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Abstract: An operational semantics for lazy evaluation of a calculus without higher order functions 
was defined. Although it optimizes many aspects of implementation, e.g. there is a sharing in the 
recursive computation, there is no � conversion, the heap is automatically reclaimed, and an attempt to 
evaluate an argument is done at most once. It is still suitable for reasoning about program behavior and 
proofs of program correctness; this is primarily due to the definition via inferences and axioms which 
allows for proofs by induction on the height of the proof tree. We also proved the correctness of this 
operational semantics by showing that it is equivalent with respect to the values calculated to the 
operational semantics of LAZY-PCF+SHAR due to S. Purushothaman Iyer and Jill Seaman.   
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INTRODUCTION 

 
 Lazy evaluation delays expression evaluation and 
avoids multiple evaluation of the same expression. Any 
implementation of lazy evaluation or call by need has 
two ingredients[1].  
1.  Arguments to functions should be evaluated only  
       when their values are needed. 
2. Arguments should only be evaluated once, further  
      uses of them within the function body should use  
       the values computed before. This means that there  
       is a sharing of arguments. 
The first ingredient is taken form normal order 
evaluation, and the second ingredient is taken from 
applicative order evaluation, i.e. Lazy evaluation is a 
normal order evaluation with sharing of arguments. In 
Lazy evaluation we pursue normal order evaluation and 
stop the evaluation when there is no top level redex. 
The existence of higher order functions in a calculus 
increase its expressive power, but makes obstacles in 
defining simple semantics and efficient 
implementations for lazy evaluation, for this sake, we 
will waive part of the expressive power of the calculus, 
by waiving higher order functions from the calculus. 
This is not a big problem, since higher order functions 
do not exist in imperative languages. So we will use a 
calculus with the terms; variable, number, the recursive 
operator µx.e, and the application of a function to 

arguments (with the context conditions that a function 
cannot be the result or the arguments of another 
function). We will define an operational semantics for 
lazy evaluation of this calculus. We call this calculus 
with its operational semantics rules Lmßr, since we will 
use multi ß reductions of the terms. Also we will 
compare the simplicity and the efficiency of this 
operational semantics with the operational semantics 
for lazy evaluation of the general lambda calculus.  
 Although Lmßr operational semantics is mainly to 
model sharing of arguments, it also perform many 
implementation optimizations, like, The heap is 
automatically reclaimed, since there is an automatic 
deletion of out of scope variables from the heap. An 
attempt to evaluate an argument is done at most once, 
since once an argument is evaluated the result of 
evaluation is stored and latter reference to the argument 
will copy this stored value directly. There is no � 
conversion (a renaming of variables with a completely 
fresh variables to avoid name clashes). There is a 
sharing in the recursive computation. The key reason 
for all such optimizations is Lmßr uses multi argument 
reduction for terms.   
 There have already been some attempts to provide 
semantics of lazy evaluation for lambda calculus, but 
all of them require extra overhead to deal with the 
existence of higher order functions in the calculus. For 
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example, The G-machine[8] and the Tim machine[4] 
perform lambda lifting as a preprocessing step to get rid 
of the free variables. The operational semantics LAZY-
PCF+SHAR due to S. Purushothaman and J. Seaman[6], 
and the operational semantics due to J. Launchbury[5] 
are closely related to Lm�r, for simplicity, we rename 
them as L1 and L2 respectively. In L1 and L2, once a 
variable is added to the environment it is not deleted 
from it, the reason is, we cannot determine the end of 
the scope of a variable (since the result of function 
application can be a function). So the names of the 
variables must be unique. Consequently they perform � 
conversion, L1 do this in its {Appl} rule, while L2 do 
this during its normalization step. But in Lm�r, the heap 
is automatically reclaimed, once the function 
application was end, we will remove the bindings 
corresponding to the arguments of the function from the 
environment, this because, in Lm�r function application 
will always result with a value (not another function). 
So in Lm�r it is not necessary for variables names to be 
unique. Consequently � conversion will not happen. 
Also, there are two cases in the evaluation of the 
recursive expression µx.e. 
Case 1: e requires the value of x before reducing to 
                whnf, this means that e depends directly on x,  
               e.g. x, + x x, 2*x. 
Case 2:  e reduces to whnf without requiring the value  
               of x, e.g. + 2 5.   
The results of the evaluation of L1, L2 and Lm�r for 
these two cases are;  
Case 1:  
L1: there is no sharing, and the evaluation will enter 
       an infinite loop. 
L2: there is a sharing, and the evaluation will fail. 
Lm�r: there is a sharing, and the evaluation will enter  
           an infinite loop.  
Case 2:  
L1: there is no sharing, and the evaluation will  
         terminate with a whnf value. 
L2: there is a sharing, and the evaluation will  
         terminate with a whnf value. 
Lm�r: there is a sharing and the evaluation will  
             terminate with a whnf value. 
 
Where, entering an infinite loop results from using 
infinite data structure which is possible only with lazy 
evaluation. The evaluation will fail when it requires the 
value of a certain variable, and this variable does not 
exist in the environment.  

In the rest of this paper, we will, define the multi-
argument reduction of terms, the calculus with its 
operational semantics rules, and we will show the 
correctness of this semantics. Finally the conclusion 
and the bibliography. 

The Syntax of Lm�r:  The syntax of Lm�r is E::= v | n 
| (�x1 .. xn.e) e1 .. en | µx.e  i.e. a term is either a variable, 
constant number,  application, or meu-abstraction 
respectively. Where, the term meu-abstraction is used 
for recursive computation, e.g. µx. CONS 1 x evaluates 
to an infinite list of 1's. And the application is an 
application of n expression e1.. en to the function (�x1 .. 
xn.e) that have the n parameters x1 .. xn and body e. We 
will reduce the application using multi-argument � 
reduction, which we will explain in the next section. 

Multi Argument Reductions: It is a modified form of 
�-reduction, in which we may effectively perform 
several �-reductions at once, we explain this using the 
following example; consider the reduction of the 
following expression (�x.�y. – y x) 3 4. The basic 
lambda reducer, proceeds step by step like this (�x.�y. – 
y x) 3 4 � (�y. – y 3) 4 �- 4 3 � 1 
There is no reason however, why we should not 
perform the �x and the �y reductions simultaneously, 
thus (�x. �� y. – y x) 3 4 � - 4 3 This multi argument 
reduction constructs an instance of the body (- y x) 
whilst substituting 3 for free occurrence of x, and 4 for 
free occurrence of y. The following observations are 
crucial: 

i.  Much is gained by performing the reductions 
simultaneously. Firstly it builds less intermediate 
structure in the heap, since the intermediate result 
of the �x is never constructed. Second no problems 
are presented by the free occurrence of x in the �y 
abstraction. 

ii.  Nothing is lost by performing �x and the �y 
reductions simultaneously. The result of 
performing the �x reduction alone is a �y 
abstraction, and (assuming that we perform normal 
order reduction until whnf is reached) no further 
work can be done on the �y abstraction until it is 
given another argument. 

Hence we may as well wait until both arguments are 
present and then perform both reductions at once.  
 
The Operational Semantics: The semantics we 
present here is an intermediate-level operational 
semantics, lying midway between, a straightforward 
denotational semantics, as that of Josephs[7] and a full 
operational semantics of the abstract machines[4,8]. It 
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actually captures sharing within lazy evaluation without 
requiring extra machinery either of continuations or 
heaps, code pointers, dumps and the like. The stack 
(environment) is the only computational structure 
required. The  operational  semantics rules are shown in  
Fig.1 

 
Terms are evaluated with respect to a single 
environment called the operational semantic 
environment. The structure of this environment is 
simply a stack of a list of bindings of variable to tuples, 
it could be described by the following syntax rules 
 n ::= 0 | 1 
bL ::= v�(E, n) | bL, v�(E, n)                                                    
D ::= � | D[bL]         
Where E is a term, v is a variable and � is the empty 
brackets. That is the environment D is a stack of the 
binding list bL. Lm�r maps each variable to a pair of 
expressions, the first component of the pair represents 
the value of the variable and the second component acts 
as a marker. Originally when a binding is added to the 
environment the second component of the pair is set to 

0 and the first component is set to the original value of 
the variable. Once this variable is evaluated then the 
second component of the pair is changed to 1 and the 
first component is set to the result of the evaluation. 
 As an example the bold x in the expression (�xy.+ 
* ((�x.x)(- 4 2))  x  x)  (+3 7) (* 2 6) is evaluated w.r.t. 
the environment [x�(+ 3 7, 0), y�(* 2 6, 0)] [x�(- 4 2, 
0)] that contains two bindings list, while the first light x 
is evaluated w.r.t. the environment [x�(+ 3 7, 0), y�(* 2 
6), 0)] that contains only one binding list, and the 
seconds light x is evaluated w.r.t. the environment 
[x�(10, 1), y�(* 2 6, 0)], which is the same environment 
as that of the first light x, but the information that x is 
evaluated before is taken into consideration.  
 As shown from this example that the binding list 
bL is a list of bindings corresponding to the arguments 
of the function, it is pushed onto the stack before the 
evaluation of the function body starts, the function body 
is evaluated with respect to this new stack, and the 
stack is poped to remove this bindings list at the end of 
the evaluation of the function body. This corresponds to 
the very famous garbage collecting rule in block 
structured languages; last allocated first deallocated. 
The coupling of an expression with an environment is 
referred to as a configuration and is denoted as D e for 
an expression e and an environment D.  
The operational semantics of Lm�r are defined as a 
natural semantics, which define the evaluation relation 
between a program and its final value in terms of 
inferences and axioms. There is no sense of a sequence 
of intermediate steps in the evaluation, since an 
expression evaluated directly to its final value. This 
style of semantics is often referred to as one step or big 
step semantics. Proofs of theorems about the evaluation 
relation defined with these semantics can be carried out 
by induction on the height of the proof justifying the 
evaluation relation. Natural semantics were explored by 
Poltkin[2] and latter by Kahn[3].  
Rule {m�rInt} is used to evaluate an integer value it 
returns the same value with the same environment. 
Evaluation of the expression µx.e with respect to the 
environment D, begin by applying rule {m�rRec}, 
which leads to an evaluation of the variable x with 
respect to the environment D augmented with the 
binding list [x�(µx.e,0)], this applies rule {m�rVar4} 
which evaluates e with respect to the same environment 
D[x�(µx.e,0)]. There are two cases to be considered;  
Case 1: e requires the value of x before reducing to 
whnf, thus a reference to x during the evaluation of e 
causes rule {m�rVar4} to be applied again, which again 
evaluates e with respect to the same environment. So 
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rule {m�rVar4} is continuously applied with the same 
environment. Thus we enter an infinite loop and there is 
a sharing, since we use the same environment.  
Case 2: e reduces to whnf without requiring the value of 
x. Assume e reduces to the whnf e', then the result of 
evaluation is e' and the binding for x is updated to 
x�(e',1) to capture sharing. Following reference to x, if 
any, will apply rule {m�rVar2} and return the value e' 
directly. Thus in this case there is a sharing and the 
evaluation terminates with a whnf value. 
Note that; at the end of the evaluation of the term µx.e 
we remove the one binding list for x that we added 
before, from the resulting environment, since this is the 
end of x scope.   
The {m�rAppl} rule evaluates the application (�x1 .. 
xn.e) e1 .. en in an environment D, by evaluating e (the 
body of the function), in the environment D augmented 
with the bindings list [x1�(e1,0) .. xn�(en,0)]. Assume e 
is evaluated to the expression e' and the environment is 
updated to D'[xi] (where D is modified to D' and 
[x1�(e1,0) .. xn�(en,0)] is modified to [xi]). Then the 
result of evaluation of the original redex is e' paired 
with environment D', and the bindings list [xi] is deleted 
from the resulting environment since xi 's  scopes end at 
this point.  
Rule {m�rVar1} makes the largest contribution to the 
implementation of the call by need strategy. In order to 
determine the result of evaluating the variable x in the 
environment R[D, x�(e,0)] (i.e. the binding 
corresponding to x is the rightmost binding in the 
environment). Then the expression e is evaluated with 
respect to R, say this result with expression e' also R 
may be updated to R'. Then the result of evaluation of x 
is e' paired with the environment R'[D, x�(e',1)]. So the 
binding for x is updated to the new pair (e', 1) to 
capture sharing. 
 So arguments are stored in the environment by the 
{m�rAppl} and {m�rRec} rules until they are needed, 
at which point they are evaluated by the {m�rVar1} or 
{m�rVar4} rules respectively. Thus {m�rVar1} and 
{m�rVar4} rules correspond to the first evaluation of a 
variable, (it occurs when the second component of the 
pair of the binding corresponding to this variable is 0). 
The result of the evaluation is now stored as the first 
component of the pair in the resulting environment, to 
capture sharing, and the second component of the pair 
(the marker) is set to 1. Then following evaluation of 
the same variable will use the {m�rVar2} rule, since 
the marker is now 1. {m�rVar2} rule will return the 
first component in the pair directly without 

reevaluation, and no changes are made to the 
environment.  
The {m�rVar3} two rules are used when the variable 
being looked up in the environment is not the rightmost 
binding in the environment it searches for the binding 
of that variable in the tail of the environment, 
propagating the results it receives. If it does not exist at 
all then the rule {m�rError} will raise the exception 
var_have_no_value.  
Removing out of scope variables from the environment 
does not happen in L1 and L2, although it has many 
advantages. It saves the space occupied by those 
variables, and saves the time of renaming of those 
variables. The task of renaming of a variable consist of 
two steps 
i) Generating a new name, where by a new name we   
   mean a name that does not exist in the expression  
   under evaluation and must not be added previously to 
   the environment.  
ii) Substituting this new name for the old one in the  
expression under evaluation. 
 
Correctness of the Lm�r Operational Semantics: In 
this section, we will show that the operational 
semantics are computationally correct in the sense that 
the values computed by the semantics are correct. This 
can be done by proving that the semantics are 
equivalent (with respect to the values calculated) to 
some accepted or standard semantics, whether 
operational or denotational. In this paper it will be 
shown that operational semantics of Lm�r are 
equivalent to the operational semantics of L1[7]. The 
correctness of L1 with respect to a standard 
denotational semantics is already shown in[7]. Thus, 
once the equivalence of Lm�r and L1 is shown, the 
correctness of Lm�r with respect to the standard 
denotational semantics follows automatically. 

L1 Semantics: Since the set of terms of Lmßr is a 
subset of the PCF set of terms, so Fig. 2 contains only 
subset of L1operational semantics[7]. L1 evaluates 
configuration denoted by <e, D>. Where D denotes the 
L1 environment, it is formally described as; D::= [] | 
[x�e]D   i.e. the environment maps each variable to its 
value.  
Example: assume that the primitives operations +, * 
were added to Lm�r, and they are evaluated in a prefix 
form. So Fig. 3 contains an evaluation of the expression  
(�xy.+ * ((�x.x)(-  2))  x  x)  (+3 7) (* 2 6) using Lm�r 
and L1 semantics.   
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Equivalence of Lmßr and L1 Semantics: The proof 
of equivalence is given in theorems 1, 2 it requires a 
condition on the Lm�r environment; if the second 
expression of a pair is 1 then the first expression of this 
pair must be in normal form. This property is referred 
as Enf, it is defined below. 

Definition: Enf  
1) Enf([])  
2) if Enf(D) then Enf(D[x�(e,0)]) 
3) if Enf(D) and e is in normal form, then 
Enf(D[x�(e,1)]) 

The following Lemma shows that this property is 
propagated by Lm�r. 
 
Lemma:  
If Enf(D) and D e   D' e'  then Enf(D') and e'∈NF 
Proof: the proof is by induction on the height of the   
            inference of D e   D' e' 
In order to state the equivalence theorem it is necessary 
to define a translation from Lm�r environment to L1 
environment. This translation will be denoted by * and 
will map each variable to the first expression in the 
pair. 
 
Definition: (* translation) 

 []* = [] 
 (D[R, x�(e,b)])* = [x�e] (D[R])* where b = 0,1 
Theorem 1 is the first equivalence theorem; it states that 
if the Lm�r semantics produces a value in an 

environment having property Enf, then the semantics of 
LAZY-PCF+SHAR produces the same value. 

Theorem 1: 
if D e   D' e' and Enf(D) then ∃ D" s.t. <e , D*> � <e' , 
D"> and (D')* ⊆ D" where e is a Lm�r term 
Proof: the proof is simply by induction on the height of 
the inference of D e   D' e' 
Here, we will show the {m�rVar4} and {m�rRec} 
cases, the other cases are straightforward inductive 
cases based on the definitions of Enf and *  
{m�rVar4}:Given D[x�(µx.e,0)]x   D'[x�(e',1)] e' (1) 
and Enf(D[x�(µx.e,0)]), we will search for D" s.t. <x, 
(D[x�(µx.e,0)])*> � <e', D"> and (D'[x�(e',1)])* ⊆ D" 
The premise of (1) is D[x�(µx.e, 0)] e   D'[x] e' (2) 
since Enf(D[x�(µx.e,0)]) then applying IH to (2) gives  
<e, (D[x�(µx.e,0)])*> � <e', A> (3) and (D'[x])* ⊆ A 
=> <e, [x�µx.e]D*> � <e', A>           by Definition of * 
=> <e[nx/x], [nx�µx.e]D*> � <e', A> by � conversion 
=> <µx.e, D*> � <e', A>      by {Rec} rule 
=> <x, [x�µx.e]D* > � <e', [x�e']A> by {var1}  rule 
The proof is completed if we take D" = [x�e']A. 

{m�rRec}: Given D µx.e   D' e' (1) and Enf(D), we 
will search for D" s.t. <µx.e, D*> � <e', D"> and 
(D')* ⊆ D". The premise of (1) is D[x�(µx.e,0)] x   
D'[x�(e',1)] e' (2). Since Enf(D) then Enf(D[x�(µx.e,0)]). 
Applying IH to (2) yields <x, (D[x�(µx.e,0)])*> � <e', 
A> (3) and (D'[x�(e',1)])* ⊆  A (4). 
(4) => [x�e'](D')* ⊆  A                        by Definition of *  
=> A = [x�e']D" for some D" and (D')* ⊆  D". Then 
(3) becomes <x, (D[x�(µx.e,0)])*> � <e', [x�e']D"> 
=> <x, [x�µx.e)]D*>�<e', [x�e']D"> by Def of *   
=> <µx.e, D*> � <e', D">                         by {var1} rule. 

Theorem 2 is the second equivalence theorem it states 
that if L1 semantics produces a value in an environment 
D* with the property Enf(D) then Lm�r semantics 
produces the same value  

Theorem 2:   

if <e, D*> � <e', D'> and Enf(D), then ∃  D" s.t.  
D e   D" e' and (D")* ⊆ D' where e is a Lm�r term. 

Proof: The proof is by induction on the height of the 
inference of <e, D*> � <e', D'>. We will show here the 
{Rec} case, the other cases are straightforward 
inductive cases based on the definitions of Enf and * 
{Rec} Given <µx.e, D*> � <e', D'> (1) and Enf(D), we 
search for D" s.t. D µx.e   D" e' and (D")* ⊆  D'. The 
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premise of (1) is <e[nx/x], [nx�µx.e]D*>�<e', D'> 
Def. of * => <e[nx/x], (D[nx�(µx.e, 0)])*> � <e', D'> 
(2)    since Enf(D) => Enf(D[nx�(µx.e,0)]), then 
applying IH to (2) yields D[nx�(µx.e,0)] e[nx/x]   A 
e' (3) and (A)* ⊆ D' (4).  
(3) => D[x�(µx.e,0)] e   A e' (5) by � conversion. 
During this evaluation the binding [x�(µx.e,0)] may 
updated, say to [x], then there must exist D" s.t. A = 
D"[x]. Then (4) becomes (D"[x])* ⊆  D' => (D")* ⊆  D' 
and (5) becomes D[x�(µx.e,0)] e   D"[x] e' 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
=> [x�(µx.e,0)]) x   D"[x�(e',1)] e' by {m�rVar4} 
=> D µx.e   D" e' by {m�rRec} 

 

CONCLUSION AND FUTURE WORK 
 

 In this paper, an operational semantics for lazy 
evaluation has been presented. It has been shown that 
the semantics is correct with respect to LAZY-
PCF+SHAR[7] operational semantics. Our semantics 
captures sharing of the arguments in the environment, 
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demonstrated by the absence of duplication of 
arguments evaluation, and updating values when 
evaluated. Although it optimizes many aspects of 
implementation, (e.g. there is no � conversion, there is a 
sharing in the recursive computation, and the heap is 
automatically reclaimed, since there is an automatic 
deletion of out of scope variables from the heap), it is 
still suitable for reasoning about program behaviour and 
proofs of program correctness, this is primarily due to 
the definition via inferences and axioms which allows 
for proofs by induction on the height of the proof tree. 
The main defect of this semantics is that, it does not 
allow higher order functions in the calculus. We will 
arrange to solve this in future work. 
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