
Journal of Computer Science 3 (1): 1-8, 2007
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author : Abdelaziz Fellah, Department of Computer Science, University of Sharjah, Sharjah, U.A.E.
1

Deterministic Timed AFA: A New Class of Timed Alternating Finite Automata

1Abdelaziz Fellah, 2Zachary Friggstad and 2Soufiane Noureddine
1Department of Computer Science, University of Sharjah, Sharjah, United Arab Emirates
2Department of Math. and Computer Science, University of Lethbridge, Lethbridge, AB,

Canada T1K 3M4

Abstract: Timed Alternating Finite Automata (TAFA), a natural generalization of Timed Finite
Automata (TFA), are synchronous and powerful models for real-time computations. They become an
effective and expressive model for developing embedded systems with real-time constraint computa-
tions which are required in many applications. We introduce Deterministic Timed Alternating Finite
Automata (DTAFA), a new class of timed alternating finite automata, extended with a finite set of re-
stricted and mutually exclusive real-valued clocks on events which trigger the state transitions of the
automaton. We show how to transform deterministic n-state TFA into log n-state DTAFA and state
some language properties between TFA, DTAFA, and deterministic TFA. We then show that, unlike
TFA and TAFA, DTAFA are closed under all Boolean operations, including the complementation.

Key Words: Automata, formal languages, timed automata, timed alternating finite automata.

INTRODUCTION

Alternating finite automata (AFA) are a natural gener-
alization of non-determinism automata, which provide
a succinct representation for regular languages, but are
double-exponentially more succinct than deterministic
finite automata (DFA). Independently, AFA were in-
troduced in[3, 4] under the name of Boolean automata.
Since then most of the subsequent research focused on
various types of alternating machines to complexity
classes, see for example, [5, 6, 8, 9, 10, 12, 14].

 Traditionally, finite state automata are untimed or
asynchronous models of computation in which only the
ordering of events, not the time at which events occur,
would affect the result of a computation. Timed auto-
mata also called timed finite automata (TFA) have be-
come a powerful canonical model for describing time
for modeling and verifying real-time computations.
Timed automata received their first seminal treatment
in [1], since then much work has been done in this direc-
tion and several aspects of TFA have been investigated
such as determinization, minimization, and power of
clocks. In addition, a major direction that has been par-
ticularly successful is the application of the timed
automata theoretic approach in modeling real time sys-
tems and checking problems, and hence, have applica-
tions in the software engineering processes. Several
models based on automata theory have already been
implemented as an effective verification and validation
tools for real-time and embedded systems, for example,
research tools such as UPPAAL[16], and KRONOS[15].
An extended version of timed automata with real time

asynchronous processes has been also studied in[13],
where each transition is annotated with a process that
can be triggered by events as a model for embedded
real-time systems. Moreover, timed automata are pow-
erful and expressive models to describe synchroniza-
tion and concurrency concepts.
 The concept of alternation refers to the alterna-
tion of universal and existential quantifiers during the
course of a computation. A formalization of this idea
extended with a set of clocks and applied to finite state
automata yields the definition of timed alternating finite
automata [6]. Timed alternating finite automata (TAFA),
a class of alternating finite automata augmented with a
finite set of real-valued clocks (i.e., timers) were first
considered in[6]. Intuitively, a timed alternating finite
automaton can be viewed as a “timed parallel finite
automaton” in the sense that when the automaton reads
an input symbol a in a given state q while the time con-
straints are satisfied, it will activate all states of the
automaton to work in parallel on the remaining part of
the input. Once the states have completed their tasks, q
will evaluate their results using a Boolean function and
pass the resulting value to the state by which it was ac-
tivated. A state of a timed alternating finite automaton
can be considered as a tuple containing the current state
of the automaton and the current values of the clocks.
Clocks are used to justify timed transitions and se-
quences in TAFA. Multiple clocks timed alternating
finite automata would be particularly useful in model-

J. Computer Sci., 3 (1): 1-8, 2007

2

ing a system that has many dependency relationship
since several clocks are available that can be reset dur-
ing any transition. This, combined with the fact that
timing constraints can involve multiple clocks, allows
complex dependent relationships to be constructed that
cannot similarly be modeled by TFA since TFA do not
have the power of parallelism and AFA do not have the
functionality of clocks. A comprehensive analysis of
the theory of TAFA based upon a hybrid combination
of AFA and TFA models were proposed in[6]. In par-
ticular, an algebraic interpretation of TAFA which par-
allels that of timed regular expressions and language
equations were developed and proved to be useful as a
convenient way for representing TAFA. Despite being
very expressive for describing timed behaviors and
modeling real-time systems, TFA and TAFA are nei-
ther determinizable nor closed under the complementa-
tion, and timed regular expressions have no negation
operator.
 Event-clock automata (ECA) were introduced in[2]
as the first determinizable subclass of timed automata
by restricting the use of clocks. ECA are closed under
Boolean operations. The key for the determinization of
event clock automata is the property that each computa-
tion step, all clock values are determined only by the
input word. That is, unlike timed automata model,
where clock values depend on the path taken by the
automaton and are determined by transition relations,
event clock automata are characterized by a fixed, pre-
defined association between the clocks and the symbols
of the input alphabet. In this paper and along the lines
of [2] , we show that every timed AFA can be deter-
minized since at all times during the run of an automa-
ton, the value of each clock is determined solely by the
input sequence and doesn’t depend on non-
determinism. The main property, which fails for arbi-
trary timed AFA, hold for all deterministic timed AFA.
That is, deterministic timed alternating finite automata
(DTAFA) are closed under all operations; in particular,
for every DTAFA we can construct a DTAFA that de-
fines the complement of a timed language.
 In the timed setting and unlike AFA, timed AFA
are closed under union and intersection operations, but
not under complementation. The aim of this paper is to
propose a formalism which sufficiently expressive to
model TAFA for which all Boolean operations can be
effectively defined. A solution to this is to introduce
deterministic timed alternating finite automata
(DTAFA), a class of timed AFA extended with a set of
finite set of restricted real-valued clocks. The clocks are
divided into mutually exclusive sets and a restricted as-
sociation is predefined between the clocks and symbols
of the input alphabet. Using the fact of mutual exclu-
sive clocks justifies the determinization of TAFA,

which, in turn, leads to the complementation of
DTAFA. The underlying deterministic and mutually
exclusive time property and the predefined association
between input symbols and time-stamps define a sub-
class of timed AFA models which could be compared
to event-recording and event-predicting in event timed
automata models[2].

PRELIMINARIES

In this section we briefly recall the basic concepts and
notations used in this paper. For a more detailed pres-
entation on the formalisms of timed automata and
alternating finite automata the reader may refer to[1,11] .
 We denote by 0≥R and N the set of all non-
negative reals including 0 and the set of positive natural
numbers, respectively. The cardinality of a finite set A
is |A|. An alphabet ∆ is a finite, nonempty set whose
elements are called symbols or letters. A timed word, w
over ∆ a finite sequence ρ = (a1 , t1) (a1 , t1) … (ai , ti)
 where the ai' s are symbols of ∆ and the ti's are in 0≥R
such that for all i ≥ 1, ti < ti 1+ . The first element, ai' s,
of each pair are the input symbols, and the second ele-
ment, ti' s, are the time elapsed with respect to the ai' s
since the previous symbol reading. The time t1 can be
thought of representing the amount of time that has
elapsed since the starting of time. We assume that t1 =
0. Thus, t1 … ti is a finite monotonically non decreas-
ing time sequence of 0≥R . A timed trace (run) is a finite
sequence (a1 , t1) (a1 , t1) … (ai , ti). The length of a
word w, denoted by |w|, is the total number of symbols
in w, where a is a finite sequence of symbols of ∆, and t
is a finite monotonically increasing sequence of R≥0 and
both have the same length. The time language
(∆ × 0≥R)* is the set of all timed words over ∆ where
where λ denotes the empty timed word. Recall that
classical words ∆ the free monoid (∆*, o, λ) generated
by ∆ where “o” is the classical concatenation operator
(we write ab rather than aob for the concatenation).
Timed words are defined over the combination of the
monoid (∆, o,λ) and the time monoid (R≥0, + ,0). For any
language L ⊆ ∆*, L = ∆*\L, is the complement of L
with respect to ∆*. For languages L1 and L2 over ∆, the
union and intersection are denoted by L1∪L2 and
L1 ∩ L2, respectively.

DETERMINISTIC TIMED AFA

Let X be a set of clock variables, a clock constraint
ψ over X on a given input symbol a ∈ ∆ can be gener-
ated by the following grammar:

ψ := x ≤ c | x < c | c ≤ x | c < x | ψ1 ∨ ψ2 | ψ1 ∧ ψ2
where x is any clock in X and c ∈ 0≥R such that c ≥ 0.
The operators ∨ and ∧ stands for the logical-or and
logical-and, respectively.

J. Computer Sci., 3 (1): 1-8, 2007

3

 A clock interpretation ν for X is a mapping from X
to 0≥R (i.e., ν assigns to each clock x ∈ X the value
ν(x)). A clock interpretation represents the values of all
clocks in X at a given snapshot in time.
 There are some cases where we don’t need explicitly
to state a constraint if it spans all non-negative reals
(i.e., x ≤ c ∨ c < x). Since all clock interpretations for
all x can never be negative, the constraint ψ = 0 ≤ x1 ∧
0 ≤ x2 ∧ … ∧ ≤ 0 ≤ x X || ∧ ψ is implied for all xi ∈ X
where 1 ≤ i ≤ |X|. The assignment statement x := 0 im-
plies that the clock is reset (the symbol “:=” is the as-
signment operator). However, the comparison state-
ment x = 0 is a clock constraint that is satisfied if and
only if the current interpretation of x is 0 (the symbol
“=” is the comparison operator).

Definition: A deterministic timed alternating finite
automaton (DTAFA) is a seven-tuple A = (Q, ∆, S, g, h,
X, f), where

(a) Q is a finite set, the set of states,
(b) ∆ is an alphabet, the input alphabet,
(c) S ⊆ Q is the set of all starting states,
(d) X is a finite set, the set of clocks,
(e) h is a time transition function,
h: (ΒQ × XR 0≥) × (∆ × 0≥R) →(QB × (XR 0≥ × 0≥R)) × ∆,

(f) g is a letter symbol transition function from Q into
the set of all functions from ∆ × (QB × XR 0≥) into QB ×

XR 0≥ , that is, g: (QB × XR 0≥) × ∆ → QB × XR 0≥ ,
(g) f is a time accepting function, f: → QB × XR 0≥ →B.

 We denote by the symbol B the two-element Boo-
lean algebra B = ({0, 1}, ∨, ∧, _, 0, 1). QB is a vector
with |Q| elements referring to all the Boolean functions
from Q to B, and XR 0≥ is a vector with |X| elements (all
non-negative) which refers to all real functions from X
to 0≥R . More specifically, the function h is defined as:

h((q1,q2,…,q|Q|, x1, x2,…,)),(,|| tax X =
((q1,q2,…, q|Q|, x1+ t, x2 + t,…,)),|| atx X +

where qi ∈ Q for 1 ≤ i ≤ |Q|, xj ∈ X for 1 ≤ j ≤ |X|, a ∈
∆ and t ∈ 0≥R such that t ≥ 0.

 We extend h to the set of timed words defined as
(QB × XR 0≥) × (∆ × 0≥R)* → (QB × (XR 0≥ × 0≥R)) × ∆
such that:

h(u,wa') = h(g(h(u,w)), a')

where u ∈ (QB × XR 0≥), w ∈ (∆ × 0≥R)*, and a' ∈ ∆.
Also, it should be noted that g(u, λ) = u, where λ is the
empty word.
For each state q ∈ Q, x ∈ X and a ∈ ∆ , we define
gq(a) to be the Boolean function (QB × ∆) → B and

gx(a) to be the function (XR 0≥ × ∆) → 0≥R such
that
gq(u')(a) = gq(u', a) and gx(v')(a) = gx(v', a); u' ∈ QB
and v' ∈ XR 0≥ . Thus, the value of gq(u')(a) is either 1
or 0 and the value of gx(v')(a) is either 0 or 'v x , where

'v x is an element of v' .

 We define gQ(u', a) to be the function to be the
function (QB × ∆) → QB by taking all the |Q| func-
tions gq : (QB × ∆ → B, q ∈ Q. Similarly, we define

gx(v', a) to be the real function (XR 0≥ × ∆) → XR 0≥ by
taking all the |X| functions g x : (QB × XR 0≥) → 0≥R , x

∈ X . For notational convenience, gQ(u', a) and gx(v',
a) can be written as one mapping, g(u, a), u ∈ (QB ×

XR 0≥) and a ∈ ∆.

Definition: Let A = (Q, ∆, S, g, h, X, f) be a DTAFA
and w ∈ (∆× 0≥R)* be a timed word. w is accepted by A
if and only if f (g(h(s,w))) = 1, where s ∈ (QB × XR 0≥)
is the characteristic vector of S. Moreover, for each
S q , q ∈ Q S q = 1 if and only if q ∈ S; and for each

S x , S x = 0, where x ∈ X.

Example: Consider the following DTAFA A = (Q, ∆,
S, g, h, X, f) where Q = { q0 , q1 , q2 }, ∆ = {a, b, c}, S =

{ q0 }, X = {x, y}, f (q0 , q1 , q2 , x, y) = q0 ∧ q1 ∧ q2 ,
and g is given by the following tables:

State-table for DTAFA A.

Clock-reset (clk res) table for DTAFA A.

The characteristic vector of S is s = (q0 , q1 , q2 , x, y)
= (1,0,0,0,0).

J. Computer Sci., 3 (1): 1-8, 2007

4

The clock-reset table simply gives the function for the
ux element of u in g(u, a), where u ∈ (QB × XR 0≥), a ∈
(∆ × 0≥R) for all clocks x ∈ X. If the Boolean value is
1, then we write 1 . x = x (or x . 1 = x) to indicate a no
reset. The symbol “.” is the reset operator and not the
usual concatenation symbol. If the Boolean value is 0,
then we write 0 . x = 0 (or x . 0) to indicate a reset. In
fact, the reset operator “.” simulates the functionality of
the “multiplication operation” in the sense that anything
multiplied by zero is zero. In addition, if an entry of the
table contains an expression that is 0, this implies the
expression is 0 . x (or x . 0). Likewise, if an entry of the
table contains an expression that is x, this implies the
expression is 1 · x (or x . 1). Moreover, (q1 ∨ q2) . x
means that x is reset if q1 = 0 and q2 = 0. The follow-
ing example traces the acceptance of a timed word w.

Example: Let w = (b,2) (a,3) (c,3)
 f (g(h(s, (b, 2) (a, 3) (c, 3))))
 = f (g(h(g(h(s, (b, 2), (a, 3))), (c, 3))))
 = f (g(h(g(h(g(h(s, (b, 2))), (a, 3))), (c, 3))))
 = f(g(h(g(h(g(h((1, 0, 0, 0, 0),(b, 2))),(a ,3))),(c, 3))))
 = f (g(h(g(h(g((1, 0, 0, 2, 2, b), (a, 3))), (c, 3))))
 = f (g(h(g(h((0, 1, 0, 2, 2), (a, 3))), (c, 3))))
 = f (g(h(g((0, 1, 0, 3, 3), a)), (c, 3))))
 = f (g(h((1, 0, 0, 3, 0), (c, 3))))
 = f (g((1, 0, 0, 3, 0), c))
 = f (1, 0, 1, 0, 0)
 = 1∧ 0 ∧1 = 1.

DTFA AND DTAFA

In this section, we show how to transform an |L|-state
deterministic timed finite automaton (DTFA), into an
equivalent log |L|-state deterministic timed alternating
finite automaton (DTAFA). We also show the oppo-
site construction of a DTFA from a given DTAFA.

Definition: A timed finite automaton (TFA) is a sept-
tuple A = (L,Σ,L0,XL,I,E,Lf), where (a) L is a finite set
of locations, the set of states, (b) Σ is an alphabet, the
input alphabet, (c) L0 ⊆ L is the set of all starting loca-
tions (starting states), (d) XL is a finite set, the set of
clocks, (e) I is a set of invariants of clocks on a state, (f)
E is a set of edges between states, (g) Lf is a set of fi-
nal locations.

 A deterministic timed finite automaton (DTFA) is
a timed finite automata with the following key proper-
ties:

i) | L0| = 1.

(ii) I = Ø.
(iii) All clock constraints on a given input symbol
from

a given state must be mutually exclusive and
must span all XR 0≥ .

(iv) All clock zones[1] on a given symbol must be de-
fined. Clock zones are represented as conjunc-
tions of timing constraints.

Theorem: Let A = (L,Σ,L0,XL,I,E,Lf) be an |L|-state
DTFA there exists an equivalent log |L|-state DTAFA
A' = (Q,∆,S,g,h,X,f) such that L(A) = L(A').

Proof. Without loss of generality, number the locations
of L from 0 to |L| - 1. Now, let Ni denote the location
numbering where 0 ≤ i ≤ |L| - 1 and Bin(Ni) be the
equivalent binary representation of Ni with exactly m
bits where m = log2d |L| . Define Q = { q1 ,…, qm } to
be the state of the DTAFA, and set ∆ = Σ and X = XL .
Define the function h for A' :

h((q1 , … , qm , x1, x2,…,)),(,|| tax X =
 ((q1 , … , qm , x1+ t, x2 + t,…,)),|| atx X +

where a ∈ ∆ and t ∈ 0≥R .

 Let Bin(Ni) = b1 … bm denote the equivalent binary
representation of Ni where b1 , b2 and bm indicate the
least significant bit (LSB), the next LSB, and the most
significant bit (MSB), respectively. Identify the least
significant bit side of Bin(Ni) and pad it with as many
zeros as required to make the total number of bits of
Bin(Ni) equals to m. Denote by B = b1 … bm . Then, for
each bit b ∈ B, define a state association mapping ϕ(b)
from B → Q : (b1 … bm) → (q1 ,…, qm). That is, we
identify the bits b1 with state q1 , b2 with state q2 and
we proceed with this until all bits have a state associa-
tion (the MSB should be associated with state qm).
Consider the binary number associated with the state in
L0, denoted by B0 = b0

1 … bm
0 . Then for all i = 1, …,

m, the following conditions hold:

 (i) If bi

0 = 0, then ϕ(bi
0) ∉ S.

 (ii) If bi

0 = 0, then ϕ(bi
0) ∈ S.

Consider the set of final locations, Lf = { L f

1 , L f
2 , … ,

L f
k }, where k is the number of final locations of A. Let

Β f

1 = b1
1 . . . bm

1
 Β f

2 = b2
1 . . . bm

2
 . . .

Β f
k = b f

k . . . b f
m

J. Computer Sci., 3 (1): 1-8, 2007

5

denote the binary representations associated with each
location in Lf and let ϕ(b1), … ,ϕ(bk) be their respec-
tive state association mappings. For each location in Lf ,
derive the expression:

Where

and where qi

j ∈ Q, i=1,…, k-1, j =1,…,m, and the op-
erators ∨ and ∧ indicate the bit-wise operations or
and and, respectively. Set f (q1 ,…, qm , x1, x2, …, x X ||)
= e f where e f is the reduced Boolean expression of
E f

i obtained by any known Boolean expression simpli-
fication algorithm.
 For each input symbol a ∈ Σ, consider all clock
constraints associated with this symbol. If any two
overlap, then partition them up into mutually exclusive
constraints. The result should be a set of mutually ex-
clusive clock constraints whose region, for each clock,
spans all non-negative real numbers.
Consider each constraint for each input symbol a ∈ Σ.
For each location in L, consider its binary equivalent
representation and the binary equivalent of the state as-
sociation ϕ it goes to upon the considered input symbol
and clock constraint. We perform the state association
mapping for each state, then derive a Boolean expres-
sion of the qm ,…, q1 bits for each bit of the resulting
state list. This will result in obtaining the expression for
the bit in the state list upon reading an input symbol
within the given time constraint.
 Finally, for the clock resets, for each a in Σ, con-
sider each clock constraint for each symbol. For each
location in L and each clock in X, consider its binary
equivalent representation. If its edge on the given input
symbol and constraint resets the clock, then store it as a
resulting Boolean false function 0, or else store it as a
resulting Boolean true function 1. For each clock, de-
rive a Boolean expression, given the binary values of
the states, such that the expression is 1 if and only if the
binary representation of the state does not reset its
clock on the given transition. Finally, “dot” the expres-
sion by the interpretation of the clock X so if the transi-
tion resets the clock, then x = 0 . x, and if it doesn’t re-
set the clock, then x = 1 . x.

Theorem: Let A = (Q,∆,S,g,h,X,f) be a DTAFA there
exists an equivalent DTFA A' = (L,Σ,L0 XL, I,E,Lf)
such that L(A) = L(A').

Proof. Initially, we set Σ = ∆, XL = X, and I = Ø. Asso-
ciate each state in Q with a bit in any |Q|-bit binary
number. Now, without loss of generality, arrange the

states in the order as q Q|| , q Q 1|| − , … , q1 . We denote a
binary number formed by these states and bits associa-
tion as q Q|| , q Q 1|| − , … , q1 .

 Let L be a set of 2 ||Q states, numbered from 0 to |Q|
- 1. Let the state numbered q Q|| , q Q 1|| − , … , q1 , where

where qi = 1 if and only if qi ∈ S, be the state in L0
where 1 ≤ i ≤ Q. The set of Lf is the set of all numbered
states such that in their binary representation q Q|| ,

q Q 1|| − ,…, q1 , the value of all the states satisfies the
function f .
 Consider a location q Q|| , q Q 1|| − ,…, q1 . Derive the
next state on a given symbol and time constraints by
forming the number ' ||q Q , ' 1||q Q − , … , '1q , where 'q i
is the binary value of that state after the transition
where 1 ≤ i ≤ Q. Define an edge from q Q|| , q Q 1|| − ,…

, q1 to ' ||q Q , ' 1||q Q − , … , '1q with the considered input
symbol and time constraint. Then, include all clocks
x j that are reset within this transition by determining if
the function g (q1, q2,…, q|Q|, x1, x2, …, x X||) results in
resetting x j where j = 1, … ,|X|. The resulting DTFA
may not be reduced, however, any standard reduction
algorithm may be used to reduce the number of states.

DTAFA: PROPERTIES

COMPLEMENTATION

Theorem: Timed regular languages accepted by
DTAFA are closed under complementation.

Proof. Given a DTAFA A = (Q,∆,S,g,h,X,f), the lan-
guage accepted by A is L(A). The complement of this
language))((AL is accepted by a DTAFA A' = (Q,

∆,S,g,h,X,f'), where f' = f (f is the logical negation
of f).

UNION

Theorem:
Given two DTAFA A1 = (Q1 ,∆1 , S1 , g1 , h1 , X1 , f 1),
and A2 = (Q2 ,∆2 , S2 , g2 , h2 , X 2 , f 2) we can con-
struct a DTAFA A = (Q, ∆,S,g,h,X,f) such that L(A) =
L(A1) ∪ L(A2).

 Proof: We assume that Q1 ∩ Q2 = Ø, it follows that

S1 ∩ S2 = Ø. X1 ∩ X 2 = Ø.
Let Q = Q1 ∪ Q2 ∪ { qx

1 , qx
2 } such that qx

1 , qx
2 ∉

J. Computer Sci., 3 (1): 1-8, 2007

6

Q1 ∪ Q2 , ∆ = ∆1 ∪ ∆2 , S = S1 ∪ S2 , X = X1 ∪ X 2 .
Given Q , ∆, and X, h is defined as:

h((q1
1 , q1

2 , . . . , q
Q
1

|1|
, qx

1 , q2
1 , q2

2 , . . . , q
Q
2

|2|
, qx

2 ,

x1
1 , x1

2 , . . . , x
X

1
|1|
, x2

1 , x2
2 , . . . ,),(),2

|2|
tax

X
)

= ((q1
1 , q1

2 , . . . , q
Q
1

|1|
, qx

1 , q2
1 , q2

2 , . . , q
Q
2

|2|
, qx

2 , tx +1
1 ,

tx +1
2 , . . . , tx

X
+1

|1|
, tx +2

1 , x2
2 + t , . . . ,)),2

|2|
atx

X
+

The function f is defined as follows:
f (q1

1 , q1
2 , . . . , q

Q
1

|1|
, qx

1 , q2
1 , q2

2 , . . . , q
Q
2

|2|
, qx

2 ,

x1
1 , x1

2 , . . . , x
X

1
|1|
, x2

1 , x2
2 , . . . ,)2

|2|x
X

=(f 1 (q1
1 , q1

2 , . . . , q
Q
1

|1|
, x1

1 , x1
2 , . . . , x

X
1

|1|
) ∧ qx

1)

∨ (f 2 (q2
1 , q2

2 , . . . , q
Q
2

|2|
, x2

1 , x2
2 , . . . , x

X
2

|2|
) ∧ qx

2)

where
q1

1 , q1
2 , . . . , q

Q
1

|1|
∈ Q1 ; q2

1 , q2
2 , . . . , q

Q
2

|1|
∈ Q2 ; x1

1 ,

x1
2 , . . . , x

X
1

|1|
 ∈ X1 ; x2

1 , x2
2 , . . . , x

X
2

|2|
∈ X 2 ;

 and the logical operator “ ∨ ” is referred to as the
“critical binary operator”. The function g is defined in
the following manner:

g(u,a) = v,),(11 aug = v1 ,),(22 aug = v2 , where u1 ,

v1 ∈ (BQ1 × RX1
0≥); u2 , v2 ∈ (BQ2 × RX 2

0≥); u, v

∈ (QB × XR 0≥), a ∈ ∆ .

vq = vq
1 iff (q ∈ Q1 and a ∈ ∆1)

vq = vq
2 iff (q ∈ Q2 and a ∈∆2)

vq = 0 iff (q ∈ Q1 and a ∉∆1)

 or (q ∈ Q2 and a ∉∆2)

vqx
1 = uqx

1 iff a ∈ ∆1

vqx

1 = 1 iff a ∉∆2

vqx
2 = uqx

2 iff a ∈ ∆2

vx = vx
1 iff (x ∈ X1 and a ∈∆1)

vx = vx
2 iff (x ∈ X 2 and a ∈∆2)

vq = 0 iff (x ∈ X1 and a ∉∆1)

 or (x ∈ X 2 and a ∉∆2)

Note that:
u = (q1

1 , q1
2 , . . . , q

Q
1

|1|
, qx

1 , q2
1 , q2

2 , . . . , q
Q
2

|2|
, qx

2 ,

 x1
1 , x1

2 , . . . , x
X

1
|1|
, x2

1 , x2
2 , . . . ,)2

|2|x
X

u1 = (q1
1 , q1

2 , . . . , q
Q
1

|1|
, x1

1 , x1
2 , . . . , x

X
1

|1|
)

u2 = (q2
1 , q2

2 , . . . , q
Q
2

|1|
, x2

1 , x2
2 , . . . , x

X
2

|2|
)

such that
uq = uq

1 iff q ∈ Q1 ,

uq = uq
2 iff q ∈ Q2 ,

ux = ux
1 iff x ∈ X1 ,

ux = ux
2 iff x ∈ X 2 .

INTERSECTION

Theorem:
Given two DTAFA A1 = (Q1 ,∆1 , S1 , g1 , h1 , X1 , f 1),

and A2 = (Q2 ,∆2 , S2 , g2 , h2 , X 2 , f 2) we can con-
struct a DTAFA A = (Q, ∆,S,g,h,X,f) such that L(A) =
L(A1) ∩ L(A2).

Proof. We can adapt the proof of the previous theorem
to construct a DTAFA A = (Q, ∆,S,g,h,X,f), with the
same preconditions, as we construct the union of two
DTAFA. The only difference is that the operator we
refer to as the critical binary operator is changed to ∧
(logical and), instead of ∨ (logical or). It can be noted
that the intersection algorithm can be constructed with a
single qx ∉ (Q1 ∪ Q2) instead of qx

1 and qx
2 . In

addition, the following holds in both the intersection
and union operations:

 If ∆1 = ∆2 , then qx
1 , qx

2 are not required.
 If ∆1 = ∆2 , then qx

2 is not required.
 If ∆1 = ∆2 , then qx

1 is not required.

Corollary: For any integers m,n ≥ 1 let A1 be an m-
state and A2 be an n-state DTAFA. Then m + n + 2 and
m + n + 1 states are sufficient and necessary in the
worst case for a DTAFA A to accept the languages
L(A1) ∪ L(A2) and L(A1) ∩ L(A2), respectively.

COMPOSITION OF DTAFA

Theorem:
Given two DTAFA A1 = (Q1 ,∆1 , S1 , g1 , h1 , X1 , f 1),

and A2 = (Q2 , ∆2 , S2 , g2 , h2 , X 2 , f 2) we can con-
struct a DTAFA A = (Q, ∆,S,g,h,X,f) such that L(A) =
L(A1) ⊗ L(A2) where ⊗ is the composition opera-
tion.
Proof. The steps of the algorithm are described in the
following proof. We assume the following precondi-
tions:

J. Computer Sci., 3 (1): 1-8, 2007

7

Q1 ∩ Q2 = Ø, it follows that S1 ∩ S2 = Ø, X1 ∩ X 2

=Ø. Let Q = { Q1 ∪ Q2 }, S = { S1 ∪ S2 }, ∆ = {∆1 ∪

∆2 } , X = { X1 ∪ X 2 }.
The function h is defined as follows:

h((q1
1 , q1

2 , . . . , q
Q
1

|1|
, qx

1 , q2
1 , q2

2 , . . . , q
Q
2

|2|
, qx

2 ,

 x1
1 , x1

2 , . . . , x
X

1
|1|
, x2

1 , x2
2 , . . . ,),(),2

|2|
tax

X

= ((q1
1 , q1

2 , . . . , q
Q
1

|1|
, qx

1 , q2
1 , q2

2 , . . , q
Q
2

|2|
, qx

2 , tx +1
1 ,

tx +1
2 , . . . , tx

X
+1

|1|
, tx +2

1 , x2
2 + t , . . . ,)),2

|2|
atx

X
+

f (q1
1 , q1

2 , . . . , q
Q
1

|1|
, q2

1 , q2
2 , . . . , q

Q
2

|2|
,

 x1
1 , x1

2 , . . . , x
X

1
|1|
, x2

1 , x2
2 , . . . ,)2

|2|x
X

=(f 1 (q1
1 , q1

2 , . . . , q
Q
1

|1|
, x1

1 , x1
2 , . . . , x

X
1

|1|
) ∧ f 2 (q2

1 ,

q2
2 , . . . , q

Q
2

|1|
, x2

1 , x2
2 , . . . x

X
2

|2|
)

We define g as:
 g(u, a) = v where uq = uq

1 iff q ∈Q1
g1 (u1 , a) = v1 uq = uq

2 iff q ∈Q2
g2 (u2 , a) = v2 ux = ux

1 iff x ∈ X1
 ux = ux

2 iff q ∈ X 2
vq = vq

1 iff (q ∈ Q1 and a ∈ ∆1)

vq = uq iff (q ∈ Q1 and a ∉ ∆1)

 or (q ∈ Q2 and a ∉ ∆2)

vq = vq
2 iff (q ∈ Q2 and a ∈ ∆2)

vx = vx
1 iff (x ∈ X1 and a ∈ ∆1)

vx = vx
2 iff (q ∈ X 2 and a ∈ ∆2)

vx = ux iff (x ∈ X1 and a ∉ ∆1)
or (x ∈ X 2 and a ∉ ∆2)

 One can define the time-concatenation of two timed
words w1 and w2 , as w1 Θ w2 = (a1,t1) Θ (a2,t2) where
a1, a2 ∈ ∆* , and t1 , t2 are time sequences of the same
length as a1 and a2, respectively.
Let a1 = a1

1 a1
2 . . . an

1 and a2 = a2
1 a2

2 . . . am
2 where | a1|

= n ∈ N, and | a2| = m ∈ N; ai
1 , a j

2 ∈ ∆ where 1 ≤ i ≤
n and 1 ≤ j ≤ m.
Let t1 = t11 t12 . . . tn

1 and t2 = t2
1 t2

2 . . . tm
2 be the cor-

responding time sequences. Then

(a1,t1) Θ (a2,t2) =

(a1
1 a1

2 . . . an
1 , t11 t12 . . . tn

1) Θ (a2
1 a2

2 . . . am
2 , t2

1 t2
2 . . .

tm
2) = (a1

1 a1
2 . . . an

1 a2
1 a2

2 . . . am
2 , t11 t12 . . . tn

1 (t2
1 +

tn
1) (t2

2 + tn
1) . . . (tm

2 + tn
1) = (a1 a2 ,t)

Proposition: The time-concatenation operation Θ is:
(1) associative, (2) right and left distributive over +
,and (3) can be used with ∆ to form a non-
commutative monoid (∆*, Θ).

 Let w1 and w2 be two timed words. Then we can de-
fine the operation of timed concatenation of L1 with L2

to be L1 Θ L2 = {w1 Θ w2 | w1 ∈ L1 and w2 ∈ L2}. Simi-
larly, other time operations can be defined. For exam-
ple, union L1 ∪ L2, intersection L1 ∩ L2, power)(L n ,

and star operations (L1)* = U Ni∈ (L1)i ,)(Θ
1L =

U Ni∈ (L1)i where (L1)i denotes occurrences of L1 (i.e.,
finitely iterated time-concatenation of the enclosed
timed regular language). The operation Θ denotes the
timed version of the Kleene star.

Proposition: The family of timed regular languages is
closed under the time-concatenation operation.

CONCLUSION

Alternation, timing and determinism add perfect fea-
tures to automata expressiveness, parallelism, and suc-
cinctness, which have practical applications in software
and real-time systems. It also could potentially lead to
answer several open problems in formal languages and
complexity. DTAFA, a class of timed alternating finite
automata (TAFA), have been proposed in this paper.
Despite being very expressive for describing timed be-
haviors, both timed finite automata (TFA) and TAFA
are neither determinizable nor closed under comple-
mentation. However, these limitations could be consid-
ered as drawbacks in several model checking applica-
tions and real-time systems. Also, the lack of comple-
mentation of TAFA and TFA could give a weak theo-
retical endorsement of these machines from the point of
view languages. We show that DTAFA are closed un-
der all Boolean operations, including the complementa-
tion. Transformation algorithms between DTFA and
DTAFA were also given. Currently, we are investigat-
ing a representation of DTAFA by systems of language
equations.

REFERENCES

1. Alur, R. and Dill, D., 1994. A Theory of Timed
Automata: Theoret. Comput. Sci., 126 (2): 183-
235.

2. Alur, R., Fix, L. and Henzinger, T.A., 1999. Event-
Clock Automata: A Determinizable Class of Timed
Automata: Theoret. Comput. Sci.,211(1-2): 253-
273.

J. Computer Sci., 3 (1): 1-8, 2007

8

3. Brzozowski, J.A. and Leiss, E., 1980. On Equa-
tions for Regular Languages, Finite Automata,
and Sequential Networks: Theoret. Comput. Sci.,
10: 19-35.

4. Chandra, A.K., Kozen, D.C., and Stockmeyer, L.J.,
1981. Alternation: J. Assoc. Comput., 28: 114-133

5. Fellah, A., Jurgensen, H., and Yu, S., 1990. Con-
structions for Alternating Finite Automata: Inter-
nat. J. Comput. Math., 35: 117-132

6. Fellah, A. and Harding, C., 2003. Language Equa-
tions for Timed Alternating Finite Automata: In-
ternat. J. Comput. Math., 80(2): 1075-1091.

7. Fellah, A., 2005. On Deterministic Timed AFA:
Technical Report, Dept. of Computer Science,
University of Sharjah, Sharjah, U.A.E.

8. Leiss, E., 1985. Succinct Representation of Regu-
lar Languages by Boolean automata II: Theoret.
Comput. Sci., 38: 133-136.

9. Kupferman, O. and Vardi, M., 2001. Weak Alter-
nating Automata are not that Weak: ACM Trans.
Comput. Log., 2(3): 408-429.

10. Salomaa, K., Wu, X., and Yu, S., 2000. Efficient
Implementation of Regular Languages using Re-
versed Alternating Finite Automata: Theoret. Com-
put. Sci., 231: 103-111.

11. Yu, S., 1997. Regular Languages, in: G. Rozen-
berg, A. Salomaa, (Eds.), Handbook of Formal
Languages, vol. I.,: Springer, Berlin

12. Henzinger, T.A., B. Horowitz, B., and Kirsch,
C.M., 2001. Giotto: A Time-Triggered Language
for Embedded Programming: Proc. of EMSOFT,
166-184.

13. Fersman, E., Pettersson, P., and Yi, W., 2002,
Timed Automata with Asynchronous Processes:
Schedulability and Decidability: Lect. Notes in
Computer Sci., 2280, Springer-Verlag.

14. Oding, C.L., and Thomas, W., 2000, Alternating
Automata and Logics over Infinite Words: IFIP
TCS, 1872 of LNCS-2000, 521-535.

15. Daws, C., Olivero, A., Tripakis, S., and Yovine, S.,
1996. The Tool KRONOS: Hybrid Systems III:
Verification and Control, Springer, 1066: 208-219.

16. Larsen, K.G., Pettersson, P., and Yi,W. 1997.
UPPAAL is a Nutshell: Springer Inter. J. of Soft-
ware Tools for Technology Transfer, 1(2): 134-
152.

