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Abstract: Timed Alternating Finite Automata (TAFA), a natural generalization of Timed Finite 
Automata (TFA), are synchronous and powerful models for real-time computations. They become an 
effective and expressive model for developing embedded systems with real-time constraint computa-
tions which are required in many applications. We introduce Deterministic Timed Alternating Finite 
Automata (DTAFA), a new class of timed alternating finite automata, extended with a finite set of re-
stricted and mutually exclusive real-valued clocks on events which trigger the state transitions of the 
automaton. We show how to transform deterministic n-state TFA into log n-state DTAFA and state 
some language properties between TFA, DTAFA, and deterministic TFA. We then show that, unlike 
TFA and TAFA, DTAFA are closed under all Boolean operations, including the complementation. 
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INTRODUCTION 

 
Alternating finite automata (AFA) are a natural gener-
alization of non-determinism automata, which provide 
a succinct representation for regular languages, but are 
double-exponentially more succinct than deterministic 
finite automata (DFA). Independently, AFA  were in-
troduced  in[3, 4] under the name of Boolean automata. 
Since then most of the subsequent research focused on 
various types of alternating machines to complexity 
classes, see for example, [5, 6, 8, 9, 10, 12, 14]. 

       Traditionally, finite state automata are untimed or 
asynchronous models of computation in which only the 
ordering of events, not the time at which events   occur,   
would affect the result of a computation. Timed auto-
mata also called timed finite automata (TFA) have be-
come a powerful canonical model for describing time 
for modeling and verifying real-time computations. 
Timed automata received their first seminal treatment 
in [1], since then much work has been done in this direc-
tion and several aspects of TFA have been investigated 
such as determinization, minimization, and power of 
clocks. In addition, a major direction that has been par-
ticularly successful is the application of the timed 
automata theoretic approach in modeling real time sys-
tems and checking problems, and hence, have applica-
tions in the software engineering processes. Several 
models based on automata theory have already been 
implemented as an effective verification and validation 
tools for real-time and embedded systems, for example, 
research tools such as UPPAAL[16], and KRONOS[15]. 
An extended version of timed automata with real time 

asynchronous processes has been also studied in[13], 
where each transition is annotated with a process that 
can be triggered by events as a model for embedded 
real-time systems. Moreover, timed automata are pow-
erful and expressive models to describe synchroniza-
tion and concurrency concepts. 
         The concept of alternation refers to the alterna-
tion of universal and existential quantifiers during the 
course of a computation. A formalization of this idea 
extended with a set of clocks and applied to finite state 
automata yields the definition of timed alternating finite 
automata [6]. Timed alternating finite automata (TAFA), 
a class of alternating finite automata augmented with a 
finite set of real-valued clocks (i.e., timers) were first 
considered in[6]. Intuitively, a timed alternating finite 
automaton can be viewed as a “timed parallel finite 
automaton” in the sense that when the automaton reads 
an input symbol a in a given state q while the time con-
straints are satisfied, it will activate all states of the 
automaton to work in parallel on the remaining part of 
the input. Once the states have completed their tasks, q 
will evaluate their results using a Boolean function and 
pass the resulting value to the state by which it was ac-
tivated. A state of a timed alternating finite automaton 
can be considered as a tuple containing the current state 
of the automaton and the current values of the clocks. 
Clocks are used to justify timed transitions and se-
quences in TAFA. Multiple clocks timed alternating 
finite automata would be particularly useful in model-



J. Computer Sci., 3 (1): 1-8, 2007 

2 

ing a system that has many dependency relationship 
since several clocks are available that can be reset dur-
ing any transition. This, combined with the fact that 
timing constraints can involve multiple clocks, allows 
complex dependent relationships to be constructed that 
cannot similarly be modeled by TFA since TFA do not 
have the power of parallelism and AFA do not have the 
functionality of clocks. A comprehensive analysis of 
the theory of TAFA based upon a hybrid combination 
of AFA and TFA models were proposed in[6]. In par-
ticular, an algebraic interpretation of TAFA which par-
allels that of timed regular expressions and language 
equations were developed and proved to be useful as a 
convenient way for representing TAFA. Despite being 
very expressive for describing timed behaviors and 
modeling real-time systems, TFA and TAFA are nei-
ther determinizable nor closed under the complementa-
tion, and timed regular expressions have no negation 
operator.  
         Event-clock automata (ECA) were introduced in[2] 
as the first determinizable subclass of timed automata 
by restricting the use of clocks. ECA are closed under 
Boolean operations. The key for the determinization of 
event clock automata is the property that each computa-
tion step, all clock values are determined only by the 
input word. That is, unlike timed automata model, 
where clock values depend on the path taken by the 
automaton and are determined by transition relations, 
event clock automata are characterized by a fixed, pre-
defined association between the clocks and the symbols 
of the input alphabet. In this paper and along the lines 
of [2] , we show that every timed AFA can be deter-
minized since at all times during the run of an automa-
ton, the value of each clock is determined solely by the 
input sequence and doesn’t depend on non-
determinism. The main property, which fails for arbi-
trary timed AFA, hold for all deterministic timed AFA. 
That is, deterministic timed alternating finite automata 
(DTAFA) are closed under all operations; in particular, 
for every DTAFA we can construct a DTAFA that de-
fines the complement of a timed language. 
         In the timed setting and unlike AFA, timed AFA 
are closed under union and intersection operations, but 
not under complementation. The aim of this paper is to 
propose a formalism which sufficiently expressive to 
model TAFA for which all Boolean operations can be 
effectively defined. A solution to this is to introduce 
deterministic timed alternating finite automata 
(DTAFA), a class of timed AFA extended with a set of 
finite set of restricted real-valued clocks. The clocks are 
divided into mutually exclusive sets and a restricted as-
sociation is predefined between the clocks and symbols 
of the input alphabet. Using the fact of mutual exclu-
sive clocks justifies the determinization of TAFA, 

which, in turn, leads to the complementation of 
DTAFA. The underlying deterministic and mutually 
exclusive time property and the predefined association 
between input symbols and time-stamps define a sub-
class of timed AFA models which could be compared 
to event-recording and event-predicting in event timed 
automata models[2].    
 

PRELIMINARIES 
 
In this section we briefly recall the basic concepts and 
notations used in this paper. For a more detailed pres-
entation on the formalisms of timed automata and 
alternating finite automata the reader may refer to[1,11] . 
         We denote by 0≥R  and N the set of all non-
negative reals including 0 and the set of positive natural 
numbers, respectively. The cardinality of a finite set A 
is |A|. An alphabet ∆ is a finite, nonempty set whose 
elements are called symbols or letters.  A timed word, w 
over ∆  a finite sequence ρ = ( a1 , t1 ) ( a1 , t1 ) … ( ai , ti ) 
 where the ai' s are symbols of ∆  and the ti's are in 0≥R  
such that for all i ≥ 1,  ti  < ti 1+ . The first element, ai' s, 
of each pair are the input symbols, and the second ele-
ment, ti' s, are the time elapsed with respect to the  ai' s 
since the previous symbol reading. The time t1   can be 
thought of representing the amount of time that has 
elapsed since the starting of time. We assume that t1  = 
0. Thus, t1 … ti  is a finite monotonically non decreas-
ing time sequence of 0≥R . A timed trace (run) is a finite 
sequence ( a1 , t1 ) ( a1 , t1 ) … ( ai , ti ). The length of a 
word w, denoted by |w|, is the total number of symbols 
in w, where a is a finite sequence of symbols of ∆, and t 
is a finite monotonically increasing sequence of R≥0  and 
both have the same length. The time language 
(∆ × 0≥R )*  is the set of all timed words over ∆ where 
where λ denotes the empty timed word. Recall that 
classical words ∆ the free monoid  (∆*, o, λ ) generated 
by ∆  where “o” is the classical concatenation operator 
(we write ab rather than aob for the concatenation). 
Timed words are defined over the combination of the 
monoid (∆, o,λ) and the time monoid (R≥0, + ,0). For any 
language L ⊆  ∆*, L = ∆*\L, is the complement of L 
with respect to ∆*. For languages L1 and L2 over ∆, the 
union and intersection are denoted by L1∪L2 and 
L1 ∩ L2, respectively. 
 
 

DETERMINISTIC TIMED AFA 
 

Let X be a set of clock variables, a clock constraint 
ψ over X on a given input symbol a ∈ ∆ can be gener-
ated by the following grammar:  
 

ψ := x ≤ c | x < c | c ≤  x | c < x | ψ1 ∨ ψ2 |  ψ1 ∧ ψ2    
where x is any clock  in  X and c ∈ 0≥R  such that c ≥ 0. 
The operators ∨  and ∧  stands for the logical-or and 
logical-and, respectively. 
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        A clock interpretation ν for X is a mapping from X 
to 0≥R  (i.e., ν assigns to each clock x ∈ X the value 
ν(x)). A clock interpretation represents the values of all 
clocks in  X at a given snapshot in time.  
    There are some cases where we don’t need explicitly 
to state a constraint if it spans all non-negative reals 
(i.e., x ≤ c ∨ c  < x). Since all clock interpretations for 
all x can never be negative, the constraint ψ = 0 ≤ x1  ∧ 
0 ≤ x2 ∧ … ∧ ≤ 0 ≤ x X ||  ∧ ψ  is implied for all xi ∈ X 
where 1 ≤ i ≤ |X|. The assignment statement x := 0 im-
plies that the clock is reset (the symbol “:=” is the as-
signment operator). However, the comparison state-
ment   x = 0 is a clock constraint that is satisfied if and 
only if the current interpretation of x is 0 (the symbol 
“=” is the comparison operator). 
 
Definition: A deterministic timed alternating   finite 
automaton (DTAFA) is a seven-tuple A = (Q, ∆, S, g, h, 
X, f), where 
 
(a) Q is a finite set, the set of states, 
(b) ∆  is an alphabet, the input alphabet, 
(c) S ⊆ Q is the set of all starting states, 
(d) X is a finite set, the set of clocks, 
(e) h is a time transition function,             
h: ( ΒQ  × XR 0≥  ) × (∆ × 0≥R ) →( QB × ( XR 0≥  × 0≥R )) × ∆, 

(f) g is a letter symbol transition function from Q into 
the set of all functions from ∆ × ( QB × XR 0≥ ) into QB × 

XR 0≥ ,   that is, g:  ( QB × XR 0≥ ) × ∆ → QB × XR 0≥ , 
(g)  f  is a time accepting function, f: → QB × XR 0≥  →B. 
 
       We denote by the symbol B the two-element Boo-
lean algebra B = ({0, 1}, ∨, ∧, _, 0, 1). QB  is a vector 
with |Q| elements referring to all the Boolean functions 
from Q to B, and XR 0≥  is a vector with |X| elements (all 
non-negative) which refers to all real functions from X 
to 0≥R . More specifically, the function h is defined as: 
 

h((q1,q2,…,q|Q|, x1, x2,…, )),(,|| tax X  = 
((q1,q2,…, q|Q|, x1+ t, x2 + t,…, )),|| atx X +   

 
where qi ∈ Q for 1 ≤ i ≤ |Q|, xj ∈ X for 1 ≤ j ≤ |X|, a ∈   
∆  and  t  ∈ 0≥R  such that t ≥ 0.  
 
      We extend h to the set of timed words defined as 
( QB × XR 0≥ ) × (∆ × 0≥R )*  →  ( QB × ( XR 0≥  × 0≥R )) × ∆ 
such that: 

h(u,wa' ) = h(g(h(u,w)), a') 
 
where u ∈ ( QB × XR 0≥ ), w ∈ (∆ × 0≥R )*, and a' ∈ ∆.  
Also, it should be noted that g(u, λ ) = u, where λ  is the 
empty word. 
For each state q ∈ Q, x ∈ X and a ∈ ∆ , we define  
gq(a) to be the Boolean function ( QB  × ∆) → B and 

gx(a) to be the function   ( XR 0≥  × ∆)   → 0≥R     such 
that  
gq( u' )(a) = gq(u', a) and gx(v' )(a) = gx(v', a);  u' ∈ QB  
and v'  ∈ XR 0≥ . Thus, the value of  gq( u' )(a) is  either 1 
or 0 and the value of gx(v')(a)  is either  0 or 'v x , where 

'v x   is  an  element of  v' . 
 
          We define  gQ(u', a)  to be the function  to be the 
function ( QB  ×  ∆ ) → QB  by taking all the |Q| func-
tions gq : ( QB  × ∆ → B, q ∈ Q.  Similarly, we define  

gx(v', a) to be the real function ( XR 0≥  × ∆) → XR 0≥  by 
taking all the |X| functions g x : ( QB × XR 0≥ ) → 0≥R  , x 

∈ X .  For notational convenience, gQ(u', a)  and  gx(v', 
a) can be written as one mapping, g(u, a), u ∈  ( QB × 

XR 0≥ )  and  a  ∈  ∆. 
 
Definition: Let A = (Q, ∆, S, g, h, X, f) be a DTAFA 
and w ∈ (∆× 0≥R )* be a timed word. w is accepted by A 
if and only if  f (g(h(s,w))) = 1, where s ∈ ( QB × XR 0≥ ) 
is  the characteristic vector of S. Moreover, for each 
S q , q ∈ Q S q  = 1 if and only if q ∈ S; and for each  

S x , S x  = 0, where x ∈ X. 
 
Example: Consider the following DTAFA A = (Q, ∆, 
S, g, h, X, f )  where Q = { q0 , q1 , q2 }, ∆ = {a, b, c}, S = 

{ q0 }, X = {x, y},  f ( q0 , q1 , q2 , x, y) = q0 ∧ q1 ∧ q2 ,  
and g is given by the following tables: 
 
 

 
 

State-table for DTAFA A. 
 
 
 

 
 

 
Clock-reset (clk res) table  for DTAFA   A. 

The characteristic vector of S is s = ( q0 , q1 , q2 , x,  y) 
= (1,0,0,0,0). 
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The clock-reset table simply gives the function for the 
ux element of u in g(u, a), where u ∈ ( QB × XR 0≥ ),   a ∈   
(∆ × 0≥R ) for all clocks x ∈ X. If the Boolean value is 
1, then we write 1 . x = x (or x . 1 = x) to indicate a no 
reset. The symbol “.” is the reset operator and not the 
usual concatenation symbol. If the Boolean value is 0, 
then we write 0 . x = 0 (or x . 0) to indicate a reset. In 
fact, the reset operator “.” simulates the functionality of 
the “multiplication operation” in the sense that anything 
multiplied by zero is zero. In addition, if an entry of the 
table contains an expression that is 0, this implies the 
expression is 0 . x (or x . 0). Likewise, if an entry of the 
table contains an expression that is x, this implies the 
expression is 1 · x (or  x . 1). Moreover, ( q1 ∨ q2 ) . x 
means that x is reset if q1 = 0 and q2  = 0. The follow-
ing example traces the acceptance of a timed word w. 
 
Example: Let w = (b,2) (a,3) (c,3)  
         f (g(h(s, (b, 2) (a, 3) (c, 3))))  
   =   f (g(h(g(h(s, (b, 2), (a, 3))), (c, 3))))  
   =   f (g(h(g(h(g(h(s, (b, 2))), (a, 3))), (c, 3)))) 
   =  f(g(h(g(h(g(h((1, 0, 0, 0, 0),(b, 2))),(a ,3))),(c, 3))))  
  =   f (g(h(g(h(g((1, 0, 0, 2, 2, b), (a, 3))), (c, 3)))) 
  =   f (g(h(g(h((0, 1, 0, 2, 2), (a, 3))), (c, 3)))) 
  =   f (g(h(g((0, 1, 0, 3, 3), a)), (c, 3)))) 
  =   f (g(h((1, 0, 0, 3, 0), (c, 3)))) 
  =   f (g((1, 0, 0, 3, 0), c)) 
  =   f (1, 0, 1, 0, 0) 
  =   1∧ 0 ∧1 = 1. 
 

DTFA AND DTAFA 
 

In this section, we show how to transform an |L|-state 
deterministic timed finite automaton (DTFA), into an 
equivalent log |L|-state deterministic timed alternating 
finite automaton (DTAFA). We also show the oppo-
site construction of a DTFA from a given DTAFA.  
 
Definition: A timed finite automaton (TFA) is a sept- 
tuple A = (L,Σ,L0,XL,I,E,Lf ), where (a) L is a finite set 
of locations, the set of states, (b) Σ is an alphabet, the 
input alphabet, (c) L0 ⊆  L is the set of all starting loca-
tions (starting states), (d) XL is a finite set, the set of 
clocks, (e) I is a set of invariants of clocks on a state, (f) 
E is a set of edges between states, (g) Lf   is a set of fi-
nal  locations.  
 
        A deterministic timed finite automaton (DTFA) is 
a timed finite automata with the following key proper-
ties: 
 
i)       | L0| = 1. 

(ii)    I =  Ø. 
(iii)   All clock constraints on a given input symbol 
from  

a given state must be mutually exclusive and  
must          span all XR 0≥ . 

(iv)   All clock zones[1] on a given symbol must be de-
fined. Clock zones are represented as conjunc-
tions of timing constraints. 

 
Theorem: Let A = (L,Σ,L0,XL,I,E,Lf ) be an |L|-state 
DTFA there exists an equivalent log |L|-state DTAFA  
A' = (Q,∆,S,g,h,X,f ) such that L(A) = L(A'). 
 
Proof. Without loss of generality, number the locations 
of L from 0 to |L| - 1. Now, let Ni denote the location 
numbering where 0 ≤ i ≤ |L| - 1 and Bin(Ni) be the 
equivalent binary representation of Ni with exactly m 
bits where m =  log2d |L| . Define Q = { q1 ,…, qm } to 
be the state of the DTAFA, and set ∆ = Σ and X = XL .  
Define the function h  for  A' :  

h(( q1 , … , qm , x1, x2,…, )),(,|| tax X = 
          (( q1 , … , qm , x1+ t, x2 + t,…, )),|| atx X +  

where  a ∈  ∆ and t ∈ 0≥R . 
 
        Let Bin(Ni) = b1 … bm denote the equivalent binary 
representation of Ni  where b1 , b2  and bm  indicate the 
least significant bit (LSB), the next LSB, and the most 
significant bit (MSB), respectively. Identify the least 
significant bit side of Bin(Ni)  and pad it with as many 
zeros as required to make the total number of bits of 
Bin(Ni)  equals to m. Denote by B = b1 … bm . Then, for 
each bit b ∈ B, define a state association mapping ϕ(b) 
from B  → Q : ( b1 … bm ) → ( q1 ,…, qm ). That is, we 
identify the bits b1  with state q1 , b2 with state q2  and 
we proceed with this until all bits have a state associa-
tion (the MSB should be associated with state qm). 
Consider the binary number associated with the state in 
L0, denoted by  B0 = b0

1 … bm
0 . Then  for all i  = 1, …, 

m,  the following conditions hold: 
 
     (i)  If bi

0  = 0, then  ϕ( bi
0 )  ∉  S. 

 
     (ii)   If bi

0  = 0, then  ϕ( bi
0 ) ∈  S. 

 
Consider the set of final locations, Lf = { L f

1 , L f
2 , … ,  

L f
k }, where k is the number of final locations of A. Let  

 
Β f

1 =  b1
1  . . . bm

1  
                               Β f

2 =  b2
1  . . .  bm

2  
                                     . . .  

Β f
k =  b f

k  . . . b f
m  
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denote the binary representations associated with each 
location in Lf and let  ϕ( b1 ), … ,ϕ( bk ) be their respec-
tive state association mappings. For each location in Lf , 
derive the expression: 
 

 
Where 

 
 
and where qi

j  ∈ Q, i=1,…, k-1, j =1,…,m, and the op-
erators  ∨  and  ∧ indicate the bit-wise operations or 
and  and, respectively.  Set f ( q1 ,…, qm , x1, x2, …, x X || ) 
= e f   where e f  is the reduced Boolean expression of  
E f

i  obtained by any known Boolean expression simpli-
fication algorithm.  
        For each input symbol a ∈ Σ, consider all clock 
constraints associated with this symbol. If any two 
overlap, then partition them up into mutually exclusive 
constraints. The result should be a set of mutually ex-
clusive clock constraints whose region, for each clock, 
spans all non-negative real numbers.  
Consider each constraint for each input symbol a ∈ Σ. 
For each location in L, consider its binary equivalent 
representation and the binary equivalent of the state as-
sociation ϕ it goes to upon the considered input symbol 
and clock constraint. We perform the state association 
mapping for each state, then derive a Boolean expres-
sion of the qm ,…, q1  bits for each bit of the resulting 
state list. This will result in obtaining the expression for 
the bit in the state list upon reading an input symbol 
within the given time constraint. 
      Finally, for the clock resets, for each a in Σ, con-
sider each clock constraint for each symbol. For each 
location in L and each clock in X, consider its binary 
equivalent representation. If its edge on the given input 
symbol and constraint resets the clock, then store it as a 
resulting Boolean false function 0, or else store it as a 
resulting Boolean true function 1. For each clock, de-
rive a Boolean expression, given the binary values of 
the states, such that the expression is 1 if and only if the 
binary representation of the state does not reset its 
clock on the given transition. Finally, “dot” the expres-
sion by the interpretation of the clock X so if the transi-
tion resets the clock, then x = 0 . x, and if it doesn’t re-
set the clock, then x = 1 . x. 
 
Theorem: Let A = (Q,∆,S,g,h,X,f ) be a DTAFA there 
exists an equivalent DTFA A' = (L,Σ,L0 XL,  I,E,Lf ) 
such that  L(A) = L(A'). 
 
Proof. Initially, we set Σ = ∆, XL  =  X, and I  = Ø. Asso-
ciate each state in Q with a bit in any |Q|-bit binary 
number. Now, without loss of generality, arrange the 

states in the order  as  q Q|| , q Q 1|| − , … , q1 . We denote a 
binary number formed by these states and bits associa-
tion as  q Q|| , q Q 1|| − , … , q1 .  
 
      Let L be a set of 2 ||Q  states, numbered from 0 to  |Q| 
- 1. Let the state numbered  q Q|| , q Q 1|| − , … , q1 ,  where  

where qi  = 1 if and only if qi ∈ S, be the state  in  L0  
where 1 ≤ i ≤ Q. The set of Lf  is the set of all numbered 
states such that in their binary representation  q Q|| , 

q Q 1|| − ,…, q1 , the value of all the states satisfies the 
function  f .  
      Consider a location q Q|| , q Q 1|| − ,…, q1 .  Derive the 
next state on a given symbol and time constraints by 
forming the number  ' ||q Q , ' 1||q Q − , … , '1q ,   where 'q i  
is the  binary value of that state after the transition 
where 1 ≤ i ≤ Q. Define an edge from q Q|| , q Q 1|| − ,… 

, q1   to ' ||q Q , ' 1||q Q − , … , '1q  with the considered input 
symbol and time constraint. Then, include all clocks  
x j  that are reset within this transition by determining if 
the function  g (q1, q2,…, q|Q|, x1, x2, …, x X|| ) results in 
resetting x j   where   j = 1, … ,|X|. The resulting DTFA 
may not be reduced, however, any standard reduction 
algorithm may be used to reduce the number of states. 
 

DTAFA: PROPERTIES 
 
COMPLEMENTATION 
 
Theorem: Timed regular languages accepted by 
DTAFA are closed under complementation. 
 
Proof. Given a DTAFA A = (Q,∆,S,g,h,X,f ), the lan-
guage accepted by A is L(A). The complement of this 
language ))(( AL   is accepted by a DTAFA A'  = (Q, 

∆,S,g,h,X,f'), where f' = f  ( f  is the logical negation 
of f ).   
 
 
UNION 
 
Theorem:  
Given two DTAFA A1  = ( Q1 ,∆1 , S1 , g1 , h1 , X1 , f 1 ), 
and A2 = ( Q2 ,∆2 , S2 , g2 , h2 , X 2 , f 2 )  we can con-
struct a DTAFA A = (Q, ∆,S,g,h,X,f ) such that  L(A) = 
L(A1 ) ∪ L(A2 ). 
 
 Proof:  We assume that Q1  ∩ Q2 = Ø, it follows that  

S1  ∩ S2  = Ø. X1  ∩ X 2   = Ø.  
Let  Q = Q1  ∪ Q2  ∪ { qx

1 , qx
2 } such that qx

1 , qx
2  ∉ 
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Q1  ∪ Q2 ,  ∆ = ∆1 ∪ ∆2 , S = S1  ∪ S2 , X = X1 ∪ X 2 . 
Given  Q , ∆, and X, h is defined as: 
 

h(( q1
1 ,  q1

2 , . . . , q
Q
1

|1|
, qx

1 ,  q2
1 ,  q2

2 ,  . . . , q
Q
2

|2|
, qx

2 ,  

x1
1 , x1

2  , . . . , x
X

1
|1|
,  x2

1 , x2
2 , . . . , ),(),2

|2|
tax

X
) 

= (( q1
1 , q1

2 , . . . , q
Q
1

|1|
, qx

1 , q2
1 ,  q2

2 ,  . . , q
Q
2

|2|
, qx

2 , tx +1
1 , 

tx +1
2  , . . . , tx

X
+1

|1|
,  tx +2

1 , x2
2 + t , . . . , )),2

|2|
atx

X
+  

The function f is defined as follows: 
f ( q1

1 ,  q1
2 , . . . , q

Q
1

|1|
, qx

1 ,  q2
1 ,  q2

2 ,  . . . , q
Q
2

|2|
, qx

2 , 

x1
1 , x1

2  , . . . , x
X

1
|1|
,  x2

1 , x2
2 , . . . , )2

|2|x
X

 

=( f 1  ( q1
1 ,  q1

2 , . . . , q
Q
1

|1|
, x1

1 , x1
2  , . . . , x

X
1

|1|
) ∧ qx

1 ) 

∨ ( f 2  ( q2
1 , q2

2 , . . . , q
Q
2

|2|
, x2

1 , x2
2  , . . . , x

X
2

|2|
) ∧ qx

2 ) 

where  
q1

1 ,  q1
2 , . . . , q

Q
1

|1|
∈ Q1 ; q2

1 , q2
2 , . . . , q

Q
2

|1|
∈ Q2 ; x1

1 , 

x1
2  , . . . , x

X
1

|1|
 ∈ X1 ; x2

1 , x2
2  , . . . , x

X
2

|2|
∈ X 2 ; 

 and the logical operator “ ∨ ” is referred to as the 
“critical binary operator”. The function g is defined in 
the following manner: 
 
g(u,a) = v, ),( 11 aug  = v1 ,  ),( 22 aug  = v2 , where u1 , 

v1 ∈ ( BQ1  × RX1
0≥ ); u2 , v2 ∈ ( BQ2  × RX 2

0≥ );  u, v  

∈ ( QB × XR 0≥  ),  a ∈ ∆ . 

vq = vq
1    iff  (q ∈  Q1    and   a ∈ ∆1 ) 

vq = vq
2    iff  (q ∈  Q2   and   a ∈∆2 )  

vq  = 0   iff  (q  ∈ Q1    and   a ∉∆1 )  

         or  (q  ∈ Q2   and   a ∉∆2 ) 

vqx
1 = uqx

1   iff a ∈ ∆1  

 
 
vqx

1 = 1  iff  a ∉∆2  

vqx
2 = uqx

2   iff   a ∈ ∆2  

vx  = vx
1        iff  (x ∈ X1   and  a ∈∆1 ) 

vx  = vx
2      iff  (x ∈ X 2   and  a ∈∆2 ) 

vq  = 0       iff   (x ∈ X1   and   a ∉∆1 ) 

           or  (x ∈ X 2   and   a ∉∆2 ) 
 

Note that: 
u =  ( q1

1 ,  q1
2 , . . . , q

Q
1

|1|
, qx

1 ,  q2
1 ,  q2

2 ,  . . . , q
Q
2

|2|
, qx

2 , 

         x1
1 , x1

2  , . . . , x
X

1
|1|
,  x2

1 , x2
2 , . . . , )2

|2|x
X

       

u1 =   ( q1
1 ,  q1

2 , . . . , q
Q
1

|1|
, x1

1 , x1
2  , . . . , x

X
1

|1|
) 

u2 =   ( q2
1 , q2

2 , . . . , q
Q
2

|1|
, x2

1 , x2
2  , . . . , x

X
2

|2|
) 

such that 
uq = uq

1  iff   q ∈ Q1  ,  

uq = uq
2  iff   q ∈ Q2  , 

ux = ux
1  iff   x ∈ X1  , 

ux = ux
2  iff   x ∈ X 2  . 

 
INTERSECTION 
 
Theorem: 
Given two DTAFA A1  = ( Q1 ,∆1 , S1 , g1 , h1 , X1 , f 1 ), 

and A2  = ( Q2 ,∆2 , S2 , g2 , h2 , X 2 , f 2 ) we can con-
struct a DTAFA A = (Q, ∆,S,g,h,X,f ) such  that  L(A) = 
L(A1 ) ∩  L(A2 ). 
 
Proof. We can adapt the proof of the previous theorem 
to construct a DTAFA A = (Q, ∆,S,g,h,X,f ), with the 
same preconditions, as we construct the union of two 
DTAFA. The only difference is that the operator we 
refer to as the critical binary operator is changed to ∧ 
(logical and), instead of ∨  (logical or). It can be noted 
that the intersection algorithm can be constructed with a 
single  qx  ∉ ( Q1  ∪ Q2 )  instead of qx

1  and qx
2 . In 

addition, the following holds in both the intersection 
and union operations: 
  

        If  ∆1  = ∆2 ,  then qx
1 , qx

2  are not required. 
        If  ∆1  = ∆2 ,  then  qx

2  is  not required. 
        If  ∆1  = ∆2 ,  then qx

1 is  not required. 
 

Corollary: For any integers m,n ≥ 1 let A1  be an m-
state and A2  be an n-state DTAFA. Then m + n + 2 and 
m + n + 1 states are sufficient and necessary in the 
worst case for a DTAFA A to accept the languages 
L( A1 ) ∪ L( A2 ) and L( A1 ) ∩  L( A2 ),  respectively. 
 
 
 
COMPOSITION OF DTAFA 
 
Theorem: 
Given two DTAFA A1  = ( Q1 ,∆1 , S1 , g1 , h1 , X1 , f 1 ), 

and A2  = ( Q2 , ∆2 , S2 , g2 , h2 , X 2 , f 2 ) we can con-
struct a DTAFA A = (Q, ∆,S,g,h,X,f ) such  that  L(A) = 
L(A1 ) ⊗  L(A2 ) where ⊗  is  the composition opera-
tion.  
Proof. The steps of the algorithm are described in the 
following proof. We assume the following precondi-
tions: 
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Q1 ∩ Q2 = Ø, it follows that S1 ∩ S2 = Ø, X1 ∩ X 2   

=Ø. Let Q = { Q1 ∪ Q2 }, S = { S1 ∪ S2 },  ∆ = {∆1 ∪ 

∆2 } ,  X  = { X1  ∪ X 2 }. 
The function h is  defined as follows: 
 

h(( q1
1 ,  q1

2 , . . . , q
Q
1

|1|
, qx

1 ,  q2
1 ,  q2

2 ,  . . . , q
Q
2

|2|
, qx

2 ,  

        x1
1 , x1

2  , . . . , x
X

1
|1|
,  x2

1 , x2
2 , . . . , ),(),2

|2|
tax

X
 

= (( q1
1 , q1

2 , . . . , q
Q
1

|1|
, qx

1 , q2
1 ,  q2

2 ,  . . , q
Q
2

|2|
, qx

2 , tx +1
1 ,        

tx +1
2  , . . . , tx

X
+1

|1|
,  tx +2

1 , x2
2 + t , . . . , )),2

|2|
atx

X
+  

f ( q1
1 ,  q1

2 , . . . , q
Q
1

|1|
,  q2

1 ,  q2
2 ,  . . . , q

Q
2

|2|
, 

    x1
1 , x1

2  , . . . , x
X

1
|1|
,  x2

1 , x2
2 , . . . , )2

|2|x
X

 

=( f 1 ( q1
1 ,  q1

2 , . . . , q
Q
1

|1|
, x1

1 , x1
2  , . . . , x

X
1

|1|
) ∧ f 2 ( q2

1 , 

q2
2 , . . . , q

Q
2

|1|
, x2

1 , x2
2  , . . . x

X
2

|2|
 ) 

 
We define g as: 
 g(u, a) = v                  where    uq = uq

1   iff  q  ∈Q1  
g1  ( u1 , a) = v1                         uq = uq

2   iff  q  ∈Q2  
g2  ( u2 , a) = v2                       ux = ux

1   iff  x  ∈ X1  
                                                ux = ux

2   iff  q ∈ X 2    
vq = vq

1   iff  (q ∈ Q1     and   a ∈ ∆1 )  

vq  = uq     iff  (q ∈ Q1    and a ∉ ∆1 )  

       or   (q ∈ Q2   and  a ∉ ∆2 ) 

vq = vq
2   iff  (q ∈ Q2     and  a ∈ ∆2 ) 

vx = vx
1   iff  (x ∈ X1      and   a ∈ ∆1 )  

vx = vx
2     iff  (q ∈ X 2     and   a ∈  ∆2 )  

vx = ux   iff  (x ∈ X1      and   a ∉ ∆1 )  
or  (x  ∈ X 2     and   a ∉ ∆2 ) 

 
    One can define the time-concatenation of two timed 
words w1  and  w2 , as w1 Θ w2 = (a1,t1) Θ (a2,t2) where 
a1, a2 ∈ ∆* , and t1 , t2  are time sequences of the same 
length as a1  and  a2, respectively. 
Let a1 = a1

1 a1
2 . . . an

1  and a2 = a2
1 a2

2 . . . am
2  where | a1| 

= n ∈ N, and  | a2|  = m ∈ N;   ai
1 , a j

2  ∈ ∆ where 1 ≤ i ≤ 
n and 1 ≤ j ≤ m. 
Let t1  = t11 t12 . . . tn

1  and t2  = t2
1 t2

2 . . . tm
2  be the cor-

responding time sequences. Then 
 
(a1,t1) Θ (a2,t2) =   

( a1
1 a1

2 . . . an
1 , t11 t12 . . . tn

1 ) Θ  ( a2
1 a2

2 . . . am
2 , t2

1 t2
2 . . . 

tm
2 ) = ( a1

1 a1
2 . . . an

1 a2
1 a2

2 . . . am
2 , t11 t12 . . . tn

1 ( t2
1 +  

tn
1 ) ( t2

2 + tn
1 ) . . . ( tm

2 + tn
1 ) = ( a1 a2 ,t) 

 

Proposition: The time-concatenation operation  Θ  is:  
(1) associative, (2) right and left distributive over + 
,and (3) can be used  with ∆ to form a non-
commutative monoid (∆*, Θ).  
 
     Let w1 and w2 be two timed words. Then we can de-
fine the operation of timed concatenation of L1  with L2 

to be L1 Θ L2 = {w1 Θ w2 | w1 ∈ L1 and w2  ∈ L2}. Simi-
larly, other time operations can be defined. For exam-
ple, union L1 ∪ L2, intersection L1 ∩  L2, power )(L n , 

and star operations (L1)* = U Ni∈ (L1)i , )( Θ
1L  = 

U Ni∈ (L1)i  where (L1)i  denotes occurrences of L1  (i.e., 
finitely iterated time-concatenation of the enclosed 
timed regular language). The operation  Θ denotes the 
timed version of the Kleene star. 
 
Proposition: The family of timed regular languages is 
closed under the time-concatenation operation. 
 

CONCLUSION 
 

Alternation, timing and determinism add perfect fea-
tures to automata expressiveness, parallelism, and suc-
cinctness, which have practical applications in software 
and real-time systems. It also could potentially lead to 
answer several open problems in formal languages and 
complexity. DTAFA, a class of timed alternating finite 
automata (TAFA), have been proposed in this paper. 
Despite being very expressive for describing timed be-
haviors, both timed finite automata (TFA) and TAFA 
are neither determinizable nor closed under comple-
mentation. However, these limitations could be consid-
ered as drawbacks in several model checking applica-
tions and real-time systems. Also, the lack of comple-
mentation of TAFA and TFA could give a weak theo-
retical endorsement of these machines from the point of 
view languages. We show that DTAFA are closed un-
der all Boolean operations, including the complementa-
tion. Transformation algorithms between DTFA and 
DTAFA were also given. Currently, we are investigat-
ing a representation of DTAFA by systems of language 
equations. 
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