
Journal of Computer Science 3 (1): 43-46, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: M. Senouci, Informatic Department Es-Sénia-University, BP. 1524, El Mnaouer, 31000 Oran,
Algeria

43

Towards an Exclusion Mutual Tolerant Algorithm to Failures

1M. Senouci, 2A. Liazid and 1D. Benhamamouch

1Informatic Department Es-Sénia-University, BP. 1524, El Mnaouer, 31000 Oran, Algeria
2 LTE Laboratory; ENSET-Oran; BP. 1523, El Mnaouer, 31000 Oran, Algeria

Abstract: The distributed algorithmic is widely used in various economic and industrial fields as
finance, medical, industry, telecommunication. New technologies are increasing rapidly. From now on,
applications must associate two conditions: auto-execution on heterogeneous grid computers, on the
one hand and on the other hand, satisfaction of the temporal and safety constraints. Hence this paper
deals with performing an algorithm based on an innovative idea based on the mutual exclusion which
permits to adjust the access conflict to the shared resources and to synchronize sites in a distributed
system. The performed algorithm was tolerant to breakdowns. A site wanting to enter in critical section
demands the permission of all sites of it set called quorum. This quorum notion assures the mutual
exclusion even in the case of breakdowns. The presented algorithm was exempt of deadlock and
assures the equity.

Key words: Mutual exclusion, distributed system, logic arborescence, quorum

INTRODUCTION

 The computer systems designed to manage the high
level security and inaccessible processes must not fall
in breakdown. This is the case of the aerial
transportation, atomic energy, distributed industrial
processes and other process.
 Indeed, it is necessary to consider in the computer
distributed systems the breakdown possibility of a site.
This likely failing must not affect the working of the
whole system. Consequently the fault tolerance must be
studied to ensure a very strong safety of working in the
distributed architectures. Tolerance to faults can be
assured without redundancy and the distributed concept
of processing and data is an interesting solution to solve
this aspect. Consequently, tolerance to faults is a
motivating factor to design the distributed algorithm.
Cooperation between the various tasks of a distributed
system implies the conception of access protocols to the
shared resources to get at a given instant the global
system state. The global network group security must
be considered[1]. Indeed, the mutual exclusion is an
important tool of cooperation between distributed
systems. Several attempts have been achieved to
conceive a distributed algorithm of mutual exclusion
tolerating to breakdowns. Many authors have tried to
decrease the messages amount that demand access to
the critical section in order to reduce the algorithm
complexity and to improve its breakdown tolerance.
 This paper deals with the different strategies
proposed for development of distributed algorithm. In
this paper an algorithm is proposed using the quorum

notion which is relatively well adapted to the previous
proposed algorithms[2-5] and for their optimisation . The
hypotheses of the model as well as its algorithm are
presented. The algorithm principle and its
implementation are then presented. Finally, the
complexity of the algorithm is discussed.

Strategies adopted until now: The mutual exclusion
principle consists at each instant in assuring for each
system site the possibility to obtain a privilege. This
privilege permits to execute an action called critical
section.
 Let’s consider for a context, a distributed network
where the process of every site interacts only while
transmitting messages to itself (several algorithms are
described by Raynal[6]). Let’s recall some principles; Le
Lann[7] presents an algorithm of mutual exclusion for
the logically on-line sites according to a ring structure.
Lamport[8] introduced the logical clock concept to date
requests and to order and satisfy them sequentially. To
satisfy every access demand in critical section, 3*(N-1)
messages are necessary (N: is the number of network
sites). Ricart and Agrawala[9] proposed an improvement
while bringing back the number of messages to
2*(N-1).
 Let’s note other propositions of improvement[10-14].
All theses propositions use the principle of the token:
the demand of authorization from another site, in order
to satisfy access demands in critical section. The loss of
the token is a problem that requires an algorithm of
regeneration which is complicated. When the access
demand in critical section is significant then the amount

J. Computer Sci., 3 (1): 43-46, 2007

 44

of the exchanged messages becomes important (in O
(N)).
 The proposed algorithm permits to reach two
objectives:
* To find a minimal set of sites which allows an

applicant to enter in critical section with respect of
the mutual exclusion.

* To decrease the message amount and to increase
fault tolerance.

Model and hypotheses: A distributed system is
considered as a finite set of sites that evolves in parallel
and communicates between them by messages
exchanges. The possibility to communicate between
sites is modelled by a non oriented associative graph
called communications graph.
 Nodes of this graph represent the sites. Each site is
identified by only one number. In the present model, no
site plays the role of a main agent then no site has the
global state of the system.
 Three hypothesis types are required. The first
hypothesis concerns the network which is considered
complete (the N sites can communicate directly
between them) and the links between sites are bi-
directional. The second hypothesis concerns the
communication system. It is supposed that:
* No loss of messages occurs.
* The transmission delay is arbitrary but finite.
* The messages are not duplicated and not altered.
* If messages of different sites arrive simultaneously,

they are taken sequentially.
 The third hypothesis deals with the critical section.
Any site in critical section must keep away from after a
finite time.

Algorithm principle: To avoid inconveniences of the
algorithm presented by Senouci[15], Naïmi et al.[16] and
Trehel et al.[4] and that consists in providing a system
deadlock in case of quorum breakdown and the risk in
its construction, we propose a new approach based on a
distributed algorithm which is tolerant to faults and
solve the problem of the mutual exclusion. The
characteristics of the algorithm are:
* The use of a new function for the quorum

construction.
* The reduction of the exchanged messages amount

to access in the critical section.
* The tolerance to faults
 The ‘coterie’ C is a family of sets where each set q
of C is called quorum { }qC i= . Quorums[17] verify the

following properties:

Intersection: if p and q are two quorums, then p and q
must have a non emptiness intersection (p ∩ q ≠ ∅)

Minimality: there are not two quorums p and q in a
coterie C as p is a subset of q.

 The coterie notion has been used to develop
protocols that guarantee the mutual exclusion in a
distributed system. The mutual exclusion is assured
knowing that every two quorums have a common site.
It is supposed that every site has and manages a waiting
line that contains the request messages. These requests
are ordered according to their stamping. A site that
wants to execute its critical section sends a demand to
all quorum sites and waits their permission. When a
request is at the top of the line of a site, then this site
sends a message called Replay to the claimant site.
When a site leaves the critical section, it sends an
acquittal message named Relinq to all quorum sites;
therefore they can remove the corresponding requests.
In the case where a request arrives with a stamp lower
than the stamp of the request which is at the top of the
line, a message called Inquire is sent the site whose
request is in the top of the line and awaits the reception
of either message: Yield or Relinq. If a site receives the
Inquire message and if it received all answers of the
quorum, then it ignores this message; otherwise it sends
the Yield message to the site that sent the Inquire
message. The quorum construction[17] is made by
extracting a tree from the initial network. When a site
wants to construct a quorum, it calls to the following
recursive function called Build_ Quorum with its
identifier as a parameter:

Function Build_ Quorum (node: site): quorum_ set;
 Begin Return ({node}
 (Build_ quorum_ father (node. F, node)
 (Build_ quorum_ child (node. C)
);
End
Function Build_ Quorum_ Father (node, son, site): quorum_ set;
Begin
 If (node = Nil) then return ({})
 Else If (State (node ≠ fail)
 Return ({ node}(Build_ Quorum_ Father (node. F, node));
 Else
begin
 Select a Child C such that
 Node. C ≠ son;
 State (node.C) ≠ fail;
 Return ({node. C}
 (Build_ Quorum_ Father (node. F, node)
 (Build_ Quorum_ Child (node. C);
);
 End;
 End;
Function Build_ Quorum_ Child (node: site): quorum_ set;
Var quorumchild: array [1.. maxchildren] of quorum_ set;
 Begin
 If (node = Nil) then return ({})
 Else If (state(node) ≠ fail then
 Begin
 Select a Child C such that
 State (node. C) ≠ fail;
 Return ({node} (Build_ Quorum_ Child (node. C));
 End
 Else
 Begin
 (I ([1.. node. Numberchild];
 quorumchild [I]:= Build_ Quorum_ Child (node. Childi);
 return ((quorumchild [I]);
 End;
End;

J. Computer Sci., 3 (1): 43-46, 2007

 45

Arborescent logic: The N nodes of a distributed system
are arranged logically in a tree with any degree. A path
in the tree is a sequence of nodes a1, a2,…,ai, ai+1,….,aj,
as ai+1 is the node son of ai.
 A quorum is constructed while grouping all nodes
of a path leading from the root node to the pending
node. If a node of the path is not functional then all
paths which begin from its sons and end at pendings
can replace it[3,18]. For example, let’s consider the
binary tree of the Fig. 1 which is extracted from an
organized complete network with nine (09) sites all
initially supposed operational.

 1

2 3

4 5 6 7

8 9

Fig. 1: Logical structure of the network

At a given instant ti, let's imagine the following script:
t0: the site 6 wants to enter in critical section, it

constructs its quorum which is {1,3,6}, it sends its
request to these sites.

t1: the site 6 enters in critical section after receiving
the permission of its quorum. Therefore, the
waiting line of sites 1, 3 and 6 contains the identity
of the site 6.

t2: the site 4 wants to enter in critical section, it
constructs its quorum which is {1,2,4,8} or
{1,2,4,9} (there is a choice), then it sends its
request to sites of its selected quorum.

t3: the site 4 receives the permission of the sites 2 and
8 and possibly from itself. There remains for it the
permission of the site 1 that keeps up the respect of
the mutual exclusion.

t4: the site 6 leaves its critical section; it sends the
Relinq message to sites of its quorum so that they
can remove its identity of their waiting lines.

t5: now, the site 1 can send its permission to the site 4,
that enters in critical section.
t6: sites 1, 2, 3 and 8 fall in breakdown.
t7: the site 6 wants to enter in critical section, it
constructs its quorum, that will be in this case
{4,5,6,7,9}.
 It can be noted that the sites 5,7 and 9 give their
permission to the site 6 (because their waiting lines are
empty), it is the site 4 that adjusts in this case the
mutual exclusion.
 From this example, it can be noted that even
though the root of the logical structure falls in
breakdown, the proposed algorithm permits to rebuild a
new logical structure. There resides the innovative idea
of this work.

Algorithm presentation: The Build_ Quorum (node) is
the local function of every site which is executed in an
indivisible manner. Build_ Quorum (node) constructs
the quorum of the claimant node.

Consider the primitives of communication and
synchronization: SEND (MSG) to j: j designates the
receptor of message MSG. This primitive is not
binding, its execution is indivisible.

WAIT (Condition): the site remains waiting until the
condition becomes true.
 When a site j detects the failing of one of its
neighbours, for example site i, it sends a message called
FAIL(i) to all sites of the network (broadcasting). At
the reception of the message FAIL(i) by a site k, two
situations can occur:
* If the line of the site k contains a request of the site

i, then the site k deletes it.
* If the site k wants to enter in critical section and if

the site i belongs to its quorum, then it ignores this
quorum and construct another.

Insurance of the process: Thanks to the property of
quorum minimality the mutual exclusion is guaranteed.
 Even in the case of sites breakdown of a quorum
(except the one that is in critical section) the mutual
exclusion remains insured, because every site in critical
section contains its identity in its line.
 A Deadlock may be defined as the presence of a
circuit in the graph of awaiting sites.
 Thanks to the strong tolerance to breakdowns of
the algorithm, the deadlock is avoided. In case of
quorum failing, two situations are distinguished:
* The site in critical section is not faltering, then it is

present in all subsequently constructed quorums
and it keeps the mutual exclusion.

* The site in critical section is faltering and then the
critical resource is free and attainable by all sites.

The equity is defined positively by Raynal[6]: ∀pi: the
critical section is attainable by pi.Thanks to the
symmetry of the proposed algorithm and previously
hypothesis, the equity is relatively guaranteed.

Complexity study: The arborescence structure has
returned the easy implementation contrary to the other
structures such as the Petri networks. The used
variables are of limited size.
* Either distributed systems composed of N sites; or

the complete tree of degree d and with depth h that
represents the system distributed in the algorithm,
(Fig. 2). Let’s consider the algorithm:

* The cardinality Card (quorum_set)=h+1, (complete
tree).

* A site waiting to enter in critical section sends the
Request message to its quorum sites (except itself).
Consequently it sends [card(quorum_set)-1]
messages, that are equal to h messages.

J. Computer Sci., 3 (1): 43-46, 2007

 46

* The claimant site waits to receipt h Reply
messages.

 Therefore, the accesses at the critical section, in a
network represented by a complete tree of depth h,
require precisely (2*h) messages.

Root

1 2 3 d

1 2 d

1 2 d

Level 0

Level 1

Level 2

Level h-1

Level h

Fig. 2: Complete tree

 Considering the Fig. 2 where it is clear that the
depth h is a function of N nodes, h = f(N), then:

h
2 3 h 1 h i

i 0

h 1

h 1

N 1 d N

1)
 N N *(d 1) 1

(d 1)
h 1 log(N *(d 1) 1) / log d
h 1 log[N *(d 1)*((1 N *(d 1)) /(N *(d 1)))] / log d
h 1 log[N *(d 1) log(1 1/(N *(d 1))] / log d

As 1/(N*(d-1)) 0 then h

d d d d d

(d
d

−

=

+

+

= + + + + + ⇔ =

−
� = � = − +

−
� + = − +
⇔ + = − + − −
⇔ + = − + + −

→

�+

1 log(N*(d-1))/logd
h 1 [logN log(d-1)]/logd
h 1 [log N / log d] [log(d 1) / log d]

however [log(d-1)/logd] 1, then:
h 1 [logN/logd] 1 h logN/logd

+ =
⇔ + = +
⇔ + = + −

≈
+ = + ⇔ =

 Therefore the highest value of h is h ≤ (logN/logd).
Consequently, the exchanged messages number in a
complete tree with degree d and N nodes, reaches the
critical section in (2*h).

Remark: In the case where the tree is not complete,
this number in included in the interval: 2*(1...h).

CONCLUSION

 This paper apprehended the mutual exclusion
problem by introducing a new idea based on the
concept of quorum which permitted to reach several
objectives:
* Reduction of the messages number. This number is

less than (logN/logd).
* Access to the shortest path to route the demand.
* Distribution of the demand volume of the waiting

lines of each site.
* Tolerance to sites failures.
 Let’s note, however, that our results brought about
the need of some important developments. One of them
could be raised by the tool of synchronization and the

stamping since it represents an implementation problem
because of its no-limited aspect. Another one could be
raised by the overcharge on the root.

REFERENCES

1. Amir, Y., C. Nita-Rotaro, J. Stanton and G. Tsudik,

2003. Scaling secure group communication: Beyong
peer-to-peer. Intl. Proc. DISCEX3, Washington DC,
April 22-24.

2. Raynal, M., 1985. Distributed Algorithm and Protocols.
(In French). Eyrolles Edition, Paris.

3. Senouci, M., M. Meftah and H.A. Beghdadi, 2005.
Introduction to Operating System Theory (In French)
Dar El Gharb Edn., Algeria.

4. Trehel, M. and A. Housni, 1999. Introduction of the
priority in distributed mutual exclusion algorithms.
ISAS'99, 5th Int. Conf. on Information Systems Analysis
and Synthesis, Orlando, (USA) pour 31 Jul.-4 Aug.

5. Housni, A., M. Trehel and A. Arnol, 2001. A logN
distributed mutual exclusion algorithm for two groups.
Proc. of ACM Symp. on Appl. Computing, pp: 531-538,
Las Vegas.

6. Raynal, M., 1984. Algorithmic of the Parallelism: The
Problem of the Mutual Exclusion (In French). Dunod
Edition, Paris.

7. Le Lann, G., 1977. Distributed Systems towards a
Formal Approach. IFIP Congress, Toronto Canada, pp:
155-160.

8. Lamport, L., 1978. Time, clocks and ordering of
staleness in a distributed system. ACM., 21: 558-565.

9. Ricart, G. and A.K. Agrawala, 1981. An optimal
algorithm for mutual exclusion, in computer networks.
ACM., 24: 9-17.

10. Carvalho, O.S.F. and G. Roucairol, 1983. On mutual
exclusion in computer network. Proc. ACM, 26: 3-5.

11. Maekawa, M., 1985. A N algorithm for mutual
exclusion in decentralized systems. ACM Trans. Comp.
Syst., 3: 145-159.

12. Naimi, M., 1987. An arborescent structure for a class of
algorithms distributed of mutual exclusion. Ph. D.
Thesis, University of Besançon- France.

13. Cao, G. and M. Singhal, 2001. A delay-optimal quorum-
based mutual exclusion algorithm for distributed
systems. IEEE Trans. Parallel and Distributed Systems,
12: 1256-1268.

14. Marin, B., A. Luciana and S. Pierre, 2004. Hierarchical
token based mutual exclusion algorithms. Research
Report, INRIA, REGAL Team, Rocquencourt, pp: 20.

15. Senouci, M., Y. Slimani and K. Hadouda, 1994. To fault
tolerating algorithm for distributed mutual exclusion.
Proc. of the 7th Intl. Computer Science Days, pp: 121-
130, Tunis.

16. Naïmi, M., M. Trehel and A. Arnold, 1996. A logN
distributed mutual exclusion algorithm based on the path
reversal (In French). J. des Systèmes Parallèles et
Distribués, 34 : 1-13.

17. Amir, Y. and A. Wool, 1998. Optimal availability
quorum systems. Inf. Process. Lett., 65: 223-228.

18. Agrawal, D. and A. El-abbadi, 1991. An efficient and
fault-tolerating solution for distributed mutual exclusion.
ACM Trans. Computer Systems, 9: 1-20.

