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Abstract: Time-Triggered architecture (TTA) provides a computing infrastructure for the design and 
implementation of dependable distributed systems. The core building block of the TTA is the 
communication protocol TTP/C. This protocol has been designed to provide no faulty nodes. TTP/C 
integrates a set of fault-tolerant services like: message transmissions, clocks synchronization and 
Group Membership Protocol (GMP). The GMP protocol ensures that each TTA node maintains a 
private membership set, which records all the nodes that are believed to be nonfaulty. In the GMP 
protocol previously studied in the literature, any detected faulty node was immediately excluded from 
the group. This gradual exclusion process risks invalidating the protocol after N-3 successive failures if 
the ability of faulty node reintegration was not implemented. Our contribution in this paper was to 
remedy this serious problem. A node reintegration increases system survivability by allowing a 
(recovering) transiently-faulty node to regain a group. Our proposal algorithm, devoted to node 
reintegration inside the group membership protocol, was formally specified and verified using a 
diagrammatic representation. The verification of the proposal has been checked with the well known 
PVS theorem prover. 
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INTRODUCTION 

 
 The Time-Triggered Architecture (TTA) is 
distributed computer architecture for the 
implementation of highly dependable real-time systems. 
TTA is intended for devices controlling safety-critical 
electronic systems without mechanical backup, so-
called “by-wire” systems such as those for automotive 
steering, braking and suspension control[1]. It has been 
argued that the kind of reliability required in such 
situations cannot be achieved without a careful formal 
analysis of the mechanisms and algorithms involved[2,3]. 
A TTA system is provided with fault tolerance abilities 
implemented in both hardware and software 
components. Whereas the hardware relies on redundant 
nodes and duplicated communication channels, the 
software uses algorithms that control such basic 
services as membership agreement, clique avoidance 
and clock synchronization that are accomplished by 
TTP/C. The Time-Triggered Protocol TTP/C is the core 
of the communication level of TTA. Furthermore, 
TTP/C is designed to provide an acceptable level of 
fault tolerance. In particular, the protocol has to ensure 
that non-faulty nodes receive consistent data despite the 
presence of possibly faulty nodes or a faulty 
communication channel. The provision of fault 
tolerance is based on a number of assumptions, which  

 
constitute the so-called fault hypothesis. The main 
assumption for the algorithms implemented in TTP/C is 
that a fault manifests itself as either a reception fault or 
a consistent send fault of some node[4]. Especially, 
TTP/C assumes that transmission faults are consistent, 
that is, messages are received by either all non-faulty 
nodes or none.  
 In this regard, this paper is devoted to the transient 
failures. The faulty node that has been excluded can 
reintegrate the group membership after recovery 
operation. For this, a detailed overview of formal 
analysis work for the reintegration node is given in[5]. 
we concentrate our attention, in this paper, to the formal 
verification of a node reintegration in the TTP/C group 
membership protocol, thereby complementing and 
extending previous work[5,6]. The group membership 
algorithm[6] is modeled as a synchronous system. Its 
verification is significantly more difficult than other 
fault-tolerant algorithms because information about the 
failure of processors is not available immediately but 
only with a certain delay. Therefore one has to be very 
careful when reasoning about possibly failed 
components. Verification of safety properties, like the 
requirement that all (non-faulty) processors of a system 
should have the same view about the current 
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membership status of other processors, is typically 
accomplished by an induction proof. 
 
 In order to establish the induction step, however, 
one generally has to strengthen the invariant because 
often enough the property of interest is not inductive. 
Usually, repeated strengthening is necessary before an 
inductive invariant is found and although some of the 
strengthening can be generated automatically, this 
becomes the main task when performing a mechanized 
verification. We take an approach proposed by 
Rushby[7] instead of expressing the correctness property 
as one large conjunction, we use a set of disjunctively 
connected   formulas   that can be seen as the 
description of an abstract state machine[7]. Each 
disjunction  contains  the desired property and 
represents a particular configuration the membership 
algorithm can reach. 
 To establish the correctness of the algorithm, one 
has to show that at every point in time, the system is in 
one of these configurations. For the TTP group 
membership algorithm, we have formally proved both 
an agreement property, i.e., that every non-faulty node 
considers the same set of processors to be part of the 
membership and a self-diagnosis-reintegration property 
that states: a faulty processor will eventually remove 
itself from the membership and it will be re-integrated 
to the group no later than 3n + 1 steps after the fault 
occurred (n is the total number of processors involved 
in GMP protocol). All definitions and proofs have been 
developed and mechanically checked with the PVS 
theorem prover system[6]. 
 

GROUP MEMBERSHIP PROTOCOL 
 

 In a distributed system, an adherence protocol of 
GMP group is a fault tolerant mechanism enabling to 
get a consensus on the identities of non failed (correct) 
processors. Any failed processor must be excluded from 
the group at the end of limited time. Because of the 
presence of other fault tolerance mechanisms in TTP/C 
module, the GMP sub-module assumes that all fault 
occurrences may be only of two types:  
* Send fault: These faults are supposed to be 

consistent that is, no processor of the group 
receives anything, or all receive something that is 
interpreted like an invalid message (invalid frame). 
In other words, no faults are generated by the 
communication bus. 

* Receive fault: A processor affected by this type of 
fault can't receive anything, or receives an invalid 
message.  

 From the moment where a processor becomes 
faulty (first fault manifestation), its behavior towards 
sending or receiving messages can be arbitrary. We 
assume that the fault occurrences is sufficiently rare to 
guarantee that when a processor fails, it flows out an 

interval of time greater than 2n slots before another 
processor of the group becomes faulty. Furthermore, it 
will always remain at least two non faulty processors in 
the system. Let's note that this hypothesis of rarity of 
fault occurrences is based on the existing system 
experience[8].  
Under the previous hypothesis, the GMP protocol must 
guarantee the following properties at all times:  
 
* Validity of the local views of the group: At all 
times, non-faulty processors should have all and only 
the non-faulty processors in their membership sets. 
∀ p∈ NFt : memt

p = NFt ∨ ∃ x ∉ NFt : memt
p= NFt ∪ 

{x}  
 ∨ p∉ NFt : memt

p = ∅ memt
p ⊆ NFt ∨ {p}  

 
* Agreement on members of the group:At all 
times, all non-faulty processors should have the same 
membership sets.  
∀ p,q∈ NFt : memt

p = memt
q 

 
* Self-diagnosis-reintegration in limited Time: A 
processor that becomes faulty should eventually 
diagnose its fault; empty its membership set and 
reintegrate to the group in no more than 3n slots + 1. 
 ∀ x: x∈ NFt ∧ x ∉ NFt+1 � ∃ s: 0<s ∧ s ≤3n +1 ∧ x∈ 
NFt+s 
 
Algorithm description: In our model, we assume a set 
proc of n processors, labeled 0, 1, …, n-1, that are 
arranged in a logical ring. Every processor p maintains 
a set memt

p (the membership set of processor p) that 
contains all processors that p considers operational at 
time t. In slot t the processor with label t mod n is the 
broadcaster, denoted broadcaster(t). In addition to the 
message data, the broadcaster sends those parts of its 
internal state that are critical for the protocol to work 
properly. More precisely, a CRC checksum that is 
calculated over the data message and the critical state 
information (which includes the membership set) is 
appended to the message. 
 For the analysis of the group membership 
algorithm, it is sufficient to assume that a message 
contains the broadcaster’s local view memt

b on the 
membership. 
 As the order of messages is statically defined, there 
is no need for special membership messages to be sent. 
Instead, a successfully received message is interpreted 
as a life-sign of the sender and a receiver will maintain 
the broadcaster in its local membership set if it agrees 
with the broadcaster’s critical state information and 
hence with its membership set. Conversely, if a 
processor does not receive an expected message or does 
not agree with the broadcaster’s view on the 
membership, the broadcaster will be considered faulty 
and the receiver removes it from its membership set. 
 The group membership algorithm is designed to 
operate in the presence of faults. A processor can be 
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send-faulty, in which case it will fail to broadcast in its 
next slot, while a receive-faulty processor will not 
succeed in receiving the message of the next non-faulty 
processor. 
 We use NFt to denote the set of non-faulty 
processors at time t and p ∉ NFt indicates that p is 
either send-faulty or receive-faulty at time t. 
Furthermore, sendst

b describes that the current 
broadcaster b sends a message on the bus, while 
arrivest

p means that the message sent by the broadcaster 
arrives at the receiver p. 
 At all slots, there is a broadcaster b will have to 
send a message. Of course, a broadcaster can be faulty 
(integrator) or non-faulty. The integrator has already 
added itself in its own membership set. The following 
specification shows the axiomatization of sendst

b as we 
defined it in PVS: 
 ���t : set[proc] 
Sendst

b : bool 
Arrivest

p : bool 
Integratt p : bool  
Sending : Axiom 
LET b = broadcaster(t) IN 
 b ∈ memt

b � sendst
b 

 A message sent by the current broadcaster b will 
arrive at a non-faulty processor p and also to the 
integrator processor. Of course, there is no generation 
of spontaneous messages and hence, messages arrive 
only if they have been sent. These axioms also imply 
that broadcasts are consistent: a message arrives either 
at all non-faulty processors or, if the broadcaster is 
send-faulty, at none of them. The PVS specification is 
given as follows: 
arrival : Axiom 
LET b = broadcaster(t) IN 
 sendst

b ∧ p ∈ ���t � arrivest
p 

arrival_int : Axiom 
LET b = broadcaster(t) IN 
 sendst

b ∧ integratt p � arrivest
p 

nonarrival : Axiom 
LET b = broadcaster(t) IN 
 ¬ sendst

b � ¬ arrivest
p  

 The processor that has been detected failed and has 
emptied its membership set will be integrator. The 
following specification shows the axiomatization of 
Integrating as defined in PVS: 
 Integrating : Axiom  
LET b = broadcaster(t) IN 
memt

p = empty ¬ integratt
p ∧ � integratt+1

p  
 The task of a group membership algorithm is to 
diagnose the failure of a faulty processor and to inform 
all non-faulty processors about it. In order to cause a 
broadcaster to realize that it is send-faulty, the TTP 
group membership algorithm uses an (implicit) 
acknowledgment mechanism. A processor p that is the 
broadcaster in slot t checks whether the next non-faulty 
broadcaster, say q, that will send in the next slot has the 
same membership set as q and in particular contains p 

in its membership set. If so, p can conclude that its 
broadcast was successful. Otherwise, either p is failed 
to broadcast or q is receive-faulty. To resolve this 
ambiguity, p waits for the next non-faulty broadcaster 
following q, say r. If r contains p in its membership set 
but not q while having the same view considering other 
processors, the original message of p was then sent 
correctly and q is failed. If p is not in r’s membership 
set, but q is (and the rest of the membership sets of p 
and r are the same), then q and r agree that p is failed to 
send. In this case, p will remove itself from its own 
membership set and fail silently. 
 A similar mechanism could be used for diagnosing 
receive faults: if a processor p does not receive an 
expected message, it could check whether the next non-
faulty broadcaster maintained the original sender in its 
membership set in which case p must realize that it has 
suffered from a receive fault. However, TTP employs a 
slightly different mechanism that is also used to avoid 
the formation of disjoint cliques at the same time. A 
clique c is a group g (g is a subset of global set of 
processors) of processors where agreement on the 
current state is reached only within the group g.  
 Each processor p maintains two counters, acct

p 
and rejt

p, which keep track of how many messages p 
has accepted (successfully received) and rejected, 
respectively. A processor p will increment the counter 
rejt

p if p does not agree with the broadcaster’s view on 
the membership. In p’s next broadcast slot, p checks 
whether it has accepted more messages in the last round 
than it has rejected. If so, p resets its counters and 
broadcasts; the other case indicates that p suffered from 
a receive fault. Therefore, p removes itself from the 
membership set and by not broadcasting its message, p 
can inform the other processors about its failure. 
 Formally, the group membership algorithm is 
described by a set of guarded commands. In every slot 
t, every processor executes exactly one of these 
commands. The guards are evaluated in a top-down 
order. The formal description involves two additional 
boolean state variables, prevt

p and doubtt
p. If a 

processor p was the previous broadcaster and now waits 
for being acknowledged, prevp is set to true, while 
doubtp is true if p did not get acknowledged by its 
successor and waits for the second successor to resolve 
the conflict. In this case, the variable succt

p holds p’s 
first successor which refused to acknowledge p. 
 

FORMAL DESCRIPTION OF THE GMP 
ALGORITHM 

 
 The formal description of the GMP algorithm 
needs one additional boolean state variable, integratt

p. 
If a processor p was detected faulty integratt

p
 is set to 

true. The following formal definitions list 20 such 
guarded commands, with two of them, namely the 
clauses (1) and (2), describing the behaviour of the 
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current broadcaster and the remaining eighteen 
commands consider the receivers. Among the latter, we 
can identify four sub-categories: clause (3) deals with a 
supposedly faulty processor that has already removed 
itself from its membership set. The clauses (4) to (10) 
describe the behaviour of a processor that has broadcast 
a message and waits for acknowledgment. The clauses 
(11) to (14) deal with a processor that has not been 
acknowledged by its first successor and waits for the 
second successor to disambiguate the situation. Finally, 
the clauses (15) to (20) comprise all other receiving 
processors.  
 In a normal situation, the processor that is the 
broadcaster in the current slot executes the clause (1). 
In the exception to this ordinary behaviour of the 
broadcaster (This broadcaster does not agree with other 
processors that is, it has rejected more messages in the 
previous TDMA round and hence its rej counter is 
greater than its acc counter), the broadcaster must not 
send and empties its membership set (clause (2)). 
The clause (3) describes the behaviour of a processor 
that has already emptied its membership set. Such a 
processor will be reintegrated to the group but not 
immediately. It resets the integrat flag to true and the 
counters acc and rej to the values of 2 and 0, 
respectively. Its membership set will then contain only 
itself and the current broadcaster.  
 The clauses (4) and (6) describe the behaviour of 
the processor that has just been the broadcaster in the 
previous slot, that is, has the prev flag is set (true). The 
first case (clause (4)) describes the situation when the 
processor, that has the integrat flag set, receives a 
correct message (the boolean expression arrivep

t is true) 
and the current broadcaster has accepted the previous 
broadcaster's message. Therefore, the processor can 
finish the acknowledgment process and reset the prev 
and integrat flags to false. Moreover, because the last 
message was accepted, the accp

t counter is increased. 
 The clause (5) describes the behaviour of an 
integrator processor, that without inspecting its 
membership set (it is a faulty previous broadcaster), 
receives a correct message. Therefore, the processor 
can finish the acknowledgment process, inserts the 
current broadcaster in its membership, resets the prev 
flag to false and increases corresponding counter. 
 If the previous broadcaster has received a negative 
acknowledgment from its successor (clause (7)), it has 
to examine another processor's membership on the 
correctness of the original message transmission in 
order to resolve the conflict whether it committed a 
send fault or its first successor suffered from a receive 
fault. Such processor will have the doubt flag set to 
true.  
 The clause (8) describes the behavior when the 
current broadcaster is integrator and the receiver is a 
previous broadcaster and has correctly received a 
message. 

 The clauses (11) to (14) concern a processor that 
has doubt flag set to true. 
 The clauses (15) and (18) describe the behaviour 
when the processor receives a message and agrees with 
the broadcaster's view on the membership. The receiver 
is either a reintegrator processor or ordinary receiver 
one.  
 The clause (17) is evaluated to true when the 
processor receives a message and agrees with the 
integrator broadcaster's view on the membership. 
 
broadcaster  
(1) accp

t > rejp
t ∧  

      accp
t ≥ 2                        � memp

t+1 = memp
t  

                                                 ∧ prevp
t+1 = T 

                                                 ∧ accp
t+1 = 1 ∧ rejp

t+1 = 0 
(2) otherwise                       � memp

t+1 = emptyset      
                                                 ∧ prevp

t+1 = F 
                                                 ∧ accp

t+1 = 0 ∧ rejp
t+1 = 0 

Receiver 
(3) memp

t = emptyset          � integratp
t+1 = T 

                                                 ∧ memp
t+1 = {p,b} 

                                                 ∧ accp
t+1 = 2 ∧ rejp

t+1 = 0 
(4) prevp

t ∧ arrivep
t  

     ∧ memb
t = memp

t ∪{p}  
     ∧   integratp

t                    � memp
t+1 = memp

t 

                                                                          ∧ prevp
t+1 = F 

                                                  ∧ accp
t+1 = accp

t + 1               
                                                  ∧ integratp

t+1 = F 
(5) prevp

t ∧ arrivep
t 

      ∧ integratp
t                     � memp

t+1 = memp
t ∪ {b}  

                                                  ∧ prevp
t+1 = F  

                                                  ∧ accp
t+1 = accp

t + 1 
 (6) prevp

t ∧ arrivep
t  

       ∧ memb
t = memp

t ∪{p} � memp
t+1 = memp

t  
                                                   ∧ prevp

t+1 = F 
                                                   ∧ accp

t+1 = accp
t + 1 

(7) prevp
t ∧ arrivep

t ∧  
      memb

t = memp
t \ {p}       � memp

t+1 = memp
t \{b}  

                                                   ∧ prevp
t+1 = F 

                                                   ∧ doubtp
t+1 = T 

                                                   ∧ rejp
t+1 = rejp

t + 1  
                                                   ∧ succp

t+1 = b 
(8) prevp

t ∧ arrivep
t  

      ∧ integratb
t                      � memp

t+1 = memp
t ∪ {b}  

                                                  ∧ accp
t+1 = accp

t + 1  
                                                  ∧ prevp

t+1 = F  
(9) prevp

t ∧ nullp
t                   � memp

t+1 = memp
t \{b}  

 
(10) prevp

t                                   � memp
t+1 = memp

t \{b}  
                                                  ∧ rejp

t+1 = rejp
t + 1 

(11) doubtp
t ∧ arrivep

t  
        ∧ memb

t = memp
t ∪{p}\{succp

t}  
                                             � memp

t+1 = memp
t  

                                                  ∧ accp
t+1 = accp

t + 1  
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                                                  ∧ doubtp
t+1 = F 

(12) doubtp
t ∧ arrivep

t  
        ∧ memb

t = memp
t ∪{succp

t ,b}\ {p}  
                                           � memp

t+1 = emptyset 
                                               ∧ doubtp

t+1 = F 
                                               ∧ accp

t+1 = accp
t + 1 

(13) doubtp
t ∧ nullp

t          � memp
t+1 = memp

t \{b}  
 
(14) doubtp

t                         � memp
t+1 = memp

t \{b}  
                                               ∧ rejp

t+1 = rejp
t + 1 

(15) arrivep
t ∧ integratp

t  
        ∧ (memp

t = memb
t )  � memp

t+1 = memp
t  

                                               ∧ accp
t+1 = accp

t + 1  
                                               ∧ integratp

t+1 = F 
(16) arrivep

t ∧ integratp
t   � memp

t+1 = memp
t ∪{b}  

                                               ∧ accp
t+1 = accp

t + 1  
(17) arrivep

t ∧ integratb
t     
� memp

t+1 = memp
t ∪{b}  

                                               ∧ accp
t+1 = accp

t + 1 
(18) arrivep

t 

        ∧ (memp
t = memb

t ) � memp
t+1 = memp

t  
                                              ∧ accp

t+1 = accp
t + 1 

(19) nullp
t                         � memp

t+1 = memp
t \{b}  

  
(20) otherwise                  � memp

t+1 = memp
t
 \ {b}  

                                              ∧ rejp
t+1 = rejp

t + 1  
 

APPROACH TO VERIFY THE PROPOSAL 
ALGORITHM 

 
 For the verification of the node reintegration part 
of TTP/C group membership algorithm we apply a 
method proposed by Rushby[7]. The requirements of 
validity and agreement express properties that should 
hold for all reachable states of the system. Such 
invariants, or safety properties, are usually verified by 
some form of induction proof. The configurations are 
defined such that every single configuration implies the 
desired property and to verify that property one has to 
show that at all times the system is in one of these 
configurations. Thus, the main part of the proof can be 
represented as a configurations diagram. The diagram 
for the group membership algorithm is shown in Fig. 1. 
The nodes of the diagram represent the configurations 
and arrows denote transitions from one configuration to 
others and are labeled with transition conditions. 
Configurations are parameterized by the time t and 
describe the global state the system is in. 
Configurations can have additional parameters such as 
processors (x, y, ) that behave differently from the 
rest of system, or additional entities necessary to 
describe the system state. The labels of transitions 
express the preconditions for the system to move from 
one configuration to another. For example, the label x = 
z of the transition from integration-ok to stable means 
that the system takes this transition if x is the last 
broadcaster. The transition conditions leading from one 

configuration need not necessarily be disjoint, but one 
has to show that they are complete in the sense that 
their disjunction is true. 
 The diagram can be developed step-by-step. One 
usually starts by defining some initial configuration or 
the one in which the system stays under normal 
circumstances, i. e. as long as no fault occurs. For TTP, 
this central configuration is the one labeled stable. By 
symbolically evaluating the algorithm in the current 
configuration and by splitting on possible cases, we 
generate some new configurations and the transitions 
from the original configuration are labeled with the 
appropriate conditions. By repeatedly applying this 
construction on each transition and each new 
configuration, one aims to develop a closed diagram. 
To prove safety properties like validity or agreement, 
one has then to demonstrate that every configuration 
implies the desired property and that the disjunction of 
the transition conditions leading from any one 
configuration evaluates to true; this ensures that there is 
no other configuration the system can possibly get into. 
In order to prove liveness properties like self-diagnosis-
integration one has to establish that the system can not 
loop forever on a configuration other than stable. 
 There are several benefits to this approach: firstly, 
the diagram can be developed incrementally and in a 
totally systematic way by symbolically executing one 
step of the algorithm in every configuration. Secondly, 
the completed diagram is a suitable mean of analyzing 
the difficult special cases of the algorithm and to 
explain how and why it works (or doesn’t). Lastly, it 
seems that the creative steps in developing the proof 
can be accomplished easier than by using the traditional 
way of repeated invariant strengthening. The 
configurations as presented here generally are not 
invariants and are therefore identified more easily. 
 The next section describes how the configuration 
diagram for the TTP group membership algorithm is 
gradually developed and outlines the verification of the 
two correctness requirements for the TTP group 
membership algorithm. 
 

DEVELOPING THE CONFIGURATION 
DIAGRAM 

 
 The system is said to be in a stable configuration if 
the membership set of all non-faulty processors p is 
equal to NFt. The set of all non-faulty processors at 
time t and a faulty processor has already diagnosed its 
fault and thus removed itself from its own membership 
set. For stable, the two safety properties validity and 
agreement follow immediately from these definitions. 
Moreover, stable is the initial configuration of the 
system. 
Stable (t, z) : bool = 
 recent (t, z)  
 ∧ ∀p : p ∈ NF t � memt

p = NF t  
 ∧ p = z ⇔ acct

p > rejtp 
 ∧ p ≠ z � acct

p > rejtp+1 
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 ∧ prevt
p = T ⇔ p = z 

 ∧ doubttp = F  
 ∧ integrattp = F 

 In the configuration stable(t z) the counters of 
non-faulty processors are set such that acct

p rejt
p+1.  

 
 

reintegration_member_Two 
(t,z,x,R) 

reintegration 
(t,z,x,R) 

 

reintegration-ok 
(t,z,x) 

good

reintegration-member 
(t,z,x,R) 

 

Stable(t,z)

good-missedLattent(t,x,z)
b=x 

 no message b ≠≠≠≠ x  ∧∧∧∧  x ≠≠≠≠z 
 good  missed

missed-rcv 
x-not-ack 
(t,x,z,S) 

 

Excluded-z-doubt 
(t,z,x,S) 

 

missed-rcv 
(t,x,z,S) 

 

good
b=x 

no message 

 
b=x 

  message rejected  

 

good

reintegration-1st-succ 
(t,z,x,R) 

 

b ? x 
x = z 

b=x 
good disagree

x=zb ? x 
x = z 

b=x 
good agree 

b ? x 
good 

b ≠≠≠≠ x  

x ≠≠≠≠ z 
 

Excluded-doubt 
no-2nd-succ 

(t,z,x,S) 
 

good
good

good
reintegration-2nd-succ 

(t,z,x) 
 good

Excluded 
(t,z,x,S) 

 

Excluded-doubt 
(t,x,y,z) 

good 
no ack 

good

Pending-self-diag 
no-1st-succ 

(t,x,z,S) 
 good

Pending-self-diag 
(t,x,z,S) 

 

good disagree 

 
good missed 

 
good

b=x  self diag 
 

b=x  self diag 
  x∉∉∉∉  memt

x 
 

Stable_faulty
(t,x,z) 

 

b=x  self diag 
 

b=x  self diag 

 good no ack 
 

b=x 
  message no ack  

 

 
                                Fig. 1: Configuration diagram for the Global TTP membership algorithm 
 
 This is to allow for a non-faulty processor p to 
cope with a send fault of other broadcaster in the next 
round, in which case, the counter rejtp will be 
increased; this should not lead to p removing itself from 
its own membership set in its next sending slot, for 
which acct

p rejt
p must hold. However, the most 

recent non-faulty broadcaster, say z, cannot satisfy this 
condition as in its sending slot z, sets the counters: 
acct

z = 1 and rejt
z = 0. 

 The expression recent (t, z) denotes that at time t, 
processor z is the recent non-faulty broadcaster.  
 The group membership algorithm is said to be in 
the stable-faulty configuration at time t, for t > 0, if the 
membership set of all non faulty processors is equal to 
NF t and the faulty processor x has its membership 
set empty. 
stable-faulty (t, x, z) : bool = 
 x ∉ NF t ∧ recent (t, z) 
 ∧ ∀ p : before (t, z, p) � p ∉ NF t  
 ∧ ∀ p : (p ∈ NF t ∨ p = x) � memt

p = ∅ ⇔ p = x 
 ∧ memt

p = NF t ⇔ p ≠ x 

 ∧ acct
p = rejtp +1 ⇔ (p = z ∨ p = x) 

 ∧ integrattp = F  
 ∧ prevt

p = T ⇔ p = z 
 ∧ doubttp = F  
 If a processor, say x, which was detected faulty and 
has its membership set empty becomes integrator, the 
system will be into a new configuration, that we call 
reintegration. 
reintegration (t, x, z, R) : bool = 
 x ∉ NF t ∧ z ∈ NF t  
 ∧ ∃ p : p ∈ NF t ∧ before (t, p, z) 
 ∧ ∀ p : (p ∈ NF t ∨ p = x) � memt

p = R ⇔ p = x 
 ∧ acct

p > rejtp +1 ⇔ p = x 
 ∧ acct

p = rejtp +1 ⇔ p = z 
 ∧ integrattp = T ⇔ p = x 
 ∧ prevt

p = T ⇔ p = z 
 ∧ doubttp = F  
 If the group membership algorithm is in stable-
faulty configuration at time t with respect to x and z, 
then the agreement property holds at time t. The system 
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transits into the stable-faulty configuration if x is the 
current broadcaster but fails to send a message through 
command (2). Thus, the non-faulty processors remove x 
from their membership sets by executing the command 
(19) or (9) in the case of z. Therefore, all non-faulty 
processors have the same membership sets. The 
correctness property self-diagnosis-reintegration is a 
liveness property that is, once has left stable 
configuration, it can not be trapped in one of other 
configurations. It must be return to stable state no later 
than 3n+1 steps after the fault occurred. 
 Let the system be in the stable-faulty configuration 
at time t with respect to x and z and let b denoted the 
broadcaster at time t. If membership set’s x is empty 
and if no new fault occurs in the next step then the 
system will be in the reintegration configuration at time 
t + 1 with respect to x, b and the set {x, b}. 
Stable-faulty to reintegration : LEMMA 
LET b = broadcaster(t) IN 
Stable-faulty(t,x,z) ∧ b ∈ NF t ∧ NF t =NF 

t+1 � reintegration (t+1, x, b, {x, b}) 
 

CONCLUSION 
 

 In the previous GMP protocol of TTP/C of the 
TTA architecture, any detected faulty node, is 
immediately excluded from the group. This gradual 
exclusion process risks invalidating the protocol after 
N-3 successive failures if the ability of faulty node 
reintegration is not implemented. Our contribution in 
this paper is to remedy this serious problem. Therefore, 
we have proposed a formal framework to model the 
group membership protocol with nodes reintegration. 
This additional part allows GMP protocol to get more 
availability in the context of critical embedded 
applications. 
 The proofs of the main correctness properties of 
the algorithm have been developed and mechanically 
checked with the assistance of the PVS specification 
and verification system.  
 Further research is concerned with formally 
specifying the startup algorithm and finding ways to 
clearly identify the relationships and interfaces between 
group membership, startup and clock synchronization 
services. 
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