
Journal of Computer Science 3 (10): 823-828, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: N. Ramadass, Department of Electronics and Communication Engineering, College of Engineering,
 Anna University, Chennai- 600025, India

823

Dynamically Reconfigurable Embedded Architecture-An Alternative
To Application-Specific Digital Signal Processing Architectures

N. Ramadass, S. Natarajan, J. Raja Paul Perinbam

Department of Electronics and Communication Engineering
College of Engineering, Anna University, Chennai- 600025, India

Abstract: Emerging trends in design of real-time digital signal processing systems indicate that in the
future, a significant amount of performance improvement can be achieved using dynamically
reconfigurable embedded architectures consisting of reconfigurable, general-purpose components.
Although embedded real-time systems have long been prevailing in our society, no firm scientific base
has been established yet to handle timing requirements in a systematic manner in real-time embedded
computing. Because of this lack of the scientific base, many embedded systems have been designed in
an ad hoc manner and most of them have been customized to specific applications, showing
inflexibility for the other type of applications. This paper proposes a dynamically reconfigurable
embedded architecture which bridges the gap between the embedded system and ASICs. This
architecture combines a reconfigurable hardware processing unit with a software programmable
processor. The main goal is to take advantage of the capabilities of both resources. While the processor
takes care of all sequential computations the reconfigurable hardware takes specialized vector
operations. With such integrated system architecture, specific properties of applications, such as
parallelism, regularity of computation and data granularity can be exploited by creating custom
operators, pipelines and interconnection pathways. To handle the conflicting requirements of being a
flexible architecture and implement some application-specific algorithms, a dynamically
reconfigurable embedded architecture is proposed. The proposed architecture consists of arithmetic
operation-level configurable modules interconnected through multiple data buses that can be logically
configured to form one or more pipelines before a specific application is initiated and remains
unchanged till the completion of the application. This architecture is targeted at high throughput and
real time signal processing applications. The idea of dynamic reconfiguration - changing a circuit
while it is operating - is exploited. In particular, we illustrate how dynamic reconfiguration can achieve
significant performance improvement.

Key words: Reconfigurable computing, embedded system, digital signal processing, high speed

architecture

INTRODUCTION

 The increase in circuit density and switching speed
has dramatically reduced the size of computing
systems. This has contributed directly to the design of
high-speed computing systems, which in turn has made
real-time computing feasible. Today, a lot of research is
focused on establishing an Integrated System[1], rather
than Integrated Circuits, for the rapid design of all
levels of electronic systems. However, current trends
indicate that for designing signal processing
architectures, it is becoming economically infeasible to
build highly customized, application-specific systems,
due to increasing costs associated with design,

verification, manufacture and test of deep
sub-micron chips[2].
 The above trends are the driving factor towards the
research and development of new embedded
architectures, consisting of largely pre-designed and
verified hardware and software that can be targeted to a
class of application domain, in order to reduce the high
development cost. The abstraction level at which the
embedded architecture can be customized to the needs
and requirements imposed by the application, while
meeting desired design goals is the key factor on which
success of embedded architecture depends. This leads
to the classification of architectures into various types,
covering a trade-off between the flexibility of general-

J. Computer Sci., 3 (10): 823-828, 2007

 824

purpose processing and high performance and low
power consumption of customized processing. In this
paper, we propose a new type of architecture, called the
dynamically reconfigurable embedded architecture, as a
means of combining the features of both
general-purpose and customized approaches. The
performance benefits are illustrated through the case
study of digital image processing system.
 The organization of the paper is as follows: In
Section II, the background information on embedded
architectures is presented, and the limitations of
existing techniques are discussed. In Section III, the
need for dynamically reconfigurable embedded
architecture is motivated, and the proposed architecture
is described in Section IV. In Section V, a case study of
digital image processing system is presented to
illustrate the performance benefits of proposed
architecture. Finally in Section VI, conclusion with
suggestions for future work is provided.

MATERIALS AND METHODS

 This section materializes the major computing
architectures currently available. Figure 1 shows a
review of embedded architectures by comparing their
trade off between performance, flexibility and power
consumption. Flexibility refers to ease with which the
architecture can be targeted towards a particular
application domain for varying functional requirements.
 General-purpose computing systems have served as
well over the past couple of decades. They provide
maximum flexibility, allowing the same hardware
architecture to be used across a variety of applications.
While such solutions provide the advantage of
shortened time to market and low engineering costs,
they suffer from drawbacks due to high power
consumption, and fail to satisfy performance
requirements for many applications. Despite the fact
that computational capability of Processors steadily
increases, often it is necessary to support them with

Fig. 1: Review of embedded architectures

specialized Coprocessors[3]. But in tightly-coupled
embedded systems, these Coprocessors restrict the
flexibility of the system.
 Advances in field programmable hardware have
started to make them a viable alternative to custom
ASIC approach in certain application areas[4]. In many
small to mid-volume markets, where the costs of
ASIC-based designs are not justifiable, variants of
programmable hardware have started gaining
importance. The advantages are that such pre-fabricated
architectures reduce NRE costs, time to market, and
provide significant flexibility. However, limitations
with respect to logic density, performance, power
consumption, and per unit cost impose large barriers for
their introduction in larger volume markets.
 These designs are tailor-made to the requirements
of a specific application[5]. They are developed using
the traditional IC development flows following custom
physical design rules. Such approaches result in highly
customized, hard-wired solutions, which enable high
application performance and low power consumption.
However, it is apparent that the larger NRE costs
associated with such approaches may make them
infeasible except in markets that command extremely
high volumes.
 In recent times, several alternatives have started to
appear that attempt to bridge the gap between
full-custom and general-purpose architectures. Among
them are emerging architectures based on structured
ASICs. In these architectures, more than 50% of the
metal layers are pre-fabricated, while a limited number
of higher metal layers (about 3-12 layers) are available
for application-specific customization[5]. These
approaches are expected to significantly reduce
development and mask costs associated with traditional
ASICs, by paying a penalty in terms of reduced
performance, larger device size and higher power
consumption.
 All the above architectures have limitations that
can be addressed by an emerging approach to system
design, namely the use of dynamically reconfigurable
embedded architectures. In the next section, such a
system is discussed in detail.

Dynamically reconfigurable embedded architecture
methodology: A reconfigurable system changes its
form in order to alter its function. For this, it must be
possible to change its function either while it is in use,
or by taking it out of use for a short time. They are a
combination of reconfigurable hardware processing unit
with a software-programmable processor. The
reconfigurable processing unit can be customized in
order to meet the specific computational requirements

J. Computer Sci., 3 (10): 823-828, 2007

 825

of different applications. Reconfigurable computing
represents an intermediate approach between the
extremes of ASICs and general-purpose processors. A
reconfigurable system generally has wider applicability
than an ASIC.
 Reconfigurable architectures consist of a
programmable processor interfaced to reconfigurable
computational units. These systems have been designed
to perform operations in sequence. With the availability
of cheap computing elements, such as microprocessors
and microcontrollers, or more generically
microcomputers, it has become feasible to design a
computing system that contains a number of small
computing elements, each having a capability of
performing operations in sequence. There are also
systems designed to perform concurrent operations, that
is, many operations simultaneously. Such parallel
computing systems are potentially more powerful and
much faster than sequential computing. Hence there is a
requirement for a high-speed bit-parallel architecture
for all signal processing applications.
 This real-time computing system architecture is
suitable for the class of real-time high-speed signal
processing applications. On-chip integration of
reconfigurable logic reduces the memory access costs
and the reconfiguration costs. The embedded
architecture consists of arithmetic-operation-level
configurable modules interconnected through multiple
data buses that can be logically configured to form one
or more computation pipelines before a specific
application is initiated and remains unchanged till the
completion of the application.
 The significance of reconfigurable systems can be
illustrated through the following example. A
multimedia application may include a data-parallel task,
a bit-level task, irregular computations, high-precision
word operations and a real-time component. For such
complex applications with wide-ranging sub-tasks, the
ASIC approach would lead to an uneconomical die size
or a large number of separate chips. Also, most
general-purpose processors would very likely not
satisfy the performance constraints for the entire
application. However, a reconfigurable system may be
optimally reconfigured for each sub-task, meeting the
application constraints within the same chip.
 The set of criteria that are frequently used to
characterize the design of a reconfigurable computing
system are granularity, depth of programmability,
reconfigurability, type of interface and computation
model[6].

Granularity:Granularity refers to the data size for
operations of the reconfigurable processing unit of a
system. A reconfigurable processing unit is logic blocks

of configurable functionality, having a framework of a
reconfigurable interconnect. Based on granularity,
reconfigurable systems can be classified as fine-grain
systems, coarse-grain systems and mixed-grain
systems. In fine-grain systems, processing elements in
the reconfigurable processing unit are typically logic
gates, flip-flops and look-up tables. They operate at
bit-level, implementing a Boolean function of a
finite-state machine. On the other hand, in coarse-grain
systems, the processing elements in the reconfigurable
processing unit may contain complete functional units,
like ALUs and/or multipliers that operate upon
multi-bit words. A system that combines both the above
types has mixed-grain granularity.

Depth of programmability: This pertains to the
number of configuration parameters (or contexts) stored
within the reconfigurable processing unit. Based on
depth of programmability, reconfigurable systems can
be classified as single-context systems and
multiple-context systems. For single-context systems,
only one context is resident in the reconfigurable
processing unit. Therefore, the functionality of
reconfigurable processing unit is limited to the context
currently loaded. On the other hand, a multiple-context
reconfigurable processing unit has several contexts
concurrently residing in the system. This enables the
execution of different tasks simply by changing the
operating context without having to reload the
configuration program.

Reconfigurability: A reconfigurable processing unit
may need to be frequently reconfigured for executing
different applications. Reconfiguration is the process of
reloading configuration programs (context). Based on
reconfigurability, reconfigurable systems can be
classified as being static or dynamic. In static
reconfigurable systems, the reconfiguration process is
static that is execution is interrupted during
reconfiguration. In cases of dynamic reconfigurable
systems, reconfiguration process is done in parallel with
execution. A single-context reconfigurable processing
unit typically has static reconfiguration. Dynamic
reconfiguration is more relevant for a multi-context
reconfigurable processing unit. It implies that such a
reconfigurable processing unit can execute some part of
its configuration program, while the other part is being
changed. This feature significantly reduces the
overhead for reconfiguration.

Type of interface: Interface or coupling refers to the
level of integration of the core processor and the
reconfigurable hardware. Based on type of interface,

J. Computer Sci., 3 (10): 823-828, 2007

 826

reconfigurable systems can be classified as having
remote or local interface. A reconfigurable system has a
remote interface if the system’s host processor is not on
the same chip as the reconfigurable processing unit. A
local interface implies that the host processor and the
co-processor reconfigurable processing unit reside on
the same chip, or that the reconfigurable processing unit
is unified into the datapath of the host processor.

Computation model: Many reconfigurable systems
follow the uniprocessor computation model. However,
there are several others that follow SIMD or MIMD
computation models. Some systems may also follow the
VLIW model.
 Compared to traditional design approaches,
designing systems based on dynamically reconfigurable
embedded architecture offers following advantages:

• Functional modification requires introducing new

application software instead of incurring an
expensive redesign.

• The same hardware architecture can be targeted to
wide range of applications.

• Design using dynamically reconfigurable
embedded architectures results in shorter time to
market, productivity gains and reduced
development costs.

Proposed architecture-Drespa: The major
components of a dynamically reconfigurable embedded
architecture are configurable processor, memory unit,
cache unit and reconfigurable cell array. Real-time
signal processing applications require the systems to
have some form of pipeline processing. The idea of
pipelining is to divide the execution of one instruction
into steps, which are called pipeline stages. Each stage
makes some contribution to the instruction and can
operate in parallel with other stages. Pipelining
improves performance by increasing instruction
throughput. It does not decrease the time to execute
individual instructions, but it will execute more
instructions per time unit, resulting in speed up.
 All the pipeline stages must be built around
memory. At one of the system-level pipeline stages,
vector operations are performed on the input data in an
execution unit. Computational resources must be shared
among all the computational aspects of the application
to make the amount of hardware reasonable. The
interconnections of the computational resources need to
be changed dynamically for different vector operations.
All the interconnections of computational resources
should form pipelines to support the pipelined vector
operations; each computational resource also needs to

Fig. 2: DRESPA general system architecture

be pipelined so that the interconnected resources can be
pipelined. Therefore, to cater to the requirements of the
real-time high-speed signal processing applications, the
embedded architecture should be composed of
arithmetic-operation-level configurable modules.
 Dynamically Reconfigurable Embedded
Signal-Processing Architecture (DRESPA) is a novel
architecture for reconfigurable embedded systems,
targeted at applications with inherent data-parallelism,
high regularity, and high throughput requirements.
Given the nature of target applications, the
reconfigurable component is organized as an array or
reconfigurable cells (RCs). Since most of the target
applications possess word-level granularity, the RCs are
also coarse-grain. The embedded processor is an
autonomous processing unit. It performs scalar
operations and controls the operations of RC array. The
reconfigurable unit performs vector operations under
the control of the embedded processor. A specialized
memory unit handles data transfers between external
memory and the RC array, and stores input,
intermediate and output data. Also, there is a separate
memory for storing context data. It has a multi-level
interconnection network that integrates the
reconfigurable SIMD component within embedded
processor to perform both parallel as well as sequential
parts of an application. A dedicated I/O unit handles
real-time data input and output. The general system
architecture, shown in Fig. 2, comprises an embedded
processor, a reconfigurable unit, a high bandwidth
memory unit and input/output (I/O) unit, all
implemented as a single chip.
 These system components are interconnected via
four system buses consisting of two I/O buses and two
memory buses. Two I/O buses are used to transfer data
between Data Buffer and I/O unit; the two memory
buses are used to transfer data between Data Buffer and
reconfigurable unit. These four system buses allow the

J. Computer Sci., 3 (10): 823-828, 2007

 827

Fig. 3: System-wide pipeline

Fig. 4: Fast eight-point 1-D DCT algorithm

system to perform I/O operations and vector operations
at the same time. Each bus can be used for any type of
data transfer operation. In one of the typical system
activities, the following data transfer operations might
be performed in parallel:

• I/O unit to data buffer: real-time data input.
• Data buffer to I/O unit: result data output.
• Data Buffer to Reconfigurable unit: Input for

vector operations.
• Reconfigurable unit to data buffer: Output of

vector operations.

 The capability of these four parallel data transfer
operations enables the system to operate globally in
pipeline. The system-wide pipeline consists of five
stages: the first stage for real-time data input, the
second for reconfigurable unit data input, the third for
vector operations, the fourth for reconfigurable unit
data output, the fifth stage for result data output, as
shown in Fig. 3.

RESULTS AND DISCUSSION

 The implementation of 2-Dimensional Discrete
Cosine Transforms (2-D DCT) on DRESPA is
discussed in this section. 2-D DCT is most widely used
in video and image compression. The algorithm used
for this implementation is a fast DCT algorithm[6]
which is based on Discrete Fourier Transforms (DFT).
The algorithm for fast eight-point 1-D DCT is shown in

Fig. 4. The 1-D DCT algorithm is first applied to rows
of an input 8×8 image pixel block. To the resulting
matrix, 1-D DCT algorithm is applied to the columns to
get 2-D DCT.
 The computation of 1-D DCT for 1 row requires
thirteen multipliers and twenty nine adders. So, for 8
rows, 104 multipliers and 232 adders are required.
Hence for 2-D DCT, 208 multipliers and 464 adders are
required. In this architecture, two 8×8 blocks can be
processed in parallel. Two 8×8 blocks are loaded from
data buffer into RC array, with each pixel stored in one
RC. The data bus between data buffer and RC array
allows concurrent loading of sixteen pixels. So, eight
clock cycles are required for loading two blocks. The
same number of clock cycles is required to write out the
processed data to the data buffer.
 Using properties of separable transforms, 1-D DCT
along rows is computed. Then, 1-D DCT is computed
along columns of resultant matrix. For one stage of
butterfly computation, two clock cycles are required.
So, for five stages, ten clock cycles are needed. Two
clock cycles are required for buffering of data. This
same twelve clock cycles is required for other 1-D
DCT. Thus, for 2-D DCT computation of two 8×8
blocks, twenty four clock cycles are required.
Additionally, eight clock cycles are required for loading
of pixel values and eight clock cycles for writing out
the processed data, totaling forty clock cycles. For a
256 x 256 grayscale image, there are 1024 blocks. In
forty clock cycles two 8 x 8 blocks are processed. To
process 1024 blocks, 20480 clock cycles are required.
 With 16-bit data, the throughput of 2-D DCT
algorithm is given by:

 In this algorithm, 192 (= ((2+1)×4)×8×2)
operations are performed as vector computation and
seventeen operations (eight input, eight output and one
context switches) are performed by the processor. So,
speedup is given by

 or S � 12.3

The implementation results are summarized in Table 1.
The context loading time is 512 clock cycles, and since
there are a large number of computation cycles before
the configuration is changed, this time is negligible.
The performance is compared with a similar
reconfigurable system, a superscalar processor and

8 x 256 x 256
Throughput bits/cycle

20480
=

17
S 1

209
× ≤

J. Computer Sci., 3 (10): 823-828, 2007

 828

Table 1. DRESPA Implementation of 2-D DCT Algorithm.
Parameter Value
Clock Period 13 nS
Word length 16 bits
Number of RCs 192
Throughput 1.9 G bits per sec
Number of Clock cycles 20480
Number of operations for RC 192
Number of operations for Input 8
Number of operations for Output 8
Number of Context Switches 1
Maximum Speedup 12.30

Fig. 5: Performance comparisons for 2-D DCT

algorithm

commercial processors. Figure 5 shows the
performance comparison in terms of number of clock
cycles required for computation of 2-D DCT for one
8×8 block.
 REMARC[7] is another reconfigurable system
targeting multimedia applications. It requires 54 clock
cycles for computing 2-D DCT on one 8×8 block. V830
R/AV[8] is a superscalar multimedia processor requiring
201 clock cycles. sDCT[9] is a software implementation
written in optimized Pentium assembly code using
special MMX instructions, which requires 246 clock
cycles. TMS320C80[10] is a commercial digital signal
processor requiring 320 clock cycles. DRESPA requires
24 clock cycles to compute 2-D DCT on two 8×8
blocks.
 The existing major embedded architectures used
for system design were reviewed and the increasingly
important role that the dynamically reconfigurable
embedded architecture will play in the future was
discussed. The proposed architecture, DRESPA was
described and multiple opportunities for run-time
customization were discussed. Many of these
technologies have reached relative maturity.
 Based on the applications in this work, it appears
that the number of contexts does not need to be large to
achieve good performance improvement with a
Reconfigurable Unit. In these applications, more than

one context was used for each application and a
considerable speedup was obtained. The question of
how many contexts is an optimal number is still
unanswered. In case an application used more than two,
a configuration allocation algorithm implemented in the
compiler could be used to reduce the number of context
reconfigurations.
 There is still a big gap between the hardware and
the software. To close this gap, further investigation is
necessary in the area of compilers for reconfigurable
embedded systems. Specifically, a compiler is to be
designed for the DRESPA system to fully exploit it.
With such a compiler, a wider range of applications can
be tested and the architecture’s features further
explored.
 It is also desirable to study the behavior of the
architecture in presence of operating system. As a final
note, investigating the previously mentioned topics will
lead to the development of a high performance
reconfigurable system. After a complete study of the
interactions between architecture, compiler and
operating systems for reconfigurable systems, one
would be able to determine the best track to follow in
the reconfigurable world.

REFERENCES

1. Biswadip Mitra, 2002. Keynote Talks. Proceedings 15th

International Conference on VLSI Design.
2. W.J. Trybula, 2003. Common Base on Mask-cost of

ownership. SPIE(Photomask 2003) Proceedings.
3. Goldstein, S. et al., 1999. PipeRench: A Coprocessor for

streaming Multimedia Acceleration. 26th Int. Symp.
Computer Architecture, IEEE.

4. Brown, S. and J. Rose, 1996. FPGA and CPLD
Architectures: a tutorial. IEEE Design and Test of
Computers, 42-57.

5. Smith, M.J., 1997. Application-Specific Integrated
Circuits. Pearson Education Inc., ISBN:
81-7808-007-9.

6. Natarajan, S., and N. Ramadass, 2005. Self-Modifiable
Mixed-Signal SoC Architecture for Embedded
Applications. National Conference on Signals, Systems
and Communications (NCSSC 2005) Proceedings.

7. Chen, W.H., C.H. Smith and S.C. Fralick, 1977. A Fast
Computational Algorithm for the Discrete Cosine
Transform. IEEE Trans. on Communications, 25(9).

8. Miyamori, T. and U. Olukotun, 1997. A quantitative
analysis of reconfigurable coprocessors for multimedia
applications. IEEE Symposium on FPGAs for Custom
Computing Machines, 2-11.

9. Arai, T., K. Nadehara and K. Suzuki, 1998. V830R/AV:
Embedded Multimedia Superscalar RISC Processor.
IEEE MICRO, 36-47.

10. Intel Application Notes for Pentium MMX.
http://developer.intel.com/drg/mmx/appnotes.

11. F.Bonomini, G.A.Mian and D.Palumbo, 1996.
Implementing an MPEG2 Video Coder Based on
TMS320C80 MVP. SPRA 332, Texas Instruments.

Clock Cycles

54

201
246

320

24
0

200

400

Remarc

V830 R

sDCT

TMS320C80

DRESPA

