
Journal of Computer Science 3 (3): 186-194, 2007
ISSN 1546-9239
© 2007 Science Publications

Corresponding Author: B. Yagoubi, Department of Computer Science, Faculty of Sciences, University of Oran, 31000 Oran,
Algeria

186

Task Load Balancing Strategy for Grid Computing

1B. Yagoubi and 2Y. Slimani

1Department of Computer Science, Faculty of Sciences, University of Oran, 31000 Oran, Algeria
2Department of Computer Science, Faculty of Sciences of Tunis, 1060 Tunis, Tunisia

Abstract: Workload and resource management are two essential functions provided at the service level
of the Grid software infrastructure. To improve the global throughput of these environments, effective
and efficient load balancing algorithms are fundamentally important. Most strategies were developed
in mind, assuming homogeneous set of resources linked with homogeneous and fast networks.
However for computational Grids we must address main new challenges, like heterogeneity, scalability
and adaptability. Our contributions in this perspective are two fold. First we propose a dynamic tree-
based model to represent Grid architecture in order to manage workload. This model was characterized
by three main features: (i) it was hierarchical; (ii) it supports heterogeneity and scalability; and (iii) it
was totally independent from any Grid physical architecture. Second, we develop a hierarchical load
balancing strategy and associated algorithms based on neighbourhood propriety. The main benefit of
this idea was to decrease the amount of messages exchanged between Grid resources. As consequence,
the communication overhead induced by tasks transferring and flow information was reduced. In order
to evaluate the practicability and performance of our strategy we have developed a Grid simulator in
Java. The first results of our experimentations were very promising. We have realized a significant
improvement in mean response time with a reduction of communication cost. It means that the
proposed model can lead to a better load balancing between resources without high overhead.

Keywords: Grid computing, load balancing, workload, tree-based model, hierarchical strategy

INTRODUCTION

 The rapid development in computing resources has
enhanced the performance of computers and reduced
their costs. This availability of low cost powerful
computers coupled with the popularity of the Internet
and high-speed networks has led the computing
environment to be mapped from distributed to Grid
environments. In fact, recent researches on computing
architectures are allowed the emergence of a new
computing paradigm known as Grid computing[1]. Grid
is a type of distributed system which supports the
sharing and coordinated use of resources, independently
from their physical type and location, in dynamic
virtual organizations that share the same goal[2]. This
technology allows the use of geographically widely
distributed and multi-owner resources to solve large-
scale applications like meteorological simulations, data
intensive applications, research of DNA sequences and
so on[3].
 In order to fulfil the user expectations in terms of
performance and efficiency, the Grid system needs
efficient load balancing algorithms for the distribution

of tasks. A load balancing algorithm attempts to
improve the response time of user’s submitted
applications by ensuring maximal utilization of
available resources. The main goal is to prevent, if
possible, the condition where some processors are
overloaded with a set of tasks while others are lightly
loaded or even idle[4].
 Although load balancing problem in conventional
distributed systems has been intensively studied, new
challenges in Grid computing still make it an interesting
topic and many research projects are under way. This is
due to the characteristics of Grid computing and the
complex nature of the problem itself. Load balancing
algorithms in classical distributed systems, which
usually run on homogeneous and dedicated resources,
cannot work well in the Grid architectures[5]. Grids has
a lot of specific characteristics, like heterogeneity,
autonomy, scalability, adaptability and resources
computation-data separation, which make the load
balancing problem more difficult[6].

 In this study we proposed a framework consisting
of distributed dynamic load balancing algorithm in
perspective to minimize the average response time of

J. Computer Sci., 3 (3): 186-194, 2007

 187

applications submitted to Grid computing. Our main
contributions are two fold. First we propose a dynamic
tree-based model to represent Grid architecture in order
to manage workload. This model is characterized by
three main features: (i) it is hierarchical; (ii) it supports
heterogeneity and scalability; and (iii) it is totally
independent from any Grid physical architecture.
Second, we develop a hierarchical load balancing
strategy and associated algorithms based on
neighbourhood propriety. The goal of this idea is to
decrease the amount of messages exchanged between
Grid resources. As consequence, the communication
overhead induced by tasks transferring and flow
information is reduced.

Load balancing problem
Overview: A typical distributed system will have a
number of interconnected resources who can work
independently or in cooperation with each other. Each
resource has owner workload, which represents an
amount of work to be performed and every one may
have a different processing capability. To minimize the
time needed to perform all tasks, the workload has to be
evenly distributed over all resources based on their
processing speed.
 The essential objective of a load balancing consists
primarily in optimizing the average response time of
applications, which often means maintaining the
workload proportionally equivalent on the whole
resources of a system.
 Conceptually, load balancing algorithms can be
classified into two categories: static or dynamic[7].
* In static load balancing, a task is assigned to an

available resource when it is generated or admitted
to the system using a fixed schema.

* In contrast to static load balancing, dynamic load
balancing allocate/reallocate tasks to resources at
runtime based on no priori task information, which
may determine when and whose tasks can be
migrated. In this way, imbalances load can be
resolved by redistributing tasks in real-time, thus
solving the shortcoming of static load balancing.
However, network traffic for transmitting load
information to the load balancing system would
increase too much due to the decision dynamicity.

 Load balancing algorithms can be defined by their
implementation of the following policies[8]:
* Information policy: specifies what load information

to be collected, when it is to be collected and from
where.

* Triggering policy: determines the appropriate
moment to start a load balancing operation.

* Resource type policy: classifies a resource as
server or receiver of tasks according to its
availability status and capabilities.

* Location policy: uses results of the resource type
policy to find a suitable partner for a server or
receiver.

* Selection policy: defines tasks that should be
migrated from overloaded resources to idlest ones.

Challenges of load balancing in grid: Although load
balancing methods in conventional parallel and
distributed systems has been intensively studied[4], they
do not work in Grid architectures because these two
classes of environments are radically distinct. Indeed,
the schedule of tasks on multiprocessors or multi
computers suppose that processors are homogeneous
and linked with homogeneous and fast networks[9]. The
rationale behind this approach is that:
i. The resources have same capabilities;
ii. The interconnection bandwidth between processing

elements is high;
iii. Input data is readily available at the processing

site;
iv. The overall time spent transferring input and output

data is negligible in comparison with the total
application duration.

 Given the distribution of tremendous resources in a
Grid environment and the size of the data to be moved,
it becomes clear that this approach is not accurate
because following properties[5,6]:

Heterogeneity: Heterogeneity exists in both of
computational and networks resources.
* First, networks used in Grids may differ

significantly in terms of their bandwidth and
communication protocols.

* Second, computational resources are usually
heterogeneous (processors, resource capabilities
memory size and so on). Also different
software’s, like operating systems, file systems;
cluster management software may be
heterogeneous.

Autonomy: Because the multiple administrative
domains that share Grid resources, a site is viewed as
an autonomous computational entity. It usually has its
own scheduling policy, which complicates the task
allocation problem. A single overall performance goal
is not feasible for a Grid system since each site has its
own performance goal and scheduling decision is made
independently of other sites according to its own
performances.

J. Computer Sci., 3 (3): 186-194, 2007

 188

SE ijk CE ijk

Site Sjk

Site Sik

Site SlkCluster C

Cluster C Cluster Cl

k

m

Switch SW jk

Gategtk

Fig. 1: Example of grid topology

Scalability and adaptability: A Grid might grow from
few resources to millions. This raises the problem of
potential performance degradation as the size of a Grid
increases. If the pool of resources can be assumed fixed
or stable in traditional parallel and distributed
computing environments, in a Grid dynamicity exists in
the networks and computational resources.
* First, a network shared by many execution domains

cannot provide guaranteed bandwidth. This is
particularly true for Wide-Area Networks like
Internet.

* Second, both the availability and capability of
computational resources will exhibit dynamic
behaviour. On one hand new resources may join
the Grid and on the other hand, some resources
may become unavailable. Resource managers must
tailor their behaviour dynamically so that they can
extract the maximum performance from the
available resources and services.

Resource selection and computation-data
separation: In traditional systems, executable codes of
applications and input/output data are usually in the
same site, or the input sources and output destinations
are determined before the submission of an application.
Thus the cost for data staging can be neglected or the
cost is a constant determined before execution and load
balancing algorithms need not consider it. But in a Grid
the computation sites of an application are usually
selected by the Grid scheduler according to resource
status and some performance criterion. Additionally,
the communication bandwidth of the underlying
network is limited and shared by a host of background
loads, so the communication cost cannot be neglected.
This situation brings about the computation-data
separation problem: the advantage brought by selecting
a computational resource that can provide low
computational cost may be neutralized by its high
access cost to the storage site.

J. Computer Sci., 3 (3): 186-194, 2007

 189

Fig. 2: Tree-based representation of a grid

 These challenges pose significant obstacles on the
problem of designing an efficient and effective load
balancing system for Grid environments. Some
problems resulting from the above are not solved
successfully yet and still open research issues. Thus it is
very difficult to define a load balancing system which
can integrate all these factors.

Tree-based balancing model: In order to well explain
the proposal model, we must define the topological
structure of a Grid computing.

Grid topology: As topological point of view, we regard
a Grid as a collection of G clusters Ck, connected by
WAN links through gates gtk, k ∈ {0... G-1}. Each
cluster contains S sites Sjk interconnected via switches
SWjk, j∈{0,...,S-1}. Every site involves M resources
(Computing and Storage Elements) denoted CEijk and
SEijk, i∈{0,...,M-1}. Resources within a site are
interconnected together by a local area network.
An example of such topology is shown in Fig. 1.

Mapping a Grid into a tree-based model: The load
balancing strategy proposed in this is based on a
mapping of any Grid into a tree-based model. It is build
as follows:

* First, for each site we create a two levels subtree.
The leaves of this subtree correspond to the
Computing Elements of a site and the root of this
subtree is a virtual node associated to the site. The
role of this virtual node is to manage the
workload of a site. In practice, this management
function is processed by a computing element
within the site.

* Second, the subtrees corresponding to all sites of a
cluster are aggregated to generate a three levels
subtree.

* Third, these subtrees are connected together to
build a four levels tree.

 The final tree is denoted by G/S/M, where G is the
number of Clusters that compose the Grid, S the
number of Sites and M the number of CE’s. As
illustrated by Fig. 2 this generic tree can be transformed
in turn into three specific trees: G/S/M, 1/S/M and
1/1/M, depending on the values of G, S and M. The
mapping function generates a non cyclic connected
graph where each level has specific functions.

Level 0: In this first level (top level), we have a virtual
node that corresponds to the root of the tree. It is
associated to the Grid and it manages the workload on
the whole Grid.

J. Computer Sci., 3 (3): 186-194, 2007

 190

Level 1: This level contains G virtual nodes, each one
associated to a physical cluster of the Grid. In our load
balancing strategy, this virtual node is responsible to
manage its sites.

Level 2: In this third level, we find S nodes associated
to physical sites of all clusters of the Grid. The main
function of these nodes is to manage the workload of
their physical Computing Elements.

Level 3: At this last level (leaves of the tree), we find
the M Computing Elements of a Grid linked to their
respective sites and clusters.
 Regardless the tree model, we use the term of
virtual node, but in practice each virtual node
corresponds to a physical Computing Element. For
example, if a site Sjk contains M Computing Elements,
M-1 CE’s will be used to run tasks and the Mth is
considered as a virtual node whose role is to manage
the workload within the site Sjk.
 Proposed model has some characteristics that we
can resume as follows:
i. It is hierarchical: this characteristic will facilitate

the workflow information flow through the tree.
ii. It supports heterogeneity, autonomy and

scalability: adding or removing entities like (CE’s,
sites or clusters) correspond to simple operations
(adding/removing nodes or sub trees) in our model.

iii. It is totally independent from any physical
architecture of a Grid, because the mapping of a
Grid into a tree is univocal. For each Grid
corresponds one and only one tree.

Load balancing strategy
Principles: In accordance with the structure of
proposed model, we develop a hierarchical load
balancing strategy. We distinguish between three load
balancing levels: Intra-site (Inter-CE's), Intra-cluster
(Inter-sites) and Intra-Grid (Inter-clusters).

1. Intra-site load balancing: In this first level,
depending on its current load, each CE’s manager
decides to start a load balancing operation. In this case,
the CE’s manager tries in priority, to load balance its
workload among its computing elements. Hence, we
can proceed S local load balancing in parallel, where S
is the number of sites.

2. Intra-cluster load balancing: In this second level,
load balance concerns clusters Ck, for which some
owner CE’s managers fail to achieve a local load
balance. In this case, the sites manager transfers tasks
from overloaded sites to under loaded ones.

3. Intra-Grid load balancing: The load balance at this
level is used only if some sites managers fail to load
balance their workload among their associated sites. If
we have such as case, tasks of overloaded clusters are
transferred to under loaded clusters by the Grid
manager.
 The main advantage of this strategy is to privilege
local load balancing in first (within a site, then within a
cluster and finally on the whole Grid). The goal of this
neighbourhood strategy is to decrease the amount of
messages between sites and clusters. As consequence of
this goal, the communication overhead induced by tasks
transfer is reduced.

J. Computer Sci., 3 (3): 186-194, 2007

 191

Generic strategy: At any load balancing level, we
propose the following strategy:
1. Estimate the current workload of a site, a cluster

or a Grid: Here we are interested by the
information policy to define what information
reflects the workload status of site/cluster/Grid,
when it is to be collected and from where.
Knowing the number of available elements under
his control and their computing capabilities, each
group manager estimates its own capability and
performs the following actions:

i. Estimates current group workload based on
workload information received periodically from
its elements.

ii. Computes the standard deviation over the workload
index in order to measure the deviations between
its involved elements.

iii. Sends workload information to its manager.
2. Decision-making: In this step the manager decides

whether it is necessary to perform a load balancing
operation or not. For this purpose it executes the
two following actions:

i. Determines the imbalance/saturation state.
 If we consider that the standard deviation measures
the average deviation between the processing time of an
element and the processing time of its group
(Site/Cluster/Grid), we can say that this element is in
balance state when this deviation is small. Indeed this
implies that processing time of each element converges
to the processing time of its group.
 In practice, we define a balance threshold, noted ε,
from which we can say that the standard deviation tends
to zero and hence the element is balanced.
 An element can be balanced while being saturated.
In this particular case, it is not useful to start an intra
Site/Cluster/Grid load balancing since CE’s / Sites /
Clusters will remain overloaded. To measure saturation
we introduce another threshold called saturation
threshold noted by δ. When the current workload of the
element borders its capacity, it is obvious that it is
useless to balance since all belonging components are
saturated.
ii. Partitioning. For an imbalance case, we determine

the overloaded elements (sources) and the under-
loaded ones (receivers), depending on processing
time of every element relatively to average
processing time of the associated group.

3. Tasks transfer: In order to transfer tasks from
overloaded elements to under loaded ones, we
propose the following heuristic:

a. Evaluate the total amount of load: ”Supply”,
available on receiver elements.

b. Compute the total amount of load: ”Demand”,
required by source elements

c. If the supply is much lower than the demand
(supply is far to satisfying the request) it is not
recommended to start local load balancing. We
introduce a third threshold, called expectation
threshold ρ , to measure relative deviation between
supply and demand.

d. Otherwise performs tasks transfer regarding
communication cost induced by this transfer and
according to criteria selection.

Load balancing algorithm: We define three levels of
load balancing algorithms: intra-site, intra-cluster and
intra-Grid load balancing algorithm.

J. Computer Sci., 3 (3): 186-194, 2007

 192

 Each algorithm is triggered when the group
manager notes that there is a load imbalance between
the elements which are under its control. To do this
report, the group manager receives, in a periodic way,
workload information from each element. Based on this
information and on estimated balance threshold �, it
analyzes the current load of the group. According to the
result of this analysis, it decides whether to start a local
balancing in the case of imbalance state, or just to
inform its manager of the higher level about his current
load.

Notations: Given a Grid computing whose topology is
illustrated by Fig. 1, we use the following notations in
the description of various load balancing algorithms:
1. Thresholds: Balance threshold ε, Saturation

threshold δ and Expectation threshold ρ, defined
above.

2. Computing element parameters:
* CEijk: ith computing element of jth site Sjk of kth

cluster Ck;
* SPDijk: computing capability of CEijk expressed in

number of computational unities executed per time
unity;

* SATijk: Capacity of CEijk, it is the maximum
number of computational unities which CEijk can
queued ;

* PERijk: specific period of CEijk, during which it
evaluates and sends its workload information to its
CE’s manager;

* LODijk: Current workload of CEijk expressed in
number of computational unities waiting to be
executed on CEijk.

 We define the processing time of CEijk by: TEXijk =
LODijk / SPDijk
3. Site parameters:
* Sjk: jth site Sjk of kth cluster Ck;
* Njk: number of available CE's of Sjk;
* PERjk: specific period of Sjk, during which it

evaluates and sends its workload information to its
sites manager;

* LBjk: bandwidth of LAN connection between the
CE's within Sjk;
 From this information, we define by aggregation
the following parameters:

*
∑
=

=
jkN

i
ijkjk SPDSPD

1 = Speed of site Sjk;

*
∑
=

=
jkN

i
ijkjk SATSAT

1 = Capacity of Sjk;

*
∑
=

=
jkN

i
ijkjk LODLOD

1 = Current load of Sjk;

* jk

jk
jk SPD

LOD
TEX =

= Site processing time;

*
()∑ =

−= jk

jk

N

i jkijkNjk TEXTEX
1

21 .σ
= Deviation over

the processing times of Sjk;
4. Cluster parameters
* Ck: kth cluster of the Grid;
* Nk: number of available sites of Ck;
* PERk: specific period of Grid manager, during

which it estimates its workload information;
* LB: Various bandwidth connections inter-clusters;

*
∑
=

=
N

k
kSPDSPD

1 = Speed of the Grid;

*
∑
=

=
N

k
kSATSAT

1 = Capacity of the Grid;

*
∑
=

=
N

k
kLODLOD

1 = Grid workload;

* SPD
LOD

TEX =
= Grid processing time;

*
()∑ =

−=
N

k kN TEXTEX
1

21 .σ
= Deviation over the

Grid processing times.
 Intra site load balancing algorithm: This algorithm
is considered as the kernel of our load balancing
strategy. The neighbourhood idea which privilege local
load balancing in first, lets us think that it is the most
frequently requested level. It is executed when CE’s
managers find that there exists an imbalance between
computer elements under their control. At this level,
communication costs are not taken into account in the
tasks transfer since the CE’s of the same site are inter-
connected by a LAN network, whose communication
cost is constant. Indeed, for any destination of the
migration task, we will have the same transfer cost.
 Intra cluster load balancing algorithm: This
algorithm, source -initiated, is executed only when
some CE’s managers fail to balance locally the
overload computing. Knowing the global state of each
own site, the sites manager can evenly distribute the
global overload between its sites (tasks migration
between sites of the same cluster). Contrary to the intra-
site level, in this level algorithm we must take account
of the communication cost between sites. A task can be
transferred only if, the sum of its latency in the site
source and its cost transferring, is lower than its latency
on the site receiver. This precaution will avoid making
useless tasks migration.
 Intra Grid load balancing algorithm: This third
level algorithm performs a global load balancing among
all clusters of the Grid. It is started in the extreme case

J. Computer Sci., 3 (3): 186-194, 2007

 193

where majority of the sites managers fail to locally
balance their overload. This load balancing level must,
as far as possible, be avoided because inter clusters
communication costs are very significant. This over
cost is due primarily to the strong heterogeneity of the
Grid resources. This algorithm proceeds in the same
way as the intra-cluster algorithm with two major
differences:
1. The Grid manager does not have a higher level;
thus it does not send any information about its
workload.
2. It is useless to test at the end of the algorithm if

load balancing is successful or not, because there
are not other possible alternatives.

Experimental study: All the experiments were
performed on PC Pentium IV of 3 GHz, with 1 GB
RAM and running under Windows XP. In order to
obtain reliable results, we reiterated the same
experimentations more than ten (10) times. For every
CE we generate an random speed varying between 10
and 30 computing units per time unity. Tasks were
randomly submitted during a fixed period between [0 -
100sec]. Number of instructions per task varied
between 300 and 1500 computing units.

Experiments 1: In this first set of experiments, we
focused to the response time according to the number of
tasks in one hand and then to the number of CE’s in
other hand. We have remarked the following:
1. In practically all cases we obtained an

improvement in response time greater than 10%.
2. For a number of CE’s fixed at 80 and for a number

of tasks varying from 5000 to 25000 by step of
5000, the improvement varies from 10.18% to
17.41%. These results shows in a very clear way
that the proposed strategy allowed to reduce in a
very significant way the means response time of
the tasks. The best results are obtained for a
number of tasks equal to 25000, which leads us to
think that our load balancing strategy is interesting
if we have a large number of tasks.

3. For a number of tasks fixed at 20000 and for a
number of CE’s varying from 20 to 100 by step of
20, we obtain a gain between 10.39% and 27.42%.
The best improvements are reached when CE’s
number is 60. In this context the Grid is a stable
state (neither overloaded nor completely idle).

Experiments 2: During this experiment, we interested
to communication time. We fixed at each time the
number of CE's and we varied the number of tasks.
Results of the experiments are gathered in Fig. 3.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

Number of Tasks

A
ve

ra
ge

 c
om

m
un

ic
at

io
n

tim
e

(s
ec

)

CE's =20
CE's =40
CE's =40
CE's =80

Fig. 3: Variation of communication time

 The variation of this metric is very sensitive to the
initial distribution of the tasks and to the number of
CE's having a high speed.
 For a number of tasks equal to 20000, the curve
associated with a number of CE's equal to 20 reached
its maximum which is normal. Indeed, for this value
and to reach a balancing, it is necessary to transfer more
tasks because of the randomly distribution of the tasks.
 However, for the number of tasks equal to 16000,
the curve associated with a number of CE's equal to 80
reached its minimum in time of communication. This
result is explained by the fact that the randomly
distribution of the tasks was rather equitable.

CONCLUSION

 In this study, we addressed the problem of load
balancing in large scale distributed systems. We
proposed a load balancing strategy based on a tree
representation of a Grid. The model allows
transforming any Grid architecture into a unique tree
with at most four levels. From this generic tree, we can
derive three sub-models depending on the elements that
compose a Grid. Using this model, we defined a
hierarchical load balancing strategy that privileges local
balancing in first (load balance within sites without
communication between sites). The first results of our
experimentations are very promising and lead to a
better load balancing between CE’s of a Grid without
high computing overhead. We have appreciably
improved the metrics defined, in particular average
response time. In the future, we plan to integrate our
load balancing strategy on known simulators in the field
of the Grids, like GridSim[10]. This will allow us to
measure the effectiveness of our strategy in existing
simulators. We also envisage to develop our strategy as
a service of GLOBUS middleware[11].

J. Computer Sci., 3 (3): 186-194, 2007

 194

REFERENCES

1. Buyya, R., D. Abramson, J. Giddy and H.

Stockinger, 2002. Economic models for resource
management and scheduling in grid computing. J.
Concurrency and Computation: Practice and
Experience, 14: 1507-1542.

2. Foster, I., C. Kesselman and S. Tuecke, 2002. The
anatomy of the Grid: Enabling scalable virtual
organizations. Intl. J. High Performance
Computing Applications, 15: 3.

3. Chervenak, A., I. Fosterand C. Kesselman, C.
Salisbury and S. Tuecke, 2000. The data Grid:
towards an architecture for the distributed
management and analysis of large scientific
datasets. J. Network and Computer Applications,
23: 187-200.

4. Xu, C.Z. and F.C.M. Lau, 1997. Load Balancing in
Parallel Computers: Theory and Practice. Kluwer,
Boston, MA.

5. Berman, F., G. Fox and Y. Hey, 2003. Grid
Computing: Making the Global Infrastructure a
Reality. Wiley Series in Comm. Networking &
Distributed System.

6. Zhu, Y., 2003. A survey on grid scheduling
systems. Technical report, Department of
Computer Science, Hong Kong University of
science and Technology.

7. Houle, M., A. Symnovis and D. Wood, 2002.
Dimension-exchange algorithms for load balancing
on trees. In Proc. of 9th Int. Colloquium on
Structural Information and Communication
Complexity, pp: 181-196.

8. Kabalan, K.Y., W.W. Smar and J.Y. Hakimian,
2002. Adaptive load sharing in heterogeneous
systems: Policies, modifications and simulation.
Intl. J. Simulation, 3: 89-100.

9. Leinberger, W., G. Karypis, V. Kumar and R.
Biswas, 2000. Load balancing across
nearhomogeneous multi-resource servers. In 9th
Heterogeneous Computing Workshop, pp: 60-71.

10. Buyya, R., A Grid simulation toolkit for resource
modelling and application scheduling for parallel
and distributed computing.
www.buyya.com/gridsim/.

11. Foster, I. and C. Kesselman, 1997. Globus: a
metacomputing infrastructure toolkit. Intl. J. Super-
Computer and High Performance Computing
Applications, 11: 115-128.

