
Journal of Computer Science 3 (10): 829-835, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Abhishek Swaroop, 360/7a, Street no. 6, Bhola nath nagar, Shahdra, Delhi-110032, India,
 Tel: 91-11-2200003

829

A Token-Based Fair Algorithm for Group Mutual Exclusion in Distributed Systems

1Abhishek Swaroop and 2Awadhesh Kumar Singh

1Department of Computer Science and Engineering,
GPM College of Engineering, Delhi 110036, India

2Department of Computer Engineering,
National Institute of Technology, Kurukshetra 136119, India

Abstract: The group mutual exclusion (GME) problem is a generalization of the mutual exclusion
problem. In group mutual exclusion, a process requests a session before entering its critical section
(CS). Processes requesting the same session are allowed to be in their CS simultaneously, however,
processes requesting different sessions must execute their CS in mutually exclusive way. The paper
presents a token-based distributed algorithm for the GME problem in asynchronous message passing
systems. The algorithm uses the concept of dynamic request sets. The algorithm does not use any
message to be exchanged in the best case and uses n+1 messages in the worst case, where n is the
number of processes in the system. The maximum concurrency of the algorithm is n and
synchronization delay under heavy load (worst case) is 2T, where T is the maximum message
propagation delay. The algorithm uses first come first serve approach in selecting the next session type
and satisfies the concurrent occupancy property. The static performance analysis and correctness proof
is also included in the present exposition.

Key words: Concurrency, critical section, request set, session

INTRODUCTION

 A distributed system is a collection of independent
computers, which are capable of collaborating on a
task. Although, mutual exclusion is a classical problem
of distributed systems, group mutual exclusion (GME)
is a comparatively new problem. Joung proposed GME
problem as an interesting generalization of the mutual
exclusion problem in[1] and modeled it as congenial
talking philosophers (CTP) problem[2]. In CTP problem,
there are n philosophers and m forums; however, there
is only one meeting room. A philosopher may be in any
one of the following three states - thinking, waiting or
talking. A philosopher interested in a forum may enter
the meeting room, if the meeting room is empty or
some philosopher interested in the same forum is
already in the meeting room, otherwise he has to wait.
 The well-known readers-writer problem is a special
case of GME problem, where we can use a common
read session for all processes and a unique write session
for each individual process. Another interesting
application of GME is, when several users share large
data objects stored in secondary storage (such as CD’s)
and only one data object can be loaded in the buffer at a
time. The users interested in the data object, currently

loaded in the buffer, are allowed to access it
concurrently; however, users trying to access different
object(s) must wait.
 The requirements for group mutual exclusion
problem are:

Mutual exclusion: No two processes, requesting for a
different session can be in their critical sections
concurrently.

Starvation freedom: A process attempting to attend a
session will eventually succeed.

Concurrent occupancy: If some process P, has
requested for a session X and no philosopher is
currently attending or requesting a different session,
then P can attend X without waiting for any other
process to leave the session.
 Kean and Moir[3] were first to introduce the term
concurrent occupancy. Hadzilacos[4] redefined the term
concurrent entering, though it was introduced by Joung
in his seminal work[1], for shared memory model,
according to which If a philosopher P requests a forum
and no other philosopher is requesting a different
forum, then P enters the meeting room, within a

J. Computer Sci., 3 (10): 829-835, 2007

 830

bounded number of its own steps. However, the
bounded number of its own steps can not be guaranteed
by any process in the message passing systems.
Therefore, the idea of concurrent occupancy, defined by
Kean and Moir, has been followed in most message
passing GME algorithms.
 The GME problem was introduced and solved by
Joung[1] for shared memory model. Later on Joung[2]
extended the solution for message passing systems
using the idea of Ricart and Agrawala[5]. Numbers of
non token-based solutions, for GME problem, have
been proposed in the literature[3,6-9]. Token-based
algorithms for ring networks are given in[10,11]. Token-
based algorithms for fully connected networks are
presented in[12-14]. Mittal-Mohan algorithm[12] is
particularly suitable for those applications, where some
small numbers of groups are more in demand compared
to other groups. The scheduling policy of Mittal-Mohan
algorithm is not fair; nevertheless, the algorithm is
starvation free. The message complexity of the
algorithms is 2*(n-1), where n is the number of
processes. In Mamun-Nazakato algorithm[13], a session
is opened for a predefined time and process are made
aware about it through broadcast. Hence, the processes,
interested in the currently opened session, may join it
without incurring any message overhead. Further the
algorithm needs that the processes maintain
synchronized logical clocks. No message is propagated
in the best case and n+2 messages are used in the worst
case. The synchronization delay of the algorithm is 2T
in the worst case.
 The present paper illustrates an FCFS token-based
algorithm for solving the GME problem. Our algorithm
is based upon Chang-Singhal-Liu algorithm[15], which
uses the concept of dynamic request sets to solve the
mutual exclusion problem. In our algorithm, the
process, entering first in a session, is declared captain
and starts the session. A start message is sent to all
other processes willing to attend the same session. The
processes, allowed by captain to join the currently open
session, are called followers.

The data structures used: Each process may be in any
one of the six states described in table 1.
 The state of a process Pi is stored in its local
variable statei. Each process Pi maintains a request set
RSi, which contains the process ids of all the processes
to which Pi sends a request, in case Pi wishes to attend
some session. Besides that, Pi maintains an array of
sequence numbers SNi. SNi[j] = k denotes that Pi knows
about k requests made by Pj. In addition, Pi has another
local variable captaini, which stores id of the ‘captain’

of current session, if Pi is in its CS as follower,
otherwise captaini is set to NULL.

Table 1: The states
State Semantics
N Not Requesting
R Requesting
EC Executing in CS as captain
EF Executing in CS as follower
HS Holding token because some follower processes are
 still in CS
HI Holding token because no request is pending

Fig. 1: The structure of token.queue

 The token, in our algorithm, is a message that
contains an FCFS queue, namely token.queue in order
to store all pending requests. The token contains two
more variables, namely token.type to store the type of
current session and token.followers to store the number
of follower processes to which the start message has
been sent and which are still in CS. The requests for the
same session are grouped together and treated as one
entry in the queue. The structure of token.queue is
shown below in Fig. 1.

Types of messages: Each process Pi exchanges the
following types of messages.

• Request (i,SNi,X)-It contains the id of Pi, sequence

number of the request and the type of session
requested. When process Pi wishes to attend a
forum X and Pi is not holding the token then it
sends this message to all processes in its request
set.

• Start (i)-This message is sent to the followers in
order to allow them to join the session, which is
currently open.

J. Computer Sci., 3 (10): 829-835, 2007

 831

• Complete (i)-This message is sent to the captain
when process Pi exits from CS as follower.

• Token (token.type, token.queue, token.followers) -
It is the only token existing in the system and the
only process holding it can enter in its CS as
captain. Whenever a session finishes and next
session is selected, it is passed to the next captain.

Description of the algorithm: The code for
initialization is given in Fig. 2 and the rest of the
pseudo code is given in Fig 3; however, its working is
described below.
For i = 1 to n
 {
 StateI = N; Captaini = NULL
 RSi = {ids of all processes except that of Pi}
 For j = 1 to n
 SNi[j] = 0;
}

State1 = HI; RS1 = Ø
token.type = NULL; token.queue = Ø
token.followers = 0

Fig. 2: Pseudo code for initialization

 . Initially, all processes are in state N, having their
captain NULL, all entries of SN are zero and the
request set of each process contains ids of all other
processes except its own id. Only exception is P1. We
assume that P1 holds the token initially, therefore, the
variable state1 is modified to HI and RS1 is emptied.
 When process Pi wishes to attend a session X, it
increments the sequence number SNi[i] by 1. If Pi is in
state HI then Pi enters the CS and sets statei equal to
EC. If statei is HS, token.queue is empty and token.type
= X then Pi enters in its CS and changes its state to EC.
However, if statei is HS and token.queue is not empty
or token.type≠X, the request is added in the
token.queue. Otherwise state of Pi becomes R and it
sends request messages to all processes in its request set
and waits for the token or start message.
 A process Pi, upon receiving a request message
from Pj, checks whether the request is new or old. Pi
discards the old request without taking any action.
However, if the request is new, Pi updates the value of
SNi[j]. If Pi is also requesting and Pj is not in RSi, Pi
sends its request to Pj and adds Pj to RSi. If statei is HI,
it adds id of process Pj to RSi and immediately sends
the token to Pj. However, if Pi is holding token in state
HS, it sends start message to Pi, if X is the currently
open session and the token.queue is empty. Otherwise
the request is added in the token.queue. If state of Pi is
N or EF and Pj is not in RSi, then Pj is added to RSi.

 When a follower process comes out of its CS, it
sends complete message to its captain, changes its state
to N and sets its captain to NULL. However, when a
captain process comes out of its CS, it checks the
number of followers still in CS. If there are still some
follower processes in their CS, the captain changes its
state to HS. If no follower process is in CS and there is
no request pending, the captain process changes its state
to HI. However, if there are pending requests in the
token.queue, the captain process changes its state to N
and starts new session. In order to start new session, it
removes front element of token.queue and appoints it
the next captain. Subsequently, it removes followers of
the newly appointed captain from the token.queue,
sends token to the newly appointed captain and sends
start message to all followers of the newly appointed
captain.
 On receiving every complete message, the captain
decrements variable token.followers by one. If the state
of the captain is HS and token.followers attains value
zero, the captain changes its state to HI, if token.queue
is empty. However, if token.queue is not empty, the
captain process changes its state to N and starts new
session.
 The captain process, on receiving token, changes
its state to EC and enters in its CS. On receiving a start
message, a process becomes follower. It changes its
state to EF, stores id of its captain and enters in its CS.

Correctness proof: Our algorithm satisfies the
properties, which are necessary for a correct solution of
group mutual exclusion problem. We consider them one
by one

Mutual exclusion: The mutual exclusion requirement
in GME problem says that, no two processes requesting
for a different session, must be in their CS
simultaneously. There exists only one token in the
system and only the process holding the token can
initiate a session as a captain. The process holding the
token can send the start message to only those
processes requesting for the same session. Further the
token is not transferred to another process, until captain
and all followers have come out of their CS. Therefore,
no two processes requesting for a different session, can
be in their CS at the same time.

Freedom from starvation: An FCFS queue is
maintained by the token to store the pending requests.
Whenever a session finishes, the process holding the
token, passes the token to the process stored at the front
of the queue. A start message is sent to all other process
n the token.queue, requesting the same session.

J. Computer Sci., 3 (10): 829-835, 2007

 832

 Pi request for a forum X:
SNi[i]=SNi[i]+1
If (statei=HI)
{
 token.type=X; Statei =EC; RSi= Ø; Enter CS
}
Else if (statei=HS)
 {
 If (token.queue= Ø) && (token.type=X)
 {
 Statei=EC; Enter CS
 }
 Else Add request (i,SNi [i],X) to token.queue
 }
Else
 {
 Statei=R;
 Send request (i, SNi [i], X) to all members of RSi
 }

Pi receives request (j,SN,X):
If SN>SNi[j] /* otherwise old request
{
 SNi[j] =SN
 If (statei=R) && (ij RS∉) /* i is requesting for Y
 {
 Add Pj to RS; Send request (i,SNi[i], Y) to Pj
 }
 Else If (statei=EC)
 {
 If (token.type=X) && (token.queue=Ø)
 {
 token.followers=token.followers+1
 Send start (i) to Pj
 }
 Else add request (j,SN,X) to token.queue
 }
Else If (statei=HI)

 {
 Add j to RSi; Send token to Pj
 }

Else If (statei=HS)
 {
 If (token.type=X) && (token.queue=Ø)
 {
 token.followers=token.followers+1
 Send start (i) to Pj
 }
 Else add request (j,SN,X) to token.queue
}

 Else Add j to RSi
 }

 Pi receives start (j):
Captaini=j; Statei=EF; Enter CS

Pi exits from CS:
 If statei=EF
 {
 Send complete (i) to captaini
 captaini=NULL; Statei=N
 }
Else
 {
 If (token.followers=0) && (token.queue=Ø)
 {
 Statei=HI; token.type=NULL
 }
 If (token.followers=0) && (token.queue≠Ø)
 {
 statei =N
 Add all processes which are in token.queue and
 which can work as captain ,to RSi
Remove Process Pj and its followers from the queue
 token.type=X; token.followers=number of followers
Send token (token.queue, token.type, token.followers)
to Pj

Send start (j) to all followers
 }
 If (token.followers≠0) statei =HS
}

Pi receives complete(j):
token.followers=token.followers-1
If (token.followers=0) && (state=HS)
 {
 If (token.queue=Ø) statei=HI
 Else
 {
 if (i’s request in token.queue) Statei=R Else
Statei=N
 Add all processes which are in token.queue and can
work as captain to RSi
Remove Pj and its followers from the. queue
token.type=X; toen.followers=number of followers
Send token (token.queue, token.type, token.followers)
to Pj
Send start (j) to all followers} }

Pi receives token:
 Statei=EC; enter CS; RSi =Ø

Fig 3: Pseudo code of the algorithm

J. Computer Sci., 3 (10): 829-835, 2007

 833

However, if a request of the current session type arrives
at the captain, the captain checks whether the
token.queue has any pending requests. The captain
sends start message to the requesting process, only if
the token.queue is empty. However, if the token.queue
is not empty, the request is added in the token.queue.
This entry policy removes the possibility that the
processes of a particular group keep on requesting for
the current session and not allowing other processes to
enter in their critical sections. Therefore, the sessions in
the algorithm are served in a starvation free manner.
Concurrent occupancy: In the proposed algorithm,
when a process starts execution in CS as a captain, it
allows CS entry to all the processes, requesting for the
same session, whose requests are stored in the
token.queue. When the captain is in state EC or state
HS and a request for the current session arrives, it
checks whether the token.queue is empty. If it is so, it
immediately sends a start message to the requesting
process. The requesting process enters in its CS upon
receiving the start message. Hence, it is proved that
our algorithm satisfies the concurrent occupancy
property.

Performance analysis: We will analyze the
performance of our algorithms using following
performance parameters: message complexity per CS
request, average message size, forum switch
complexity, maximum concurrency and
synchronization delay. Forum switch complexity
(defined below) and maximum concurrency are
applicable for GME algorithms but not for mutual
exclusion algorithms.

Forum switch complexity: The forum switch
complexity[1] is measured by the maximum number of
rounds of passages a process may wait, before it can
access the requested resource. A passage by Pi through
a session F is an interval [t1, t2], where t1 is the time
when process Pi enters the session and t2 is the time
when Pi leaves the session. Further a set of passages S,
where ts = min {t|[t, t′]∈S} and tf = max {t′|[t, t′]∈S} is
a round of passage through session F, if following
conditions are satisfied

• Only those passages which are in S, are initiated

between ts and tf
• The last passage before ts and the first passage after

tf are for a session other than F

 Forum switch complexity is particularly significant
in applications, where changing a session is time

consuming, such as applications which require
unloading and loading of disk during a session switch.
 The following Table 2 describes the size of various
messages used in our algorithm.

Theorem 1: The number of messages exchanged per
CS entry in our algorithm is n+1 in the worst case and
zero in the best case.

Proof: The messages exchanged, during the execution
of the algorithm are, request, token, start and complete.
The token message is used only once per session, when

Table 2: Messages and their size
Message type Size
Request O (1)
Token O (n)
Start O (1)
Complete O (1)

the current captain transfers the token to the next
captain. The start message is sent to the follower and
the follower process sends complete message to its
captain. Therefore, besides the request messages only
one start and one complete message would be required
per CS entry by a follower process. Moreover, no start
or complete message is needed in case of captain. The
request message is sent by a requesting process to all
processes in its request set. The maximum cardinality
of a request set can be n-1; therefore, a requesting
process has to send at most n-1 request messages.
Hence, in the worst case, the number of messages
exchanged is n+1 in case of follower (n-1 request
messages, one start message and one complete
message) and n in case of captain (n-1 request messages
and one token message).
 However, in the best case, no messages are
exchanged. If a process is in HI state and wishes to
attend a session, in that case a new session will be
started immediately and the state of the process changes
from HI to EC. No message exchange is required in this
case.

Theorem 2: The average message size in our algorithm
is O (n) in the worst case and O (1) in the best case.

Proof: All the messages used in the algorithm (request,
start, and complete), except the token, have O (1) size.
The size of the token is O (n). The token is exchanged
only, when a session change occurs. The worst case
will occur, when there are n-1 pending requests and
each request is for a different session (if we assume that
number of processes< = number of sessions). In that

J. Computer Sci., 3 (10): 829-835, 2007

 834

case, the token of size O (n) will be exchanged with
every CS execution and the average message size will
be O (n).
 The best case will occur when there are n-1
pending requests; however, all of these requests belong
to the same session. In that case, besides the request
messages only one token will be transferred and n-1
start and n-1 complete messages will be exchanged.
Therefore, the average message size in the best case
will be O (1).

Theorem 3: The maximum concurrency of our
algorithm is n.
Proof: In our algorithm, all the processes can be in
their CS concurrently provided that they request the
same session. The request of a process requesting the
current session can be fulfilled, if no request for some
other session is pending in the token.queue. Therefore,
maximum concurrency of our algorithm is n.

Theorem 4: The forum switch complexity of the
algorithm is min (n , m), where n is the number of
processes and m is the number of sessions.

Proof: The pending requests for a particular session in
token.queue are grouped together and the requests for
one session are treated as a single entry in token.queue.
Therefore, at any point of time there can be at the most
min (n, m) entries in token.queue. If a process requests
a new session, which has no entry in token.queue till
now, then a new entry is created and added at the tail of
the queue. Hence, after a process has made a request, at
most min (n, m) forum switches can take place,
therefore, the forum switch complexity of the algorithm
is min(n,m).

Theorem 5: In the worst case, the synchronization
delay of the algorithm, under heavy load, is 2T.

Proof: Under heavy load conditions, there will always
be some pending requests in token.queue, therefore, as
soon as a captain comes out of CS and no follower is in
its CS, the token is passed to the next captain and the
heavy load synchronization delay is T. However, if the
last process to come out is a follower, it will first send a
complete message to the captain, which in turn
terminates the session and passes the token to next

captain. Therefore, the synchronization delay in this
case will be 2T.

CONCLUSION

 In the present paper, we proposes a token-based
algorithm for the group mutual exclusion problem. Our
algorithm uses the concept of dynamic request sets. It
satisfies safety, concurrent occupancy and the strongest
fairness requirement. The maximum concurrency of the
algorithm is n and the forum switch complexity is min
(n, m). The dynamic performance analysis of the
proposed algorithm and the quantitative comparison,
with other token-based GME algorithms, is being
postponed for a future work. The entry policy of a
GME algorithm is very critical, in order to increase the
resource utilization. We plan to investigate alternate
entry policies and compare them with the entry policy
adopted in the present algorithm.

REFERENCES

1. Joung, Y.J., 1998. Asynchronous group mutual

exclusion (extended abstract). In Proceedings of
the 17th annual ACM Symposium on Principles of
Distributed Computing (PODC) : 51-60.

2. Joung, Y.J., 2002. The Congenial talking
philosopher problem in computer networks.
Distributed Computing, 15: 155-175.

3. Kean, P. and M. Moir, 1999. A simple local spin
group mutual exclusion algorithm. 18th annual
ACM Symposium on Principles of Distributed
Computing : 23-32.

4. Hadzilacos, V., 2001. A note on group mutual
exclusion. 20th ACM Symposium on Principles of
Distributed Computing: 100-106.

5. Ricart, G. and A.K. Agrawala, 1981. An optimal
algorithm for mutual exclusion in computer
networks, Communications of the ACM,
24 (1): 9-17.

6. Wu, K.P. and Y.J. Joung, 1999. Asynchronous
group mutual exclusion in ring networks. 13th
International Parallel Processing Symposium
(IPPS 99): 539-543.

7. Manabe, Y. and J. Park, 2004. A quorum based
extended group mutual exclusion algorithm
without unnecessary blocking. 10th International
Conference on Parallel and Distributed Systems
(ICPADS 04).

8. Attreya, R. and N. Mittal, 2005. A dynamic group
mutual exclusion algorithm using surrogate
quorums. 25th IEEE conference on distributed
computing systems (ICDCS 05).

J. Computer Sci., 3 (10): 829-835, 2007

 835

9. Toyomura, M., S. Kamei and H. Kakugawa, 2003.
A quorum-based distributed algorithm for group
mutual exclusion. PDCAT 03: 742-746.

10. Cantarell, S., A. K.Dutta, F. Pilit and V. Villain,
2001. Token based group mutual exclusion for
asynchronous rings. IEEE International Conference
on Distributed Computing Systems (ICDCS):
691-694.

11. Lin, D., T.S. Moh and M. Moh, 2005. Brief
announcement: improved asynchronous group
mutual exclusion in token passing networks.
Annual ACM Symposium on Principles of
Distributed Computing (PODC 05): 275-275.

12. Mittal, N. and P.K. Mohan, 2005. An efficient
distributed group mutual exclusion algorithm for
non-uniform group access. International
Conference on Parallel and Distributed Computing
Systems.

13. Mamun, Q.E.K. and H. Nakazato, 2006. A new
token based group mutual exclusion in distributed
systems. 5th International Symposium on Parallel
and Distributed Computing.

14. Thiare, O., M. Gueroui and M. Naimi, 2006.
Distributed group mutual exclusion based on
client/servers model. 7th International Conference
on Parallel and Distributed Computing,
Applications and Technologies (PDCAT 06).

15. Ye-In chang, M. Singhal and M.T. Liu, 1991. A
dynamic token based distributed mutual exclusion
algorithm. 10th Annual International Phoenix
Conference on Computers and Communications:
240-246.

