
Journal of Computer Science 3 (1): 35-42, 2007 
ISSN 1549-3636 
© 2007 Science Publications 

Corresponding Author: Samuel Pierre, Department of Computer Engineering, École Polytechnique de Montréal 
C.P. 6079, Station Centre-ville, Montréal, Québec, Canada H3C 3A7, Tel.: (514) 340-4711 Ext. 
4685, Fax: (514) 340-4658 

35 

 
A Secure Protocol Based on a Sedentary Agent for Mobile Agent Environments 

 
Abdelmorhit El Rhazi, Samuel Pierre and Hanifa Boucheneb 

Mobile Computing and Networking Research Laboratory (LARIM) 
C.P. 6079, Station succ. Centre-ville, Montréal, Québec, Canada H3C 3A7 

 
Abstract: The main challenge when deploying mobile agent environments pertains to security issues 
concerning mobile agents and their executive platform. This paper proposes a secure protocol which 
protects mobile agents against attacks from malicious hosts in these environments. Protection is based 
on the perfect cooperation of a sedentary agent running inside a trusted third host. Results show that 
the protocol detects several attacks, such as denial of service, incorrect execution and re-execution of 
the mobile agent code. Results also indicate that the traffic generated and run time are barely affected. 
 
Key words: Mobile agent security, mobile computing, denial of service 

 
INTRODUCTION 

 
 The ubiquitous use of the Internet and the 
integration of mobile computing devices in our lives 
raise issues pertaining to the organization and 
communication of information in wide-area networks. 
Several architectures have been developed, among them 
those based on the mobile agent concept that offers to 
solve specific client/server architecture problems, such 
as the number of messages exchanged between clients 
and servers, which is a stumbling block to the growth of 
services offered over the Internet. However, deploying 
this new architecture in commercial applications 
requires secure protocols. Indeed, the mobile agent 
code and data are vulnerable to malicious attacks on the 
host where the agent is running. 
 The term mobile agent includes two different 
concepts: agent and mobility. An agent is a program 
which is often implemented as multiple threads that 
have certain features. It operates without direct human 
intervention through certain controls of its actions and 
of its internal state. It can interact with other agents 
using an inter-agent communication language. An agent 
is said to be mobile when it can be transported from one 
machine to another within a network.  
 A mobile agent system has several advantages 
compared to its rival client/server paradigm. Indeed, 
when the mobile agent moves to the area where the 
desired resource resides, it interacts with it without 
transmitting any data through the network, thus 
significantly reducing bandwidth consumption. In the 
same manner, when the mobile agent moves to the area 
where the user resides, it can respond quickly to the 
user’s actions. In such cases, the agent can continue its 
execution even if the network connection has failed. 
Moreover, the majority of distributed applications 
naturally agree with the mobile agent model since an 

agent can migrate through several platforms, send an 
offspring agent to simultaneously visit another platform 
or remain stationary and interact with remote resources. 
Finally, agent mobility hides network specifications 
from developers.  
 However, mobile agent-based architectures are not 
widely deployed in commercial applications. This is 
mainly due to security issues concerning the mobile 
agents and the hosts which execute them. Generally, the 
mobile agent systems subdivide security problems into 
two different parts. The first one concerns the 
protection of the platform that runs the mobile agent 
against attacks which can harm its resources. This 
security aspect has already been addressed by the 
prolific research conducted upon the appearance of 
mobile code (Applet), viruses and worms through 
Internet[1,2]. The second security concern is related to 
the protection of mobile agents from malicious platform 
attacks. The importance of this type of protection lies in 
the fact that in its itinerary, the mobile agent could visit 
platforms which are not necessary reliable. 
Consequently, the mobile agent’s code and/or data 
could be tampered with, re-executed in order to obtain 
illegal results. Its execution could be simply delayed or 
totally destroyed. Therefore, mobile agents must be 
provided with some protection mechanisms to prevent 
these attacks.  
 The current research tasks focused their efforts on 
protecting and detecting attacks aimed at the mobile 
agent code and data. Some of these approaches use 
cryptographic notions to hide the mobile agent code and 
data inside platforms[3]. Others use reference states and 
protection delays in order to detect and protect the 
agent against attacks[4]. However, none of these 
approaches have yet succeeded in designing a realistic, 
secure protocol that prevents the various attacks. 
Among the attacks which have yet to be addressed are 



J. Computer Sci., 3 (1): 35-43, 2007 

    
 

36 

the attacks which consist of re-executing the mobile 
agent code, or parts of its code, so that the attacking 
platform can obtain illegal privileges such as the re-
execution of a purchasing order or the re-execution of 
the agent with different data. The one-second attack, 
which has yet to arouse the interest of researchers, 
refers to the attack called denial of service, which 
consists of killing or delaying the execution of the 
mobile agent. For example, consider a mobile agent 
from an electronics store which offers a promotion that 
is about to expire. In this case, the assailing platform 
could delay the execution of the agent until the offer 
expires. The importance of providing the mobile agent 
with protection mechanisms against these attacks is of 
the utmost importance, especially for e-commerce 
applications where security issues are critical. Indeed, 
these attacks (agent re-execution, denial of service, etc.) 
have a direct influence on the degree of reliability of the 
systems using mobile agent technology in the field of e-
commerce and m-commerce (mobile electronic 
commerce).  
 Hence, a secure protocol was designed to detect 
attacks which harm the mobile agent code and data, as 
well as code re-execution and denial of service attacks. 
The protocol was implemented within a mobile agent 
system. 
 

MOBILE AGENT SECURITY: BACKGROUND 
AND RELATED WORK  

 
According to Walsh et al.[2], mobile agent system 

security covers four different aspects:  
* Security of agent transmissions; 
* Protection of the platform against malicious agents; 
* Agent protection against attacks from other 

malicious agents;  
* Agent protection against attacks from malicious 

platforms. 
 Mobile agent systems must be equipped with safe 
transfer mechanisms since malicious adversaries can 
capture the agent and analyze its data and code while it 
is being transmitted. The platform that runs the mobile 
agent is vulnerable to several attacks due to the 
execution of the mobile code. Those attacks include the 
unauthorized reading of significant platform 
information, resource damages (CPU, memory, etc.) 
and attacks called denial of service (i.e. a partial or 
complete halt of the services provided by the platform). 
At the same time, reliable agents should have access to 
the platform resources in order to normally execute its 
code. Thus, the system should provide the platform 
with authentication mechanisms that enable it to specify 
the access rights for the mobile agents. The problem[5] 
of platform protection against the attacks of malevolent 
mobile agents, such as imminent threats from viruses, 

worms and Trojan horses received considerable 
attention from the research community.  
 Mobile agents are vulnerable to several types of 
attacks from malicious platforms where they run their 
codes as well as attacks performed by other agents 
executed within the same environment. This includes 
passive attacks, where neither data nor the code of the 
mobile agent are corrupted, such as traffic analyses, as 
well as active attacks once the mobile agent data and/or 
code are modified.  
 
A description of malicious platform attacks: Hohl[6] 
defines, in general, a malicious platform as being a 
party able to execute an agent that belongs to another 
party and tries to attack that agent in some way. He also 
provides a list of the various platform attacks against a 
mobile agent: code, data and control flow spying out; 
code, data and control flow manipulation; incorrect 
code execution, platform masquerading, denial of 
service, spying out interaction with other agents, 
manipulation of interactions with other agents, 
returning wrong results of system calls issued by the 
agent and re-execution of the agent. Further details for 
each of these attacks are presented in[5,7].  
 
Mobile agents “protection” against the attacks: 
Whereas the countermeasures aiming to protect the 
platforms are largely inspired by the conventional 
systems using preventive methods[5], the mobile agent 
protection techniques provide for the detection of an 
attack. This is due to the fact that the agent is 
completely dependent upon the platform on which it 
runs its code and cannot, by itself, prevent an attack. 
However, it is possible to detect the attacks or render 
them less harmful.  
 Mobile agent protection from platform attacks has 
been researched prolifically due to the different 
difficulties encountered by traditional systems. Here are 
some of the most important protection techniques:  
 
The protection of mobile agents using cryptographic 
functions[3]: This approach ensures the confidentiality 
of the mobile agent computations by encrypting its 
code. Platforms execute the encrypted mobile agent 
code without decrypting it; hence they cannot modify it 
or spy on it. The objective is to encrypt functions and 
add their transformations to a program. The resulting 
program can be executed by a processor. The meaning 
of the functions cannot be revealed to the processor. 
The limitation of this approach is that it cannot be 
applied to all types of functions. 
 
Cryptographic security of mobile codes[5]: This 
approach is based on the usage of a reliable third party 
(RTP) that executes a part of the code on the behalf of 
the mobile agent. The mobile agent code is divided into 
several fragments. Certain fragments are not 
transported by the mobile agent, but implemented 
within the RTP. Mobile agents need to contact the RTP 
to be able to execute these special fragments. The RTP 
does not know the meanings of the functions which 
represent mobile agent code fragments, as its purpose is 
to ensure reliable computing confidentiality.  
 

 



J. Computer Sci., 3 (1): 35-43, 2007 

    
 

37 

Table 1: Comparative view of the approaches 
N° Types of Attacks Crypto.  Crypto.  Data Reference Time Limited Co-Operating   
  Function Security Security States Blackbox  Agents 
1 Code spying out P P   P  
2 Data spying out   P  P  
3 Control flow spying out  P P     
4 Code manipulation P P  D P  
5 Data manipulation    D  P  
6 Control flow manipulation P P D D  D 
7 Incorrect code execution P P  D P  
8 Platform masquerading   P    
9 Denial of service     D  
10 Spying out interactions with other agents     P  
11 Manipulation of interaction with other agents    D   
12 Returning wrong results of system calls by the agent    D P  
13 Re-execution of the agent       
P = Protection D = Detection  
 
The approach proposed in this paper rests upon the 
same principle, that is, a protocol using a third party to 
protect the mobile agent and a mobile agent code that is 
split into several fragments. The limitation of this 
approach pertains to the size of the code fragments 
implemented within the RTP which must remain low to 
ensure that system performance is not severely 
hindered. 
 
Cryptographic security of data[1]: This approach 
ensures the security of mobile agent data using 
cryptographic systems. Three mechanisms are 
implemented within a mobile agent to protect data. The 
first one consists of declaring a part of the data as ‘read 
only’. This section contains data which cannot be 
modified or deleted by visited platforms without attack 
detection, i.e., mobile agent identification. The second 
mechanism allows a mobile agent to create an ‘append 
only’ section where a visited platform can only add one 
record and cannot update or delete existing records 
without being detected. The last mechanism allows a 
mobile agent platform of origin to select from a list of 
visited platforms within which certain data becomes 
visible. 
 
Mobile agent protection with reference states[8-10]: 
This approach detects an attack by analyzing the 
discrepancies in the behaviour of the attacking platform 
and the platform of reference. The mean mechanisms 
which use this approach are ‘state appraisal’[8], 
‘replicated server’[9] and ‘execution trace’[10]. The 
protocol proposed in this paper uses this approach to 
detect attacks aimed at modifying the mobile agent 
code by replicating segments of the code.  
 
Time limited blackbox security[4]: The principle of 
this approach is to generate a mobile agent code which 
cannot be manipulated by a malicious platform during a 
certain period of time. Visited platform can access the 
input and output of mobile agent execution, although 
they cannot know the meaning of its computing. This 
approach uses the cryptographic functions described in 

the first approach and is consequently subject to the 
same drawbacks. Moreover, the security time remains 
difficult to adequately determine. 
 
Mutual protection of co-operating agents[11,12]: The 
basic principle behind this approach is to use a 
cooperating agent to protect mobile agent data. Roth[12] 
uses a cooperating agent to protect mobile agent 
itinerary which is defined as a list of visited platforms. 
The new protocol herein proposed widens the 
cooperating agent’s tasks in order to protect mobile 
agents from several types of attacks.  
 Table 1 presents the possible type of protections 
against the various attacks listed at the beginning of this 
section and the current approaches which ensure. The 
approaches investigated may be classified into two 
different categories: those which detect or protect 
mobile agents against code attacks and those which 
detect or protect mobile agents against data attacks. 
Only the fifth approach, the time limited blackbox 
security, combines both types of protection, although 
the way in which it uses time is its main disadvantage: 
it implies that all platforms must be synchronized by a 
global clock.  
 The comparative analysis of these approaches 
indicates that none of the suggested solutions treat 
attacks which consist of re-executing the agent. 
Moreover, denial of service and attacks consisting of 
interactions manipulated by other agents are only 
detected. Also, generally, all these approaches protect 
only one aspect of the mobile agent: either its code or 
its data. Hence, it was deemed important to design a 
protocol that provides mobile agents with more 
security.  
 
 

THE PROPOSED PROTOCOL 
 

The proposed protocol combines the existing 
protection techniques in order to enhance mobile agent 
security. It uses a notion of third party and mobile agent 
code fragmentation as does the second approach 



J. Computer Sci., 3 (1): 35-43, 2007 

    
 

38 

‘Cryptographic security of mobile codes’. It also uses 
the technique called ‘the use of reference states to 
protect mobile agents’. Indeed, the protocol uses a 
replica of a mobile agent code fragment which should 
be executed by the platform of reference. The use of a 
time counter (e.g. Timeout) was inspired by the fifth 
technique, ‘Time-limited blackbox security’. Finally, 
the last technique, ‘Mutual protection of co-operating 
agents’, constitutes the driving principle of the 
proposed protocol. 
 The core of the proposed protocol is built around 
the complete cooperation of a sedentary agent in order 
to protect the mobile agent which moves between 
several platforms Pi (i=1, …, L) all over a network. For 
each execution step within a platform, the mobile agent 
sends three types of messages to the cooperating agent 
(SA) which is in charge of detecting an attack against 
the mobile agent data and code. The cooperating agent 
is called sedentary as it moves only once from the 
origin platform (O) to the trusted third platform (T), as 
shown in Figure 1. The sedentary agent does not 
constitute a copy of the mobile agent. It only contains 
the “critical code’’ (i.e. the part of the mobile agent 
code which the protocol was designed to protect).  
 
Concepts and Assumptions: The protocol[13] aims: 
* to detect the attack which modifies a part of the 

mobile agent code and the incorrect executions 
(Attacks 4 and 7 in Table 1); 

* to detect the attacks which tampers with the 
intermediate results obtained from the visited 
platforms (Attack 5 in Table 1); 

* to detect the re-execution of a mobile agent code 
(Attack 13 in Table 1); 

* to detect denial of service attacks (Attack 9 in 
Table 1);  

* to record the mobile agent itinerary in order to 
detect attacks which modified its route (Attack 5 in 
Table 1).  

 The mobile agent code is split into two parts. A 
crucial part, the critical code, contains the mobile agent 
code whose handling is susceptible to influence the 
integrity of the mobile agent. For example, this part of 
the code compares offers from visited platforms. The 
second part, called the non-critical code, contains the 
remainder of the mobile agent code. Malicious hosts 
have no interest in attacking this part of the code. The 
security of the critical code is ensured by its duplication 
into two agents (mobile and sedentary) that 
simultaneously run this part of the code and compare 
both of their results. The protocol detects tampering 
attacks on the intermediate results by saving the 
sedentary agent data at each execution phase of the 
mobile agent.  
 The protocol detects attacks such as re-executions 
of the mobile agent code and denials of service by using 

two time counters: a Timeout and a Supplementary 
Waiting Interval (SWI).  

O 
SA 

T 

Arrival() 
Input() 

Output() 

P2 

P3 

P4 P5 

MA 
P1 

O : Origin platform  MA : Mobile Agent 
T : Trusted third platform SA : Sedentary Agent 
Pi: Visited platform                     

 
Fig. 1: Protocol concepts  
 
It also allows for the preservation of the mobile agent 
itinerary and detects modification attacks according to 
Roth’s Protocol[12]. 
In order to devise a secure protocol, two assumptions 
were adopted: 
* the availability of a trusted third platform; 
* the existence of an asymmetric cryptographic 

system. 
 The first assumption supposes that a trusted third 
platform (T) is available to all platforms in order to run 
the cooperating agent (SA). This platform must execute 
the code correctly. It must not collude with an attacker 
nor with the platform of origin (O) against a platform 
(Pi), nor with a platform (Pi) against the platform of 
origin (O) or against a platform Pj (i�j). T should be 
protected from denial-of-service (DoS) attacks. The 
second assumption stipulates that platforms O, Pi (i=1, 
…, L) and T use an asymmetric cryptographic system 
(private key/public key). All platforms Pi (i=1, …, L) 
allow the mobile agent to encrypt/decrypt the data that 
is sent. The mobile agent does not transport any private 
keys. It uses the cryptographic services provided by 
each Pi. 
 
A description of the protocol: The proposed protocol 
can be described as a three step process: initialization, 
where the origin platform generates different agents, the 
execution inside each platform step, where mobile 
agents communicate with their cooperating agents and 
the final step, where the platform of origin validates the 
results obtained by the mobile agents. 
 
Step 1: Initialization: At the beginning of the protocol, 
the original platform (O) generates the mobile agent 
and its cooperating agent. It initializes the parameters of 
both agents, sends the mobile agent to the first platform 
(P1) on its itinerary and the cooperating agent (SA) to 
the third platform (T) where it remains stationary until 
the end of the protocol. 
 



J. Computer Sci., 3 (1): 35-43, 2007 

    
 

39 

Step 2: Execution on each platform: When the mobile 
agent reaches the ith platform Pi, it sends a message type 
Arrival()  to  its   cooperating   agent   (SA)  in  order  to  
 

Pi T 

MA SA 

Arrival() : Idi, SIGPi(IdAM), Previ 

ET( Input() : Idi, SIGPi(X), X ) 

ET( Output() : Idi, SIGPi(R), R, Nexti ) 

SIGPi : Signature with the private key of Pi 
ET : Encryption with the public key of T 

 
Fig. 2: Messages sent from mobile agent to sedentary 

agent 
 
 

MA 
Pi SA 

T 
Arrival() 

Input() 

Output() 

Time Time 

Timeout starts 

Execution without attack 

Timeout expires and SWI starts 
Attack : Re-execution  

SWI expires 

Attack : Denial of service  

 
Fig. 3: Using timers 
 
inform it of its arrival on platform Pi. When the 
sedentary agent receives the Arrival () message, it 
corroborates the authenticity of the message and 
validates the mobile agent itinerary. If verification 
results indicate the absence of corruption, the sedentary 
agent initializes a time counter Timeout used to limit 
the execution time of the mobile agent inside the 
platform Pi.  
 Before the execution of the critical code, the 
mobile agent sends an Input() message to its 
cooperating agent. This message contains all of the 
input provided by the present platform Pi, which is 
required to run this part of the code. As soon as the 
sedentary agent receives the Input() message, it extracts 
the data which was sent and begins to execute the 
cloned part of the mobile agent code. Once the mobile 
agent has completed the execution of its code, it sends 
an Output() message to the sedentary agent. The 
Output() message contains the results obtained by the 
mobile agent on platform Pi.  
 When the sedentary agent (SA) receives the 
Output() message, it extracts the results. Then, it 
authenticates the critical code execution by comparing 
the results obtained by the mobile agent on platform Pi 
to the results, deemed trustworthy, from the third 
platform (T) who was supposed to execute the code 
accurately. If the results obtained by the cooperating 
agent differ from those obtained by the mobile agent, 
the sedentary agent concludes that an attack was carried 
out by the present platform Pi and marks this platform 

as housing an attack. If both results are identical , the 
cooperating agent concludes that the execution of the 
critical code was completed without any attacks. In 
both cases, the mobile agent continues its itinerary to 
the next platform. 
 The sedentary agent records the mobile agent 
itinerary by saving the identity (Nexti) of the platform 
where the mobile agent wants to migrate. Figure 2 
illustrates the three types of messages exchanged 
between the mobile and the sedentary agent. The 
Arrival() message contains the ID of the current 
platform Pi, which is an electronic signature using the 
private key of Pi. It also includes the mobile agent ID to 
ensure message authentication and the ID of the 
previous platform which specifies where the mobile 
agent came from (Previ) to allow for verifications of the 
itinerary. Input() messages contain the ID of the current 
platform, the input required to run the critical code and 
an electronic signature to ensure its authentication. 
Ouput() messages contain the ID of the current 
platform, the results obtained by the mobile agent on 
platform Pi , an electronic signature to ensure its 
authentication and the ID of the following platform 
(Nexti) to keep track of the mobile agent itinerary. 
Input() and Output() messages are encrypted using the 
public key for platform T to ensure the privacy of 
certain specific platform data when messages are being 
transferred. A malicious entity cannot forge any of the 
messages nor can it read critical data.  
 As soon as the sedentary agent receives the 
Arrival() message, it initializes a Timeout with an 
appropriate value that represents the maximum required 
time to run the entire mobile agent code and transfer 
both Input() and Output() messages between the mobile 
and the sedentary agents. A Timeout which expires 
(Timeout = 0) before the sedentary agent receives the 
Output() message indicates that the present platform 
has attacked the mobile agent, i.e., the mobile agent 
code has been re-executed. The sedentary agent 
continues to wait for the Output() message during 
another Supplementary Waiting Interval (SWI). Once 
this additional time has expired, the sedentary agent 
concludes that a denial-of-service attack has occurred. 
Figure 3 illustrates the use of timers to detect attacks. 
 
Step 3: The end: When the mobile agent ends its run 
on the last platform PL, it migrates to the original 
platform O which, in turns, contacts the sedentary agent 
to request the list of attacking platforms and the various 
results obtained before it ended its run on the third 
platform T. The original platform O validates the results 
obtained for each platform visited. The corrupted 
results, i.e., results obtained on the platforms marked as 
attackers by the sedentary agent, are ignored.. The 
platform O updates its list of attack platforms so as to 
avoid them during the next mobile agent run. 



J. Computer Sci., 3 (1): 35-43, 2007 

    
 

40 

 The messages sent from the mobile agent to the 
sedentary agent are encrypted using asymmetric 
security systems or contain digital signatures. 
Consequently, their contents cannot be modified by 
malicious platforms performing a person-in-the-middle 
attack without detecting it, unless the attacker has 
obtained private keys from the platforms. Another 
attack scenario would be to delete these messages: in 
this case, the sedentary agent would detect this attack 
after the allotted time has expired.  
 

RESULTS 
 
 The protocol was implemented in order to test its 
ability to detect attacks and to measure its performance 
in terms of traffic generated and run time. A method 
was also devised and implemented to estimate the 
temporal counter Timeout that allows the sedentary 
agent to detect re-execution attacks. 
 
Estimation of the temporal counters timeout and 
SWI: The Timeout and SWI (supplementary waiting 
interval) values must be either calculated or estimated 
using timers in order to analyze performance. Timeout 
represents the maximum amount of time required to run 
the entire mobile agent code and transfer both Input() 
and Output() messages between the mobile and 
sedentary agents. SWI represents the time interval 
which has elapsed after the sedentary agent detects a 
denial-of-service attack. An agent, called Estimator 
Agent (EA), was implemented to allow the original 
platform O to estimate the value of Timeout. The SWI 
value was not estimated as it depends on the type of 
application under which the protocol will be 
implemented. The application is designed so that 
administrators can specify the time delay that they 
consider to be an indicator of a denial-of-service attack. 
 At the beginning of the protocol, the original 
platform O sends the sedentary agent SA to the trusted 
platform T. Then, it runs the EA agent that estimates the 
Timeout value and communicates the result to the SA 
agent. In order to calculate this estimation, the EA agent 
simulates an execution stage of the mobile agent MA on 
a platform.  
 Several experiments to detect mobile agent code 
re-execution were undertaken by directly assigning the 
value estimated by the EA agent to Timeout. The results 
reveal that this simple assignment does not provide 
satisfactory rates. The studied rates indicate the 
percentage when the sedentary agent SA detects the re-
execution attacks and the percentage when it marks an 
attacking platform whereas this one runs the code only 
once. In order to study this phenomenon, the following 
experiment was undertaken:  
 The mobile agent MA moves to two platforms P1 
and P2. Platform P1 was forced to re-execute the critical 
code of the mobile agent whereas P2 platform runs it 

only once. The run time of the EA and both run times of 
the MA inside platforms P1 and P2 were calculated. 
Figure 4 shows the results obtained.  
 

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11

M
ill

is
ec

on
ds EA

MA inside P2 

MA inside P1 

 
Fig. 4: Run times of agents MA and EA 
 

0

20

40

60

80

100

120

0.8 0 .9 1 1.1 1 .2 1.3 1.4 1.5 1 .6 1.7 1.8 1 .9

M ultip ly ing  coeffic ien t

P
er

ce
nt

ag
e 

%

D etection

M islead ing
detec tion

 
Fig. 5: Impact of the coefficient on the two rates 
 
 Note that the two lines representing the run time of 
agent EA and the run time of the MA inside platform P2 
are similar. This is due to the fact that both agents run 
the same code within similar environments. The 
difference between these two lines justifies the 
unsatisfactory rates obtained by the first experiment. 
However, the line that represents the run time of the 
MA inside the attacking platform P1 is certainly far 
away from the other two lines. This is due to the fact 
that platform P2 re-executes the code, hence requiring 
more time.  
 Given the results from the previous experiment, the 
Timeout value was calculated with the following 
formula:  
Timeout = coefficient × run time of EA 
 The coefficient varied between 0.8 and 2 in order 
to investigate the impact of this coefficient on both 
rates, i.e., the rate for detecting the re-execution and the 
rate for the misleading detection of the re-execution. 
The results are presented in Figure 6.  
 Notice that the detection rate for low coefficient 
values equals 100%. However, the rate of misleading 
detection varies goes from 80% to 0%. This is justified 
by the fact that the timeout counter expires before the 
mobile agent is executed on both platforms P1 and P2. 
However, when the coefficient value is high, both rates 
become null. The cooperating agent SA is not mistaken 



J. Computer Sci., 3 (1): 35-43, 2007 

    
 

41 

about the reliability of platform P2, although it does not 
detect that P1 re-executes the code. This is due to the 
fact that the high timeout value does not expire until the 
mobile   agent  is   fully  executed. The  best interval  is  

WAN

Agent MA

Agent SA

Platform P1 Platform P2

Platform T

Platform O

 
Fig. 6: The experimental environment 
 

9326

12770

17300

0

5000

10000

15000

20000

S impl e M A M A S A

 
Fig. 7: Comparing the agent sizes  
 

4575
4322

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

MA SimpleMA

M
ill

is
ec

o
nd

s

 
Fig. 8: Comparing the run time of the agents 
 
located between 1.3 and 1.5 where the detection rate is 
higher than 90% and the rate of misleading detection 
equals 0%. This result is justified by the fact that the 
execution environments vary between the P1, P2 and O 
platforms. Indeed, the run time of a mobile agent 
depends on the number of activated processes on the 
platform, on the number of activate agents, on the 
technical characteristics of the computers and on the 
network’s state at the time the MA and messages are 
transferred.  
 

Measurements and results: The implementation of the 
protocol[13], an application where mobile agent MA 
visited two platforms P1 and P2 was used as an 
example. It ran the critical code on each platform and 
returned to its platform of origin. The performance of 
the implemented protocol were compared to those of a 
simple mobile agent, called SimpleMA, which behaves 
in the same manner as the mobile agent MA, although it 
is not secure, i.e., it does not implement the protocol. 
The metrics considered were the traffic generated by 
the mobile agent and its run time. These metrics were 
chosen as the protocol, although generates additional 
traffic during the message transfer between the mobile 
and sedentary agents and increases the mobile agent run 
time because of the operations designed to detect the 
attacks.  
 Four machines were used to conduct the 
experimental study. Each machine was equipped with a 
mobile agent platform and each platform represented a 
different site. Two platforms, called P1 and P2 
appeared upon the MA itinerary. The third platform, 
called T, represented the trusted third platform. The last 
platform, called O, represented the platform of origin. 
Consequently, agents MA and SA were created within 
platform O which sent MA to platform P1 and SA to 
platform T. Agent MA moved from P1 to P2 and 
returned to platform O. Agent SA returned to platform 
O at the last phase of the protocol. The experimental 
environment is depicted in Figure 6. 
 Both agents were implemented using a mobile 
agent platform, which used Java as the agent 
programming language. IAIK-JCE 3.01[14] was selected 
as the security package as it offers a pure Java 
implementation of different cryptographic algorithms. 
A RSA using a key length of 1024 bits was selected to 
sign and encrypt messages. 
 
Analysis of generated traffic: The number of bytes 
transmitted between the platforms (O, T, P1 and P2) 
were measured. Figure 7 illustrates the average size of 
the three agents (MA, SA and SimpleMA), indicating 
that the average size of the secure agent MA (about 12 
kilobytes) is not significantly greater than the average 
size of the simple agent SimpleMA (about 9 kilobytes). 
This is justified by the fact that the sedentary agent 
supports most of the security mechanisms. 
 The second revelation is the significant size of the 
sedentary agent SA (about 17 kilobytes), which is 
justified by the same reason, i.e., the SA is entirely 
responsible for security. However, even if the size of 
the sedentary agent is considerable, it does not have a 
meaningful effect upon the traffic generated as it 
migrates only once between the platform of origin (O) 
and the third platform (T). 
 



J. Computer Sci., 3 (1): 35-43, 2007 

    
 

42 

Run time analysis: The second metric was used to 
assess the performance of the protocol by analyzing the 
run time of the MA. The results pertaining to the global 
run time of the MA and the SimpleMA were measured 
and compared. Figure 8 illustrates this comparison. 
 Overall, both run times are very close: a difference 
of 250 milliseconds, which represents only an increase 
of 5.8% for the MA run time compared to that of the 
SimpleMA. Two factors explain this result. First, the 
mobile agent uses asynchronous communication to send 
messages to its cooperating agent. Indeed, the manner 
in which the protocol is designed allows the MA to 
execute its code without waiting for a response from its 
cooperating agent, thus avoiding the possible deadlock 
between it and the MA. The second factor is that, in this 
scenario, the migration mechanism and the mobile 
agent instantiation are more costly in terms of execution 
time than the mobile agent executed on the platforms.  
 

CONCLUSION AND DIRECTIONS FOR 
FUTURE RESEARCH 

 
 A secure protocol to protect mobile agents from the 
attacks of malicious hosts was designed and tested. This 
protection is based on the complete cooperation of a 
sedentary agent that runs inside a trusted third platform. 
The main concept consists of expanding the tasks of the 
cooperating agent to make it more powerful than it has 
been in previous approaches[11,12] which, although 
exploiting the concept of the cooperating agent, limited 
its use to the protection of the mobile agent itinerary.  
 This new protocol offers several advantages. First, 
it allows for message transfers between the mobile 
agent and the cooperating agent without debasing the 
performance of the mobile agent. Another considerable 
advantage of the protocol lies in its avoidance of 
cryptographic functions[3] which increase the 
vulnerability of the platforms that carry encrypted code 
and possibly malevolent instructions.  
 The effectiveness of the timers depends on the 
estimation or calculation methods employed. A method 
that generated significant results for similar platforms 
was proposed and implemented. A real time mechanism 
should be devised to allow for the calculation of the 
Timeout used to detect re-execution attacks. This 
mechanism, implemented within the cooperating 
sedentary agent, should take into consideration the 
fluctuating platform and network environments. Indeed, 
these two factors directly influence the selection of the 
initial value of the timer. This would aim to increase the 
detection rate of the cooperating agent for this type of 
attack and decrease the rate when it is mistaken about 
the reliability of non-malicious platforms.  
 

REFERENCES 
 
1. Karnik, N.M. and A.R. Tripathi, 2000. A security 

architecture for mobile agents in ajanta. Proc. 20th 
Intl. Conf. Distributed Computing Systems of 
IEEE Computer Society, Los Alamitos (Ed.), 
California, pp: 402-409. 

2. Walsh, T., N. Paciorek and D. Wong, 1999. 
Security and Reliability in Concordia. Mobility: 
Processes, Computers and Agents, Addison-
Wesley (Ed.), pp: 525-534.  

3. Sander, T. and C.F. Tschudin, 1998. Protecting 
Mobile Agents Against Malicious Hosts. Mobile 
Agents and Security, G. Vigna (Ed.), Lecture Notes 
in Computer Science, vol. 1419. 

4. Hohl, F., 2000. A framework to protect mobile 
agents by using reference states. Proc. 20th Intl. 
Conf. Distributed Computing Systems of IEEE 
Computer Society, Los Alamitos (Ed.), California, 
pp: 410-417. 

5. Algesheimer, J., C. Cachin, J. Cameniscsh and G. 
Karjoth, 2000. Cryptographic Security for Mobile 
Code. IBM Research Report, Zurich, Switzerland. 

6. Hohl, F., 1998. Time Limited Blackbox Security: 
Protecting Mobile Agents from Malicious Hosts”, 
in Mobile Agents and Security, LNCS 1419, 
Springer-Verlay, pp: 92-113.  

7. E l Rhazi, A., 2003. Sécurité des Agents Mobiles : 
Protocole Sécuritaire Basé sur la Coopération 
Parfaite d’un Agent Sédentaire, Master Thesis, 
École Polytechnique de Montréal, Canada. 

8. Farmer, W.M., J.D. Guttman and V Swarup, 1996. 
Security for Mobile Agents: Issues and 
Requirements. Proc. 19th Natl. Information 
Systems Security Conf., pp: 591-597. 

9. Minsky, Y., R. Van Renesse, F. Scheinder and S. 
Stoller, 1996. Cryptographic support for fault-
tolerant distributed computing. Proc. 17th ACM 
SIGOPS, European Workshop, pp: 109-114. 

10. Vigna, G., 1998. Cryptographic Traces for Mobile 
Agents. Mobile Agents and Security, G. Vigna 
(Ed.), Springer-Verlag, pp: 137-153. 

11. Allée, G., S. Pierre, R.H. Glitho and A. El Rhazi, 
2005. An improved itinerary recording protocol for 
securing distributed architectures based on mobile 
agents. Intl. J. Mobile Information Systems, 1: 127-149. 

12. Roth, V., 1998. Mutual protection of co-operating 
agents. Secure Internet Programming, Vitek and 
Jensen (Ed.), Springer-Verlag, Berlin, Germany, 
pp: 26-37. 

13. El Rhazi, A., S. Pierre and H. Boucheneb, 2003. 
Secure protocol in mobile agent environment. Proc. 
Canadian Conf. Electrical and Computer 
Engineering (CCECE2003), Montreal, Canada. 

14. Institute for Applied Information Processing and 
Communications, Javadoc for IAIK-JCE 3.01, 
Online Documentation, 2002. 
http://jce.iaik.tugraz.at/products/01_jce/documentat
ion/index.php 


