
Journal of Computer Science 3 (2): 104-106, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Dr. Musbah, J. Aqel, Faculty of Electrical and Computer Engineering, Applied Science University,
Amman, 11931, Jordan

104

Computer Arithmetic Algorithms for Mega-Digit Floating Point Numbers’ Precision

Musbah J. Aqel and Mohammed H. Saleh

Faculty of Electrical and Computer Engineering, Applied Science University, Amman, 11931, Jordan

Abstract: IEEE standard 754 floating point is the most common representation used for floating point
numbers, and many computer arithmetic algorithms are developed for basic operations on this
standard. In this study, new computer algorithms are proposed to increase the precision range and to
solve some problems that are available while using these algorithms. However, these algorithms
provide an optional range of required accuracy (Mega-Digit precision) to meet new computer’s
applications.

Key words: IEEE 754 standard, floating-point numbers, computer arithmetic, mega-digit precision

INTRODUCTION

 There are several ways to represent real numbers
on computers. Fixed point places a radix point
somewhere in the middle of the digits, and is equivalent
to using integers that represent portions of some unit[1].
Floating point representation is the most important
representation, which is defined in IEEE 754
standard[2]. This standard was developed to facilitate the
portability of programs from one processor to another
and to encourage the development of sophisticated,
numerically oriented programs. The standard has been
widely adopted and is used virtually on all
contemporary processors and arithmetic coprocessors.
 The IEEE standard defines both a 32-bit single and
64-bit double format, with 8-bit and 11-bit exponent
respectively. . The implied base is 2. In addition, the
standard defines two extended formats, single and
double, whose exact format is implementation
dependent. The extended formats include additional bits
in the exponent (extended range) and in the significand
(extended precision)[2].
 There are many computer algorithms that have
been developed to perform the basic operations for
floating-point arithmetic[3]. However, IEEE 754 has
gone beyond the simple definition of a format to lay
down specific practices and procedures so that floating-
point arithmetic produces uniform, predictable results
independent of the hardware platform. However, some
problems and difficulties may arise as a result of
performing these operations[4]. Some of these problems
can be summarized as follows:

* Exponent overflow
* Exponent underflow
* Significand underflow
* Significand overflow
 In order to increase the precision ranges while
performing arithmetic operations and to make the

precision range a user dependent (i.e. unlimited and
optional) according to the application at hand. This is
called mega –digit precision. So, a set of computer
arithmetic algorithms have been proposed to increase
the precision range to mega-digit and also to solve the
above mentioned problems.
 The algorithms are developed to solve most
arithmetic operations including some most common
mathematical functions, which are necessary (scientific
and general) to solve scientific and general-purpose
problems. These algorithms are developed and
implemented by C++ language to increase the accuracy
and extendibility of this language.

Floating point proposed algorithms: To facilitate the
algorithms’ performance, there are some points, which
are considered and assumed for algorithms
development:
* All the numbers are entered as a string format

except for the data within the standard range of the
machine accuracy.

* If the intended number is huge in precision and
difficult to be entered by the user, then it should be
stored in a file and, by using the overloaded
operator; the file will be loaded (file
name).However, the output is also can be stored in
a file for further use.

* The entered number (float point number) should be
checked for its format. If it is written incorrectly,
the software will give error massage.

* Whatever the size of accuracy required, the last
two digits in the floating -point number will be
zero.

* Whenever the number is entered, it will be mapped
into an array with a free size that may equal to data
segment reserved. While mapping, the number will
be represented in the array as follows:

 A: decimal point by (-1).

J. Computer Sci., 3 (2): 104-106, 2007

 105

B: The plus sign of a positive signed number or
unsigned number will be represented by (-2).
C: The minus sign of a negative signed number is
represented by (-3).

* Due to mapping, the float point numbers that have
many useless zeros, either to the left or to the right
of the decimal point, will be truncated and not
mapped.

* The accuracy size is a machine dependent in the
sense of the memory size (i.e. array size) that
reserved by the machine, where the array size
allowed for the number is machine dependent and
differs from machine to machine

Floating point addition algorithm for extendible
accuracy
* The two numbers will be mapped into two arrays

including their sign and decimal point.
* The numbers will be normalized and shifted to left

or right and place zeros at the normalized positions
so that the length of the two numbers becomes
equal and then represented in the arrays.

* The two numbers will be checked out after
mapping, if any has a minus sign.

* For example, (-3), then the subtraction procedure
will be called otherwise it proceeds in the addition
procedure

* Normal addition will be carried out.
* Whenever a carry out is taken place, it will be

stored in the position of the sign bit for the two
numbers.

Example: Assume that two small numbers are taken, X
= 53.0320, Y = 324.689053210, then X + Y is required.
After checking these two numbers and performing
normalization then these two numbers are now mapped
into two arrays as follows:

-2 0 0 5 3 -1 0 3 2 0 0 0 0 0 0

-2 7 3 2 4 -1 6 8 9 0 5 3 2 1 0

 Then after carrying out normal addition between
the contents of the two arrays the result will be as
follows:

-2 7 3 7 7 -1 7 3 1 0 5 3 2 1 0

Floating point subtraction algorithm for extendible
accuracy
* Map the two numbers in two different arrays

including their sign and decimal point
* Carry out the 9’s complement of the subtrahend

number
* Carry out normal addition procedure.

* Then, follow the rules of subtraction with 9’s
complement regarding to the result.

Example: Assume X=30.25, Y= 30131.256, then carry
out X – Y.
 After performing normalization or the two
numbers, then X=00030.250
 And Y=30131.256.
 Take the 9’complement of subtrahend, then
X=69868.743
 Perform normal addition as explained in previous
algorithm.

Floating point multiplication algorithm for
extendible accuracy
* The two numbers will be kept in two arrays and

double size of the largest of the two numbers array
will be reserved.

* The decimal point will be removed from its
position from the two arrays and will be placed
back after completing multiplication process.

* The multiplication will proceed as normal
multiplication procedure with writing the result on
the same double sized array.

* The decimal point will be placed back after
completing the multiplication process as usual in
the double sized array. It will be placed in the
position equal to its original digits position in the
two numbers (i.e.: number of digits in the first
number plus number of digits in the second
number. Then, a shift left will be performed.

Example: Assume that X= 57.321 and Y=1.123456,
then X, Y is required.
 The size of the two numbers will be determined
after mapping in arrays, and the largest in size will
determine the size of the output array that, the result
will be stored in it. This output array will be double in
size, in this example it is equal to double of size of Y
(14).
 The decimal point will be shifted to the rightmost
of the two numbers.

5 7 3 2 1 -1 0

1 1 2 3 4 5 6 -1 0

 Normal multiplication will be carried out and
stored in the double size array as follow:
 The final result will be determined by calculating
the number of digits after decimal in both numbers (X
=3, Y =6), which is equal here (9). Then, by placing the
decimal point 9 digits to the left. The final result will be
(64. 397621385).

-2 6 4 -1 3 9 7 6 2 1 3 8 5 0

J. Computer Sci., 3 (2): 104-106, 2007

 106

Floating point division algorithm for extendible
accuracy: The dividend and the divisor will be
compared. If the dividend is less than the divisor then
go to step (4). Otherwise do the following:
* Subtract the divisor from the dividend and count

how many times this value can be subtracted. The
number of times is considered as a result of the
division and it represents the value that will be
placed as an integer part to the left of the decimal
point of the result.

* Take the result of subtraction and shift right the
decimal point of the original number one position
to the right and then carry out the subtraction as in
step (I) except that the result of count is placed to
the right of the decimal point.

* Carry out the result of true subtraction as in step
(II) till the required precision is reached.

* Whenever the dividend is less than the divisor, the
dividend will be normalized to the left of the
decimal point with one digit only.

* Carry out subtraction as in step (1) but the result
will be placed to the right of the decimal point,
where a number of zeros will be placed directly
after the decimal point equal to the shifted digits
that carried out by the dividend.

Example: Assume that X= 9.83, Y=7.0 then find X/Y.
 Since dividend is greater than divisor, then the
value (7) will be checked how many times can be
subtracted from (9). The result is (1) and the result of
true subtraction is (2). The dividend number now is
(2.83).
 he dividend will be shifted right one position so
that the dividend becomes (28.3).
 Carrying out the same previous procedure, the
divisor can be subtracted (4) times from the dividend[
21.3,14.3,7.3,0.3].
 The result of these steps (1.4) for one digit
precision only. This procedure can be repeated up to the
required precision size.

Floating point exponential algorithm for extendible
accuracy: Given that en: where, N is a float number
with any accuracy

Assume that AN = ex1 (1)
Find Ln of both sides
Ln A = ex1

 N Ln A = x1 (2)
Find Ln A
Assume that A = ex2
Where A = 1 + x2 + x2

2 / 2! + … + x2
m / m!

Assume that m is the accuracy required
Then, m = (accuracy required + k)
This k number is used to prevent any approximation
error and k ≥15
Ln A = Ln (ex2)
Where A = 1 + x2 + x2

2 / 2! + … + x2
m / m!

Here, bisection method is used.
Find x2 using halving procedure where the values of x2
are [0, A]
 The value of x2 which is equal to Ln A
X2 = Ln A from (2)
Substitute the value of x2 in step 2
 N x2 = x1

 Then AN = ex1
 x2N = ex1 from (2)
Direct substitution of x1 in the series

ex2 =1 + x2 + x2
2 / 2! + … + x2

m / m!

CONCLUSION

 Computer arithmetic algorithms are developed and
proposed to solve the limited precision range defined by
IEEE 754 standard. These algorithms are implemented
by C++ language and could successfully perform all the
basic and exponential operation with unlimited (i.e.
Mega-digit) precision range. This will be helpful to
newly introduced computer’s applications that require
more precision range than IEEE 754 standard.

REFERENCES

1. Mano, M., 2000. Computer System Architecture.

Prentice-Hall.
2. IEEE Computer Society, 1985. IEEE standard for

binary floating-point arithmetic. IEEE Standard
754.

3. Koren, I., 1993. Computer Arithmetic Algorithms.
Englewood Cliffs, NJ, Prentice-Hall.

4. Hayes, J.P., 1998. Computer Architecture and
Organization. McGraw-Hill, Third Edn.

