human agent

requesting a given set of the resources.
* Request services agent: This manages and handles

all consumers’ requests. A semantic support for
meta-model sharing between consumer and the

system is used to support open standard
interoperation.

* Discovery service: This supports services discovery
within a given (virtual or physical container (host).
This provides service for request services container
and job schedule service.

* Monitoring service: This monitors the consumer
behavior, activities and usage. The collected
information is provided to the autonomic
computing unit for intelligence processes.

* Autonomic computing: This unit offers an
intelligent layer to the ODS system. This can
provide self-organizing, self-configuration, self-
protection and self-configuration capabilities.

* Group: This defines a number of consumers or
members which share the same behavior or
patterns.

* Service reservation service: This queue and handles
all the required services for a given consumers as
soon as they are login prior to services requests.
The recorded information includes list of required
services, time of operation and contract
information. This unit forwards this information to
job schedule service.

* Job schedule service: This unit schedules the
request of services, according to the received
information from services reservation unit. The
requested services or resources are passed to the
discovery unit at the required time of invocation.

* Resource container: This contains all the deployed
resources from services and infrastructures by the
providers.

Fig. 2: On-demand service
On-demand service scenario: An advanced on-
demand services scenario starts by sending a request
from the consumer, as shown in the UML activity
diagram in Fig. 3. The middleware scrutinizes the status
of the consumer, which can be defined by the ODS as a
new consumer or registered consumer. The ODS system
is considered as one of the middleware services. If the

consumer status is new, then the process can be
described in the following points:
* System analyzes the request and sends it to the

discovery service.
* A discovery service in turn begins the discovery

process within target resources container.

J. Computer Sci., 2 (6):521-527, 2006

 524

* After finding the demanded services, the necessary
services’ invocation processes will be initiated.

* The result of the requested task will be presented to
the consumer as results or actions.

 At the same time the monitoring service is working
to record all consumers’ demands and activities in order
to save it in the consumer profile, inside the logger as
shown in Fig. 3. This information is passed to the
autonomic computing service inside the middleware
system. The autonomic computing here is responsible
for performing an intelligent classification process. The

classification service depends on the consumer activity,
behavior, pattern, and service usage to classify them to
one of the classified groups. The classified group is
clustered at the first run of the system according to the
common parameters between the consumers and then an
adjustment process starts to adjust the groups. The
group indicates the shared behavior or activities
between the consumers in the same group. After the
classification process for the new consumer completes,
it is then considered a registered consumer.

Fig. 3: ODS-UML activity diagram

On the other hand, the system deals with the registered
consumer as describe in the following points:
* The middleware starts gathering the group

information of the requested consumer. The consumer
sends his group ID with his demands of the required
services to help service reservation function to
arrange the demanded services in advance.

* The service reservation unit sends a request with all
demanded services to the job schedule unit. This
request consists of information regarding the time for
executing each service, contract, service information
and consumers’ information.

* The job schedule service manages the execution of
the consumers’ demanded tasks. This is done by
scheduling the execution of each service. The job
schedule service sends the demanded service to the
discovery service to find and invoke the aimed
process. On the other hand, the job schedule service
provides the system with advanced information
regarding the expected load on each service. This
information is used to anticipate the load on the

services. In this way, the system has the time to
establish its plans, strategies and policies to overcome
fault tolerance problems according to the overload.
Load balancing, replication, mirroring and other
methods can be used in solving such problems of fault
tolerance depending on the information that is
provided by the job schedule service.

SOM implementation and outline SOM algorithm:
The concepts of the SOM are out of the scope of this
study and there are many references on the using of
SOM in different applications[9-12]. The SOM toolbox
for Matlab is an effective software tool for the
visualization of high-dimensional data. It converts
complex, non-linear statistical relationships between
high-dimensional data items into simple geometric
relationships on a low-dimensional display[12].
 The SOM is initialized using either random or
linear initialization. To train the map, SOM uses
sequential or batch algorithms by using som_make
function. The resulting visual map shows the
neighbourhood between the neurons and the input

J. Computer Sci., 2 (6):521-527, 2006

 525

training samples updating the Best Matching Unit
(BMU). The quantization error can be measured using
som_quality function which supplies two measures:
average quantization error and topographic error. The
SOM model delivers logic decisions from the visual
maps, benefiting from the labelling features in
som_autolabel and som_addlabels functions, hence we
can build a programming model using the SOM method
and outputting decisions from calculating BMU for a
given data vectors using som_bmus function and other
related useful functions provided by the toolbox.
 SOM classification comprises efficient, mostly
accurate mean as a visual data analysis for the maps,
While in our approach we have to reduce the role of
administration to the minimum. Thus we opted to use
other classification algorithms like K-Nearest
Neighbourhood (KNN)[13], which is suitable for similar
cases. A special MatLab function would implement
KNN classifier using arbitrary distance matrix. Despite
its sub optimality, the asymptotic performance of the
NN rule is good and the rule is simple. Given a set of
labelled training examples, T and an unseen test point x,
computing the squared distance in the input space from
x to each of the examples in T. Discarding all training
cases, except for the K cases which are closest to the
test point. The test point is assigned to the most
numerous class amongst this K-NN. A probability
distribution over classes is also easily constructed. The
probability of class i (p_i) is simply specified by:
p_i = n_i / sum_j { n_j}
Where n_j is number of nearest neighbours in class j.
KNN function is also supported in MatLab SOM
Toolbox:
 [C,P]=knn(d,Cp,[K])
Where C: is a matrix of size N*K of integers

indicating the class decision for data items
according to the KNN rule for each K.

 P: is a matrix of size N*k*K, which represent
the number of prototypes for each classifier
d: is an N*P matrix which is pre-calculated
dissimilarity (distance matrix)
Cp: is a Px1 vector that contains integer class
labels, in our case (OMAR, …, YASIR)

Case-study: just-in-time service provisioning for
intelligent connected home scenario: To elucidate the
idea of just-in-time and on-demand services based on
user usage classification, a “connected home devices”
scenario is adopted. The intelligent connected home
machines or smart home devices are the next generation
of home devices, which depend on local and remote
services to be available on-time in order to generate a
comfortable environment for users. In order to improve
the usability and QoS of such technology, the system
should provide services with a short response time. To
achieve this, an ODS is suggested to be adopted in this
scenario.

 The scenario starts by training the machine learning
service with users’ usage data. After the training phase,
the machine learning service clusters the users into a
number of groups depending on their usage. Then, the
system is ready to receive information regarding the
new users in order to classify him/her/it into one of the
groups. In order to get such information, on-the-fly[14,15]

sensors are utilized to collect information for the new
users and store this data within the user profile inside
the logger. The benefit after classifying the users to one
of the existing groups is to anticipate the required
services for each user according to the group behavior.
These results are provided to the service reservation
system with the required information as explained
before. This system determines the required services,
time of operation, required resources, dependency and
other stuff, which is required to perform the demanded
tasks. The expected services are sent to the job schedule
service. The job schedule system in this stage is
responsible for planning a timetable to execute the
services, anticipating the load on each service and
recover from fault conditions before occurrence by
passing an alert to one of the fault tolerance services as
shown in Fig. 4.
 The Self-Organizing Map (SOM) is adopted in this
scenario to carry out the classification process. SOM is
selected since it is one of the unsupervised learning
techniques. Such a technique is required in this case due
to the absence of known target data. The data collected
from the middleware repository is employed to feed the
SOM services with the required data for classifying the
user to one of the existing group.

Fig. 4: Illustration of the connected home case study

Results of SOM classification for connected home
machine: The experiment was conducted using a .Net
prototype, machine learning middleware service using
the Matlab SOM library[9]. As illustrated by Fig. 5-8,
the results represent classifications for different types of
users and devices. Figure 5 shows many correlations
between devices, which are obtained after the training
phase which included 1000 input sample data and 10
trainees. As shown in Fig. 5, a sample of these
correlations can be summarized as follows:

J. Computer Sci., 2 (6):521-527, 2006

 526

* Lights and PlayStation II correlation
* Video and Coffee Machine correlation
* Video CD and Fans correlates
* Vacuum cleaner and Washing machine correlation
 Figure 6, represents U-Matrix distribution of labels
for the connected home devices. Figure 7 shows a
shaped U-Matrix with coloured regions exhibiting three
clear clusters of the map. Figure 8, demonstrates the
Probability Distribution Function (PDF) of the input
vectors. The critical analysis of this approach depends
on selecting and scaling the correct data for training the
system, because using un-normalised data might
produce inaccurate user classification. Therefore,
selecting the adequate training data is the vital to get
right classified model.
 At runtime, the machine learning middleware
service, along with the training data (user and device
classification) can classify logged users according to
known users (one of the seven classified regions). These
classes specify the user types and their usage model,
such as the device usage order and time of usage. This
is used in this case study to guide the autonomic
middleware services for service reservation and
provisioning.

Fig. 5: SOM visual classification

Fig. 6: U-Matrix distribution of labels

Fig. 7: U-map of SOM maps resulted data

Fig. 8: Probability Distribution Function PDF of the

input vectors

CONCLUSION AND FUTURE WORK

 Just-in-time and on-demand services for grid and
planetary scale environments are presented in this study.
Such services are adopted to improve the QoS,
reliability and fidelity of the systems, along with
reducing the interaction of the consumers with the
system. Autonomic computing services are utilized in
this case to perform the intelligent stuff inside the
middleware for on-time and on-demand services. On-
Demand Services (ODS) model is described in this
study depending on using service reservation, job
schedule services and monitoring system.
 Users’ classifications according to their usage are
selected in this scenario to improve the performance of
job scheduling and services reservation. Machine
learning is utilized to perform the automated
classification tasks. Due to the absence of classification
targets an unsupervised learning technique is used in
this case. SOM, as an unsupervised learning technique,
is adopted to be used as a web service integrated with
autonomic computing service for the OGSA. VS.Net
and Matlab functions are used to develop the
framework for the user classification process. This
model is employed to predict the type and pattern of the
new user. The goal of predicting the new user is to

J. Computer Sci., 2 (6):521-527, 2006

 527

determine the required services in advance. This assists
in making the system plan, managing and controlling its
resources to give better service and overcome the
failure, due to overloading resources. The connected
home scenario is adopted to demonstrate the idea of
classifying users according to their device usage in
order to show the potential of such system.

REFERENCES

1. Lamonica, M., 2003. IBM draws self-management

blueprint. IBM.
2. IBM, 2004. An Architectural Blueprint for

Autonomic Computing.
3. Studwell, T., K.S., J. Baekelmans, P. Brittenham,

T. Deckers, C. Laet, E. Merenda, B. Miller, D.
Ogle, B. Rajaraman, K. Sinclair and J. Sweitzer,
2003. Adaptive Services Framework. IBM.

4. Kephart, J.D.C., 2003. The vision of autonomic
computing. IEEE Computer, 36: 41-50.

5. Miller, B., 2005. The sutonomic computing edge:
The "Standard" way of autonomic computing.
IBM.

6. Chen, M.A.X.Z., J. Lloyd, M.I. Jordan and E.
Brewer, 2004. Failure diagnosis using decision
trees. 1st Intl. Conf. Autonomic Computing
(ICAC'04), New York, USA, pp: 36-43.

7. Candea, G., M.D., M. Chen and A. Fox, 2003.
Automatic failure-path inference: A Generic
Introspection Technique for Internet Applications.

8. Chen, M.A.A., E. Kiciman, J. Lloyd, D. Patterson,
A. Fox and E. Brewer, 2003. Path-Based Failure
and Evolution Management.

9. Vesanto, J.H., E. Alhoniemi and J. Parhankangas,
1999. Self-Organizing Map in Matlab: the SOM
Toolbox. Proc. Matlab DSP Conf., Espoo, Finland,
pp: 35-40.

10. White, R.H., 1992. Competitive Hebbian Learning
2: An Introduction.

11. Bingham, E.J.K. and K. Lagus. 2002. ICA and
SOM in Text Document Analysis. 25th annual
international ACM SIGIR conference on Research
and development in information retrieval.

12. Kohonen, T., 1997. Self-organizing Maps. Springer
Series In Information Sciences, 30: 426.

13. http://www.cs.toronto.edu/~delve/methods/knn-
class-1/knn-class-1.html.

14. Omar, W., A. Taleb-Bendiab and Y. Karam, 2005.
PlanetLab Overlay: Experimenting with Sensing
and Actuation Support for Situated Autonomic
Computing Services. 6th PG net2005 Conf.,
Liverpool, UK.

15. Omar, W., B. Ahmad, A. Taleb-Bendiab and Y.
Karam, 2005. A software framework for open
standard self-managing sensor overlay for web
services. 7th Intl. Conf. Enterprise Information
Systems (ICEIS2005), MIAMI BEACH-
FLORIDA-USA., pp: 72-82.

