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Abstract: One issue in client/server information systems is the storage of the relationships between 
clients and data used by these clients. In particular in scenarios that allow the caching of data on the 
client site, this information can be used in order to keep the global database consistent. Thus, if the 
data on the server are updated, it is possible to detect caches affected by the update. In a following Step 
it is possible either to patch or to invalidate these caches. In this study we discuss approaches that use 
posted queries in order to index the clients on the server site. 
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INTRODUCTION 

 
 Client/server information systems use caching 
techniques for reducing the volume of transmitted data. 
Data that have been received once are stored on the 
client and can be reused if the client requires parts of 
this data later on. In case of a server site update, this 
desired redundancy potentially leads, especially in 
loosely coupled systems like information systems with 
mobile clients, to inconsistencies within the global 
database. As shown in the following example, checking 
the relevance of such updates regarding the clients’ 
caches has to be done on the server. Let us assume the 
following two relations: 
 
Cinemas CID Name Movie_ID Time 
 99 CinemaxX 01 4 pm 
 99 CinemaxX 02 7 pm 
Movies MID Title Length 
 02 Lord of the Rings III 210 min 
 01 Matrix Reloaded 138 min 
 
The client posted the query: SELECT name, title, 
time FROM cinemas, movies WHERE movie ID = 
MID AND title = ’Matrix Reloaded’. The result 
contains the following data: 
 
Name Title Time 
CinemaxX Matrix Reloaded 4 pm 
 
 Therefore, the client is not able to decide locally 
about the relevance of a server site update like 
UPDATE cinemas SET time = ’15:30’ WHERE CID = 
99 and movie ID = 01. 

 One possibility for avoiding this problem is to 
forbid the usage of operators (like the projection in the 
example) that remove attributes required for checking 
the update relevance. From the users point of view that 
means transmitting not required data. Therefore, this 
approach is not applicable. In a PhD-thesis[7] we have 
shown that it is better to check the relevance on the 
server. Therefore, it is necessary to know the state of 
each cache. Furthermore, one has to be able to assign 
caches to clients. In this study we discuss different 
approaches to realize such a client index that uses the 
queries posted by the clients and, therefore, contains the 
required cache descriptions as well as the cache client 
assignment. For illustration purposes we use a mobile 
information system. However, it is important to point 
out that our approach is applicable in any kind of 
loosely coupled information system. 
 The remainder of the study is structured as follows: 
First we give a brief overview of the query notation 
used to support the index by requiring a strict syntax. 
Then we discuss different indexing approaches and 
their evaluation. Finally, we summarize and conclude 
the study. 
 

QUERY REPRESENTATION 
 
 Queries in mobile information systems are 
typically generated by an application. So, it is not 
necessary to support descriptive query languages like 
SQL. Instead, queries can be represented in a way that 
reduces the effort for converting them in order to be 
usable as index. The query notation used here 
corresponds to the well-known conjunctive queries with 
inequality comparisons but also supports self-join. It 
contains elements from relational algebra and from 
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relational calculus. Queries are sequences of a set of 
selection predicates SP, a set of join predicates VP and 
a set of up to one projection predicate PP. The elements 
of each set are lexicographically ordered in a query. 
With V ⊆ VP, pp ∈ PP ∪ {�}, S ⊆ SP and V ∪ {pp} ∪ 
S � ∅ a conjunctive query Q is represented as predicate 
sequence query (PSQ) Q’ = �vp1…vpnsp1…spopp� with 
�i, k ∈ N, 1 � i < k � n; vpi, vpk V ∈ {�} � vpi � vpk 
and �i, k ∈ N, 1 � i < k � o; spi, spk ∈ S ∪ {�} � spi � 
spk. Here the symbol � means lexicographically 
smaller. 
 The appearance of predicates in a PSQ is based on 
further conditions and self-joins are handled by 
renaming tables. Details about this query representation 
can be found in two previous publications[7, 9]. 
 

CLIENT INDEXING 
 
 As mentioned above, the aim of the client indexing 
is to be able to assign cache states to clients (and vice 
versa). If a client posts a query its ID is registered 
together with the query. So, the server is stateful. 
Therefore, in case of an update, it is possible to figure 
out which clients hold data affected by the update and 
to notify these clients. 
 In the following we use the cinema database 
schematically shown in Fig. 1. In contrast to the 
relations in the introduction this database supports 
cinemas with more than one auditorium. 
 
 
Sequential storage of queries: Assigning queries to 
clients can be simplest done by using a two column 
relation (Table 1). The first column contains the queries 
and the second one contains a list of IDs of clients that 
posted the corresponding query. This easy solution 
benefits from its obvious compatibility to relational 
storage. Multi-valued attributes are not allowed in this 
data model. Therefore, both columns have to be strings 
or one has to remodel the schema. Due to the m:n-
relationship (query/client) we would get three relations. 
As each entity type has only one attribute and due to the 
given cardinalities, we could reduce them to an relation 
Client Index (query,client). An alternative would be the 
usage of an object relational system, which allows 
multi-valued attributes. 
 
Naive Trie-based indexing: Storing queries in a 
sequential manner is independent of query 
representation. However, in the following we discuss 
approaches that benefit from syntactical properties of 
PS-queries. 

 Prefix predicates that are common in various 
queries are, therefore, stored only once. Formally, PS-
queries are words Qi of the alphabet of the allowed 
predicates P = PP ∪ SP ∪ VP. Standard database 
textbooks suggest the usage of digital trees for 
searching in sets of words. One such an approach is the 
Trie[4] that stores the information by using the edges. 
Nodes include all letters of the alphabet and describe 
which edge has to use for completing a word. Let us, 
for example, assume that words might use all 26 letters 
of the English alphabet. A Trie would store the words 
data, dating and date as shown in Fig. 2. Remember, 
each node contains all 26 possible letters. 
 Obviously in case of a big alphabet, this approach 
leads very often to unused letters in the nodes (Fig. 2). 
To overcome the waste of memory one can use a Trie-
approach that stores only needed letters. Figure 3 shows 
such a Trie for the three words mentioned above. It is 
based on de la Briandais’ algorithm[3]. 
 

 
 
Fig. 1: ER diagram of the example database 
 
 

 
 
Fig. 2: Example of a standard Trie 
 

 
 
Fig. 3: Example of a memory saving Trie 
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 Beside this approaches there are a few data 
structures like Compact Tries[16], Patricia trees[14,17] and 
Prefix trees[15] that reduce the depth of digital trees. The 
idea is to minimize the number of nodes but at the same 
time, to guarantee the indexing property. Compact Tries 
remove non-branching sub paths to leaf nodes. Patricia 
trees represent non-branching sub-paths as the number 
of involved edges only. Prefix trees are extended 
Patricia trees and store the skipped partial word (sub-
path) in addition to the number. However, such 
compression techniques are not usable in our scenario 
because we have to guarantee the reconstruct-ability of 
the stored queries. Furthermore, we do not want to 
index the query string but the client IDs of clients 
having posted the particular query. Therefore, we adapt 
the original Trie. A query tree[10] is based on three sets 
of nodes: leaf nodes B, inner nodes I and the root node 
{root}. Each leaf node contains an ID-list of clients 
having posted the query represented by the path from 
the root node to this leaf node. The root node contains a 
nonempty list of references to inner nodes. Each inner 
node references either another inner node or a leaf 
node. The edges used as references between and to 
inner nodes are marked by a predicate. Edges to leaf 
nodes are marked with the empty predicate e. 
 As mentioned above it is not rational to store all 
letters in each node. Therefore, we implemented a 
query tree AB based on de la Briandais’ Trie[3]. We 
already used a similar index structure for checking 
update relevancy[10]. For this reason we had to store 
temporary results TR and to represent the names of the 
relations used in the query separately. Furthermore, we 
extend the list of client-IDs and store it as CA = {(CID, 
AID)}, not separately, but in the last predicate node of a 
query. CID is a client-ID and AID is a query ID that is 
unique for each client. So, (CID, AID) is globally 
unique. A query tree is constructed of five node types: 
 
• The root node root = (0,Kc) with the node type ID 0 

is the entrance point of a query tree and contains a 
list of links Kc to relation nodes 

• A relation node kr = (1, name, Kc, kp) with the node 
type ID 1 represents a relation name and contains a 
list of links Kc to relation nodes, join nodes, 
selection nodes, or projection nodes and a reverse 
link kp to its parent node. Starting at root the 
relation nodes in a path are lexicographically 
ordered 

• A join node kv = (2, vp, Av, Kc, CA, kp) with the 
node type ID 2 stores a join predicate vp ∈ VP. To 
support the update relevance check mentioned 
above, each last join node of a path contains a set 

Av of attribute names used in predicates in the sub 
tree starting at this join node. The parent node of a 
join node might be a relation node or another join 
node. Child nodes might be projection nodes, 
selection nodes, or further join nodes 

• A selection node ks = (3, sp, Kc, CA, kp, TR) with 
the node type ID 3 stores a selection predicate sp ∈ 
SP and contains a list of links Kc to projection 
nodes or selection nodes as  

• well as a back link kp to a selection node, a join 
node, or a relation node 

• A projection node kp = (4, pp, kp, CA, TR) with 
node type ID 4 stores a projection predicate pp ∈ 
PP and contains a link back to a selection node, a 
join node or a relation node 

 
 Figure 4 shows the query tree for the queries of 
Table 1. Client IDs and query IDs are stored in the leaf 
nodes of the query tree. Hence, deregister a query 
requires a complete traversal. In order to improve this, 
we use a help index that allows bottom-up traversal of 
the tree. Therefore, we used a sorted list[6] and an AVL-
tree[1,7]. This leaf node index (LNI) contains all client 
IDs and indexes the leaf nodes of the query tree in 
which a query of a particular client ends. We will not 
discuss this help structure in more detail here but 
assume that it exists. 
 
Inserting and deleting a query: A client submits a 
query and its client ID (if available) in order to register 
a query. The server automatically assigns a new client 
ID to new clients. This client ID, a generated query ID 
and the query result are returned to the client. 
 The next step is to preprocess the query. 
Afterwards and without loss of generality, a query with 
r relation names, n join predicates, o selection 
predicates and one projection predicate is represented 
as an enhanced query EQ of the form �(name1, 1) ...  
(namer, 1)(vp1, 2) ... (vpn, 2)(sp1, 3) ... (spo, 3)(pp, 4)�. 
Therefore, names of relations and attributes are 
converted to uppercase, predicate types are computed 
and relation names are extracted. This enhanced query 
is  then  inserted  into  the  query  tree  by  using 
Algorithm 1. 
 
Table 1: Naive sequential storage of queries 
Query Clients 
�[movie, shown_in, (movie.MID = shown_in.MID)] {23,66,20} 
[movie.FSK > 16] [movie.genre = �action�] 
[movie(name), shown_in(time)]�  
�[movie.FSK > = 18][movie(name, FSK, genre)]� {200,11} 
�[movie, shown_in, (movie.MID = shown_in.MID)] {66,200} 
[movie(name), shown_in(date, time)]�  
�[movie.FSK> = 18][movie(name, FSK)]� {45,24} 
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Algorithm 1: Inserting a new query into the query tree 
INPUT: EQ  // preprocessed query 
 CID  // client ID 
 root  // root node of the AB 
OUTPUT: AID  // query ID 
01 def find_last_equal_node(node, EQ, n) 
02  if node.Kc � ∅ ∧ n < |EQ| 
03  for each child c ∈ node.Kc 
04  let p be the nth element of EQ 
05  if c.value = = p.value ∧ c.type = = p.type 
06  return (find_last_equal_node (c, EQ, n+1)) 
07  return (node, n) 
08  return (node, n) 
09 
10  def insert_path(EQ, CID) 
11  (node, pn) = find_last_equal_node (root, EQ, 0) 
12  k = node 
13  generate new AID by using LNI 
14  if pn<|EQ| 
15  insert the query suffix staring at predicate pn+1 
16  let k be leaf node of the query path 
17  else 
18  if k referenced by CID in LNI 
19  break 
20  k.CA = k.CA ∪ {(CID, AID)} 
21  Insert AID into LNI and link from (CID, AID) to k 
22  if p1 ∈ EQ ∧ p2 ∈ EQ ∧ (p1 ∈ VP ∧ p2 ∈ SP ∧ PP) 
23  Insert attribute names of selection predicates and projection predicates into the last join node 
24  return (AID) 
 

 
 
Fig. 4: Query tree for indexing client Ids 
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Algorithm 2: Removing a new query into the query tree 
INPUT: CID , AID // client ID and query ID 
01 def delete_path(CID, AID) 
02  let node be leaf node of the query path 
03  node.CA = node.CA − {(CID, AID)} 
04  free_nodes(node) 
05  remove {(CID, AID)} from LNI 
06 
07  def free_nodes(node) 
08  if node. CA = = ∅ ∧ node.Kc = = ∅ 
09  parent = node.kp 
10  parent.Kc = parent.Kc − node 
11  free(node) 
12  free_nodes(parent) 

 
 The function find_last_equal_node (line 01-08) 
computes the number n of reusable nodes and, thus, the 
prefix of the query that is already included in the tree. 
The remaining suffix is inserted into the tree (line 15). 
The next step is to generate (based on the LNI) a new 
query ID. If the given query was already completely 
contained in the tree, then we have to check whether 
this client has posted this query before (line 17-18). 
This is the case if there is a link from the LNI entry 
with the clients’ ID to the leaf node k where the query 
ends. We then stop the insertion (line 19). In all other 
cases (query is at least partially new or was posted by a 
different client) we insert the query, register the new 
(CID, AID) in the LNI (line 20) and establish the link to 
the leaf node k (line 21). If the query contains join 
predicates and selection predicates or a projection 
predicate (line 22), then we have to insert the 
corresponding attribute names into the last join node 
(line 23). 
 If a client wants to deregister a query, then it 
submits its client ID and the corresponding query ID. 
However, deregistering a query might be a user driven 
process but can also be the result of a cache 
replacement decision. In this study we do not discuss 
the client implementation but can point out that our 
approach is applicable to any kind of client/server 
information system that use, for example, caching, 
hoarding, or replication. With help of the LNI 
deregistering is done bottom-up. At first we request the 
leaf note k of the query from LNI and remove (CID, 
AID) from the CA-list in k. Now we can remove k if 
the CA-list is empty (no other query has posted this 
query). The next step is to look at k’s parent node. If its 
CA-list is empty and k was the only node, then we can 
remove this node too and so on. Algorithm 2 realizes 
this procedure. 
 Beside this query tree, we implemented an 
optimized query tree OAB. Because of the given space 
limitation we were not able to include this idea in this 
study  but  refer  to  the  original   German  paper[8]  that  
 

Table 2: Number of predicates per query set 
 Set 1 Set 2 Set 3 Set 4 
VP 1579 3792 6017 3948 
 (26) (42) (45) (45) 
SP 14530 24978 41709 27584 
 (2287) (2462) (2708) (2528) 
PP 8799 9343 9481 9170 
 (390) (785) (1275) (896) 

 
includes the algorithms as pseudo code. However, the 
idea is to use the commutability of selection predicates 
in order to reduce the number of nodes in a query tree. 
 

EVALUATION 
 
 The algorithms discussed in this study were 
implemented in the programming language Python 
(version 2.2.3). We used a standard PC with an AMD 
AthlonTMXP 2000+ processor (1666.663 MHz) and 
512 MB RAM running SuSE Linux 9.1 (SuSE specific 
kernel 2.6.5). We do not discuss the results of the 
sequential indexing but focus on the query tree. For the 
evaluation we created four sets of queries: 
 
Set 1: queries with 1 to 3 predicates (short queries) 
Set 2: queries with 3 to 5 predicates (mid length 

queries) 
Set 3: queries with 5 to 7 predicates (long queries)  
Set 4: queries with 1 to 13 predicates 
 
 The query generator worked in two steps. At first 
we generated 60000 candidate queries from which we 
selected the aforementioned four duplicate free sets. 
Table 2 illustrates the usage of the different predicate 
types within the query sets. The number in brackets 
stands for the number of different predicates of the 
same type used in the predicate set. The other number 
stands for the total number of predicates at this time in 
the particular set. 
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Space consumptions: Due to the characteristics of the 
programming language used, it is nearly impossible to 
evaluate the space consumptions of the query tree. 
However, we can point out, that the trees of all four 
query sets fit into main memory. The Python process 
used maximally 8% of the available memory. Instead of 
discussing a Kilobyte number here, we use the number 
of nodes as evaluation criterion. Query set 1 contains 
24908 predicates that are represented by 15662 nodes in 
the tree. The ratio of query set 2 was 38113 predicates 
to 25436 nodes. For query set 3 that contains 57207 
predicates, 41277 nodes were required and the 40702 
predicates of query set 4 resulted in 28840 nodes. If we 
look at the procedural values (set 1: 37.12%, set 2: 
33.26%, set 3: 28%, set 4: 29.14%) it becomes obvious 
that shorter queries benefit more than longer ones from 
the tree representation. The reason is that shorter 
queries contain fewer predicates that lead to less 
variety. Hence, the possibility to find two syntactically 
overlapping queries is higher for shorter queries. 
 The optimized query tree that was mentioned at the 
end of previous Section reduces the number of required 
nodes further. Set 1 required 15517 nodes, set two 
24171 nodes, set three 38276 nodes and set four 24742 
nodes. Compared to the not optimized query tree this 
means a reduction by 1% for set 1, 5% for set 2, 7% for 
set 3 and 14% for set 4. Obviously, longer queries 
benefit from the optimization that simply rearranges 
sub-trees that consist of selection predicates only in 
such a way that the number of required nodes is 
minimized. Since longer queries probably contain more 
selection predicates, this optimization is more suitable 
for longer queries. 
 
Time consumption for inserting queries: Inserting a 
query into the query tree is comparable to inserting a 
word into a Trie. Due to the list implementation of child 
node links within a parent node, it is not possible to 
reach a constant time complexity that is theoretically 
possible for equally long words. Depending on the 
length of these lists our algorithm has to check different 
numbers of child nodes. 
 As illustrated in Fig. 5, the length of a query has a 
small impact on the time required for insertion. 
However, as illustrated in Fig. 6 one can neglect this 
issue. The outliers resulted from background activities 
of the test computer. They are only recognizable 
because inserting a query took less then 0.02 seconds. 
 

 
 
Fig. 5: Insert into tree-cumulative time 
 

 
 
Fig. 6: Insert into tree-time per query 
 

 
 
Fig. 7: Optimized insertion-cumulative time 
 
 The algorithm briefly mentioned before for 
inserting queries into an optimized query tree is more 
complex than the not optimized version. 
 We also discussed the issue that the optimization 
reduces the number of nodes that are required for 
representing all queries. However, as shown in Fig. 7, 
the optimization takes a lot of time. Since we did not 
discuss the algorithm in detail in this study we also do 
not discuss its evaluation here. 
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CONCLUSION 
 
 In this study we discussed and evaluated data 
structures for realizing a stateful database server that 
indexes clients’ cache states and assigns them to the 
clients. The results show that the idea of digital trees is 
adaptable to query indexes and reduces the number of 
predicates/nodes required for storing the queries. 
Looking at an update relevance check, that was not part 
of this study, we can point out that a lower number of 
nodes also reduce the time required for checking the 
relevance of a server site update. With an optimized 
insert algorithm, which suffers from its time 
consumptions, we can reduce the number of nodes 
further. 
 This study is part of ongoing work. One of the next 
steps will be to analyze the time complexity of our 
algorithms in more detail and to reduce the time 
consumption of the optimized insert function. 
Furthermore, we have to investigate whether these time 
consumptions are due to the used implementation 
language or whether they result from bad time 
complexity of the algorithm. Independent of this 
analysis it seems to be a good idea to combine the 
normal insert with the optimization in such a way, that 
the tree is built up normally but optimized from time to 
time. 
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