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Abstract: PRAM algorithms for Symmetric Gaussian elimination is presented. We showed actual 
testing operations that will be performed during Symmetric Gaussian elimination, which caused 
symbolic factorization to occur for sparse linear systems. The array pattern of processing elements 
(PE) in row major order for the specialized sparse matrix in formulated. We showed that the access 
function in2+jn+k contains topological properties. We also proved that cost of storage and cost of 
retrieval of a matrix are proportional to each other in polylogarithmic parallel time using P-RAM with 
a polynomial numbers of processor. We use symbolic factorization that produces a data structure, 
which is used to exploit the sparsity of the triangular factors. In these parallel algorithms number of 
multiplication/division in O(log3n), number of addition/subtraction in O(log3n) and the storage in 
O(log2n) may be achieved. 
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INTRODUCTION 
 
 In this research we will explain the method of 
representing a sparse matrix in parallel by using P-
RAM model. P-RAM model is a shared memory model. 
According to Gibbons and Rytter[6], the PRAM model 
will survive as a theoretically convenient model of 
parallel computation and as a starting point for a 
methodology. There are number of processors working 
synchronously and communicating through a common 
random access memory. The processors are indexed by 
the natural number and they synchronously execute the 
same program (through the central main control). 
Although performing the same instructions, the 
processors can be working on different data (located in 
a different storage location). Such a model is also called 
a single-instruction, multiple-data stream (SIMD) 
model. The symmetric factorization is in logarithmic 
time of the hypercube SIMD model[2,10]. 
 To develop these algorithms we use method of 
symbolic factorization on sparse symmetric 
factorization. Symbolic factorization procedures a data 
structure that exploits the sparsity of the triangular 
factors. We will represent an array pattern of processing 
elements (PE) for sparse matrix on hypercube. We have 
already developed P-RAM algorithms for linear system 
(dense case)[7,8,9]. These algorithms are implemented on 
Hypercube architecture.  

BACKGROUND 
 
 We consider symmetric Gaussian elimination for 
the solution of the system of linear Eq. 
 
   A x = b 
 
 Where A is an n×n symmetric, positive definite 
matrix. Symmetric Gaussian elimination is equivalent 
to the square root free Cholesky method, i.e., first 
factoring A into the product UTDU and then forward 
and back solving to obtain x and we often talk 
interchangeably about these two methods of solving     
A x = b. Furthermore, since almost the entire of A, we 
restrict most of our attention to that portion of the 
solution process. 
 Sherman[13] developed a row-oriented UTDU 
factorization algorithm for dense matrices A and 
considers two modifications of it which take advantage 
of sparseness in A and U. We also discuss the type of 
information about A and U which is required to allow 
sparse symmetric factorization to be implemented 
efficiently. 
 Here we will present a parallel algorithm for sparse 
symmetric matrix and will be implemented to 
hypercube. 
Previously we have already developed matrix 
multiplication algorithm on P-RAM model[7] and 
implementation of back-substitution in Gauss-
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elimination on P-RAM model[8]. Now we further extend 
this idea for sparse linear systems of Eq.s.  
 

ANALYSIS OF SYMMETRIC GAUSS 
ELIMINATION 

 
 In this section we suggest the actual testing 
operations that will be performed during Symmetric 
Gaussian elimination. Basically the Gaussian 
elimination is applied to transform matrices of linear 
Eq. to triangular form. This process may be performed 
in general by creating zeros in the first column, then the 
second and so forth. For k = 1,2,...,n-1 we use the 
formulae 
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where, (1)

ij ija a= , i, j = 1, 2,…,n. The only assumption 

required is that the inequalities (k)
kka 0≠ , k = 1,2,..., n 

hold. These entries are called pivot in Gaussian 
elimination. It is convenient to use the notation, 
 
  (k ) (k )A x b=  

 
 For the system obtained after (k-1) steps, k = 1, 
2,..., n with A(1) = A and b(1) = b. The final matrix A(n) is 
upper triangular matrix[3]  

As we know that in 
(k )
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eliminating position (k)
ika  

 
Case 1: If i j≠  then the above expression can be 
written as follows: 
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Lemma 1: if (k) (k 1)

ij ij(a a ) 0+− <  then (k)
ika  or (k)

jka  is 
negative 
 
Proof: (k) (k 1)

ij ij(a a ) 0+− <  
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Lemma 2: If (k) (k 1)

ij ij(a a ) 0+− >  then (k)
jka  or (k)

ika  both 

negative or both positive and for pivot element (k)
ija  is 

always positive. 
 
Proof: -  
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 (k )
jka�  or (k)

ika  both negative or both positive and 

for pivot element (k)
ija  is always positive. 

 
Lemma 3: If (k) (k 1)

ij ij(a a ) 0+− =  then no elimination will 
take place and one of the following condition will be 
satisfied. 
  (i) (k)

ika  = 0 or (ii) (k)
jka  = 0 or both (i) and (ii) are 

zero. 
 
Proof:  
 if (aij

(k)-aij
(k+1)) = 0 then 
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(k)) = 0 
 � aik

(k) = 0 or ajk
(k) = 0 or both are zero. 

 �aik
(k) will remain same after elimination i.e. no 

elimination is required  
 
Case 2: if i = j then 
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Lemma 5: If aik
(k) = 0 then aii

(k+1) = aii
(k) no iteration 

will  take place. 
 
Proof: The result is obvious. 
 
Lemma 6: If ( )(k) (k 1)

ii iia a 0+− > then aik > 0 

 
Proof:  
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Lemma 7: If (aii
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Lemma 8: if (aii
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Proof:  
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 In Gauss elimination, a nonzero position in 
position jk, implied that there was also a nonzero 
position in kj, which would cause fill to occur in 
position i, j, when row k is used to eliminate the 
element in position ik[4]. 
 Here we present the following analysis when the 
matrix is symmetric and positive definite. 
 When i ≠ j in Eq. 3 and ( )(k ) (k 1)

ij ija a +−  is less than 0 

then the elements aik
(k) or ajk

k is negative before 
elimination and when in Eq. 3 ( )(k ) (k 1)

ij ija a +−  is greater 

than 0 then ajk
(k) or aik

(k) both are negative or both are 
positive and for pivot   element aij

(k) is always positive 
and when in Eq. 3 ( )(k ) (k 1)

ij ija a +−  is equal to zero then no 

elimination will take place and one of the following 
condition will be satisfied 
 (a) aik

(k) = 0 or  (b) ajk
(k) = 0 or both (a) and (b) 

will be zero. 
 When i = j in the above explanation of Eq. 3 then 
for the first case the pivot element will be eliminated 

and for the second case the element which is to be 
eliminated will be greater than zero and for the third 
case elimination will not take place. 
 We suggested testing operation for variation 
occurring in the elements of Symmetric Gaussian 
elimination. There are more testing operations rather 
than arithmetic operations, so that the running time of 
the algorithms could be proportional to the amount of 
testing rather than amount of arithmetic operation, 
which will cause symbolic factorization to occur. To 
avoid this problem Sherman pre computed the sets rak, 
ruk, cuk and showed that in implementation of this 
scheme, the total storage required is proportional to the 
number of non zeroes in A and U and that the total 
running time is proportional to the number of arithmetic 
operations on nonzero. In addition to this the 
preprocessing required to compute the sets { rak} { ruk} 
and {cuk} can be performed in time proportional to the 
total storage. To see how to avoid these problems, let us 
assume that for each k, 1≤ k ≤ N, we have pre-
computed: 
  
• The set rak of columns j ≥ k for which akj ≠ 0; 
• The set ruk of columns j > k for which ukj ≠ 0; 
• The set cuk of columns i < k for which uik ≠ 0; 
 
Line 
 
1. For k ← 1 to N do 
2.  [mkk ←1; 
3.  dkk ← akk; 
4.  For j � ruk do 
5.   [mkj← 0]; 
6.  For j � {n � rak : n > k} do 
7.   [mkj ← akj]; 
8.  For i � cuk do 
9.   [t ← mik; 
10.   mik ← mik / dii; 
11.   dkk ← dkk-t. mik; 
12.   For j � {n � rui : n >k} do 
13.    [mkj � mkj-mik. mij ]]]; 
 
Comment: Now M = U 
 Row-oriented Sparse UTDU Factorization (with 
pre-processing) [Source 13]. 
 

Algorithm 1 
 In Algorithm 1 only entries of M, which are used 
are those corresponding to nonzeroes in A or U. An 
implementation for Algorithm 1, it is already shown 
that the total storage required is proportional to the 
number of nonzeroes in A and U and that the total 
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running time is proportional to the number of arithmetic 
operations on nonzeroes. In addition, A.H. Sherman[13] 
showed that the pre-processing required to compute the 
sets {rak}, {ruk}, {cuk} can be performed in time 
proportional to the total storage. 
 

SYMBOLIC FACTORIZATION 
 
 The sets {rak}, which describe the structure of A, 
are input parameters and the symbolic factorization 
algorithm, computes the sets {ruk} from them. The sets 
{cuk} could be computed from the sets {ruk}, at the k-th 
step of the symbolic factorization algorithm, ruk is 
computed from rak and the sets rui for i < k. An 
examination of Algorithm 1 shows that for j > k, ukj � 0 
if and only if either  
 

i. akj � 0 or 
ii. uik � 0 for some i ∈cuk. 

Thus letting  
 ruk

i = {j ∈ rui : j> k}, 
we have j ∈ ruk if and only if either 

iii. j ∈ rak or 
iv. j ∈ ruk

i for some i ∈ cuk. 
 

 Algorithm 2, 3 are a symbolic factorization 
algorithm based directly on Algorithm 1. At the k-th 
step, ruk is formed by combining rak with sets { ruk

i} for 
i∈cuk. However, it is not necessary to examine ruk

i for 
all rows i∈cuk. Let lk be the set of rows i∈cuk for which 
k is the minimum column index in rui. Then we have 
the following result, which expresses a type of 
transitivity condition for the fill-in in symmetric 
Gaussian elimination. 
 There are some important reasons why it is 
desirable to perform such a symbolic factorization. 
 
• Since a symbolic factorization produce a data 

structure that exploits the sparsity of the triangular 
factors, the numerical decomposition can be 
performed using a static storage scheme. There is 
no need to perform storage allocations for the fill-
in during the numerical computations. This reduces 
both storage and execution time overheads for the 
numerical phase[4,5]. 

• We obtained from the symbolic factorization a 
bound on the amount of sparse we need in order to 
solve the linear system. This immediately tells us if 
the numerical computation is feasible. (of course, 
this is important only if the symbolic factorization 
can be performed both in terms of storage and 
execution time and if the bound on space is 

reasonably light)[4,5] 
1. For k ← 1 to N do 

 2.  [ruk ←0]; 
 3. For k ← 1 to N-1 do 
 Comment: Form ruk by set Unions 
 4.   [For j ∈ {n ∈ rak : n > k} do 
 5.    [ruk ← ruk ∪ {j}]; 
 6.   For i ∈ cuk do 
 7.    [For j ∈ rui

k do 
 8.     [if j ∉ ruk then 
 9.     ruk ← ruk ∪ {j}]]]]; 
 
 O(θA) symbolic factorization [Source  13] 
 

Algorithm 2 
 
 1. For k ← 1 to N do 
 2.  [ruk ← 0; 
 3.  lk ← 0]; 
 4. For k ← 1 to N-1 do 
 Comment: Form ruk by set Unions 
 5.  [For j ∈ {n ∈ rak : n > k} do 
 6.   [ruk ← ruk ∪ {j}]; 
 7.  For i ∈ lk do 
 8.   [For j ∈ rui

k do 
 9.    [if j ∉ ruk then 
 10.     [ruk ← ruk ∪ {j}]]]; 
 11.    m ← min {j: j∈ ruk ∪ {N+1}} 
 12.    If m < N+1 then 
 13.     [lm ← lm ∪ {k}]];  
 
 O(θs) symbolic factorization Algorithm[Source 13] 
 

Algorithm 3 
 

PARALLEL MATRIX ALGORITHM 
 
 By an efficient parallel algorithm we mean one that 
takes polylogarithmic time using a polynomial number 
of processors. In practical terms, at most a polynomial 
number of processors is reckoned to be feasible[6]. A 
polylogarithmic time algorithm takes O (logkn) parallel 
time for some constant integer k, where n is the 
problem size. Problems which can be solved within 
these constraints are universally regarded as having 
efficient parallel solutions and are said to belong to the 
class NC(Nick Pippenger's Class). 
 
Representation of Array Pattern of Processing 
Elements (P.Es.): Consider a case of three dimensional 
array pattern with n3 = 23q (Processing Elements) PEs. 
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 Conceptually these PEs may be regarded as 
arranged, in n×n×n array pattern. If we assume that the 
PEs are row major order, the PE (i,j,k) in position (i,j,k) 
of this array has index in2+jn+k (note that array indices 
are in the range[0, (n-1)]. Hence, if r3q-1,.....,r0 is the 
binary representation of the PE position (i,j,k) then i = 
r3q-1,....,r2q, j = r2q-1,...,rq, k = rq-1,....,r0 using A(i,j,k), 
B(i,j,k) and C(i,j,k) to represent memory locations in 
P(i,j,k), we can describe the initial condition for matrix 
multiplication as: 
 
  A(0,j,k) = Ajk 
  B(0,j,k) = Bjk, 0 <  = j < k, 0 <  = k < n 
 
 Ajk and Bjk are the elements of the two matrices to 
be multiplied. The desired final configuration is  
 
  C(0,j,k) = C(j,k), 0 <  = j < n, 0 <  = k < n 
 
Where, 
 

  
n 1

jk jl lk
l 0

C A B
−

=

=�   (4) 

 
 This algorithm computes the product matrix C by 
directly making use of (4). The algorithm has three 
distinct phases. In the first, element of A and B are 
distributed over the n3 PEs so that we have A(l,j,k) = Ajl 
and B(l,j,k) = Blk. In the second phase the products 
C(l,j,k) = A(l,j,k) * B(l,j,k) = AjlBlk are computed. 

Finally, in third phase the sum 
n 1

l 0

C(l, j,k)
−

=
�  are 

computed. 
 The details are spelled out in Dekel, Nassimi and 
Sahni 1981. In this procedure all PE references are by 
PE index (Recall that the index of PE(i,j,k) as 
in2+jn+k). The key to the algorithm of Dekel, Nassimi 
and Sahni[2] in the data routing strategy 5q = 5 log n 
routing steps are sufficient to broadcast the initial value 
through the processor array and to confine the results. 
 The array pattern of processing elements (PE) in 
row-major order for the specialized sparse matrix 
(symmetric)[12] can be formulated in the following 
manner. 
 
• Representation of lower-triangular matrix: 

Index of (aij)   = Total Number of elements in first 
i-1 rows + Number of elements up to jth

 column in 
the ith row  

 
 = i (i+1) / 2 + j  (1�i, j�n) 

• Representation of upper-triangular matrix:  
 Index of (aij) = Number of elements up to aij 

element = (i-1)×(n-i/2)+j (1≤i, j≤n) 
 
• Representation of diagonal matrix: 
 In the sparse matrices having the elements only on 

diagonal following points are evident: 
 Number of elements in a n×n square diagonal 

matrix = n 
 Any element aij can be referred as processing 

element using the formula 
 Address (aij) = i[or j] 
 
• Representation of tri-diagonal matrix: 
 Index of (aij) = Total number of elements in first (i-

1) rows + Number of elements up to jth Column in 
the ith Row = 2+2 x (i-2)+j (1≤i,  j≤n)  (1≤i,  j≤n) 

 
• Representation of αβαβαβαβ-band matrix: 
 
Case 1: 1≤i≤β 
 Index of (aij) = Number of elements in first (i -1)th 

row + Number of element in ith row up to jth 
column 

 
 = α × (i-1) + ((i-1) (i-2)) / 2 + j 
 
Case 2: β < i ≤ (n-α+1) 
 Index of (aij) = Number of elements in first β row + 

Number of elements between (β+1)th row and (i-
1)th row + Number of elements in ith Row 

  
 = αβ + (β(β-1))/2+(α+β-1)(i-β-1)+j-i+β 

 
Case 3: n-α+1<i 
 Index of (aij)   =  
 Number of elements in first (n-α+1) rows + 

Number of elements after (n-α+1)th row and up to 
(i-1)th row + Number of elements in ith Row and 
unto jth column 

 
= αβ+(β(β-1))/2+(α+β-1) (n-α-β+1)+(α+β) (i-n+α−1)-
((i-n+α-1)×(i-n+α-2)) / 2+ 1 
 
 Representation of array pattern of processing 
elements (PE) for lower triangular matrix is presented 
on a hypercube model. Hypercubes are loosely coupled 
parallel processors based on the binary n-cube network. 
A n-cube parallel processor consists of 2n identical 
processors, each provided with its own sizable memory 
and inter connected with n neighbors[1,14,15]. This 
architecture consists of a large number of identical 
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processors inter connected to one another according to 
some convenient pattern. In a shared memory system, 
processors operate on the data from the common 
memory, each processor reads the data it needs, 
performs some processing and writes the results back in 
memory. In a distributed memory system inter 
processor communication is achieved by message 
passing and computation of data driven (although some 
designs incorporate a global bus, this does not 
constitute the main way of inter communication). By 
message passing it is meant that data or possibly code 
are transferred from processor A to processor B by 
traveling across a sequence of nearest neighbor nodes 
starting with node A and ending with B, 
synchronization is driven by data in the sense that 
computation in some node is performed only when its 
necessary data are available. The main advantage of 
such architectures, often referred to as ensemble 
architectures, is the simplicity of their design. The 
nodes are identical, or are of a few different kinds and 
can therefore be fabricated at relatively low cost. The 
model can easily be made fault tolerant by shutting 
down failing nodes. 
 The most important advantages of this class of 
design is the ability to exploit particular topologies of 
problem or algorithms in order to minimize 
communication costs. A hypercube is a 
multidimensional mesh of nodes with exactly two 
nodes in each dimension. A d-dimensional hypercube 
consists of K nodes, where K = 2n.  
 
• A hypercube has n special dimensions, where n can 

be any positive integer (including zero) [1],[15]. 
• A hypercube has 2n vertices  [11]. 
• There are n connections (lines) that meet at each 

vertex of a hypercube [11]. 
• All connections at a hypercube vertex meet at right 

angles with respect to each other[1],[14]. 
• The Hypercube can be constructed recursively 

from lower dimensional cubes. 
• An architecture where the degree and diameter of 

the graph is same than they will achieve a good 
balance between, the communication speed and the 
complexity of the topology network. Hypercube 
achieve this equality, which explains why they are 
one of the today's most popular design (e.g. i psc of 
intel corp., T-series of FPS, n-cube, connection 
machine of thinking machines corp.)[11,15]. 

 
 When the lower triangular matrix is presented in 
three dimension then the PE’s are indexed in the 
following manner.  

 
 
Fig. 1: Mapping of lower triangular matrix on 

hypercube 
 

  2
(i, j,k )

i(i 1)
a n jn k

2
+= + +  

 
 For different values of i and j we can map 
Hypercube. Here we are representing mapping of 
Hypercube for a single value of i and j by using 
functions BIT and BIT- COMPLIMENT. (Fig. 1). 
 
A. i = 0, j = 0 a(i,j) = 0,k = 0 
 
BIT (0000, 0) = 0, BIT-COMPLEMENT (0000, 0) = 0001 = (1) 
BIT (0000, 1) = 0, BIT-COMPLEMENT (0000, 1) = 0010 = (2) 
BIT (0000, 2) = 0, BIT-COMPLEMENT (0000, 2) = 0100 = (4) 
BIT (0000, 3) = 0, BIT-COMPLEMENT (0000, 3) = 1000 = (8) 
 
Now we conclude the following results   
 
Lemma 9: The routing or access function in2+jn+k 
contains topological properties. 
 
Proof: This access function is a polynomial of 3 
dimensional discrete space. Where i, j, k are 3 
dimensions and n is fixed. It gives a relationship of 
processing elements (i.e. there are 23 connections) that 
meet at each vertex of a hypercube means that the 
algorithm can be evaluated in polylogarithmic time 
using a polynomial (in2+jn+k) of three dimensional 
discrete space. We can easily construct hypercube 
successively from lower dimensional cubes by using 
polynomial in2+jn+k. A discrete space is a topological 
space in which all sets are isolated. We conclude that 
the access function by which we are mapping matrix 
elements will be pairwise continuous. It is shown in the 
implementation that because of the hamming distance 
between the processes the hypercube is modeled as a 
discrete space with discrete time. This access function 
is also used to map a matrix of three dimensions into 
RAM sequentially. 
 
Lemma 10: Cost of storage and cost of retrieval of a 
matrix are proportional to each other in polylogarithmic 
parallel time using P-RAM with a polynomial number 
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of processor. 
 
Proof: For storage and retrieval of a matrix we use 
parallel iteration. Parallel iteration has the property of 
convergence in log n in parallel. It converge 
geometrically or at the rate of geometric progression 
therefore they are proportional to each other for a single 
value. From the above fact we can write that cost of 
retrieval is proportional to cost of storage 
 
� cost of retrieval = k x cost of storage, (Where k is a 
constant) 
 
� if k ≥ 1 then it is a Dense matrix and if k < 1 then it 
is a sparse matrix. 
 
 Here we are representing PRAM-CREW 
Algorithm. 
 
Row oriented sparse UTDU factorization (With pre-
processing) PRAM-CREW Algorithm: 
Begin 
Repeat log n times do 
For all (ordered) pair (i, j, k), 0< k ≤ n, 0<i = j = k ≤ n 
And q = log n in parallel do 
 m(22qi+2qj+k) = m(k, k) 
 d(22qi+2qj+k) = d(k, k) 
 a(22qi+2qj+k) = a(k, k) 
  m(k, k) = 1 
  d(k, k) � a(k, k) 
end for 
 For all (ordered) pair (i, j,. k) 0 < k ≤ n, i > 0  
j ∈ u(k, j) and q = log n 
in parallel do 
  m(22qk+2qj+k) = m(k, j) 
  m(k, j) � 0; 
end for 
 for all (ordered) pair (i, j, k), 0 <k≤ n  
j ∈ (n ∈ a(k,j) : n > k) and q = log n in parallel do 
  a(22qi+2qj+k) = a(k, j) 
m(k, j) � a(k, j) 
  end for 
For all (ordered) pair (i, j, k) 0 <k≤ n  
i ∈ (u(i, k)) do  
  m(22qk+2qj+k) = m(i, k) 
  m(22qk+2qj+k) = d(i, i) 
m(22qk+2qj+k) = m(i, j) 
t� m(i, k); 
m(i, k) � m(i, k)/d(i, i); 
d(k, k) � d(k, k)-t. m(i, k); 
 for all (ordered) pair (i, j, k), 0 <k≤ n  
j ∈ (n ∈ rui : n > k) and q = log n in parallel do 
m(k, j) � m(k, j)-m(i, k). m(i, j) 
   End for 

  End for 
  End 
O(θθθθA) symbolic factorization PRAM-CREW 
Algorithm: 
Begin 
Repeat log n times do 
For all (ordered) pair (i, j, k), 0< k ≤ n, (j > k : uk,j ≠ 0) 
and q = log n in parallel do 
 u (k, j) � 0 
End for 
For all (ordered) pair (i, j, k), 0 < k < n and q = log n 
in parallel do 
For all (ordered) pair (i, j, k), 0< k < n,  
j ∈ (n ∈ a(k, j): n > k) do  
u(k, j) � u(k, j) ∪ {i} 
end for 
for all (ordered) pair (i,j, k), 0 <k≤ n  
i ∈ cuk and q = log n in parallel do 
For all (ordered) pair (i. j. k) 0 <k≤ n  
   j ∈ rui and q = log n in parallel do 
if j ∉ u(k, j) then 
   u(k, j) � u(k, j) ∪ {i} 
End if 
   End for 
   End for 
  End. 
 
 Since we have developed parallel algorithm for 
sparse linear systems therefore it is not required to 
discuss storage for sequential algorithms. Although the 
storage requirements has been discussed in very short 
here in this research. The storage schemes used for 
sparse matrices consists of two facts, primary storage 
used to hold the numerical values and overhead storage, 
used for pointers, subscripts and other information 
needed to record the structure of the matrix. The data 
structures involved for these two different strategies 
may be compared. The elements of the upper triangle 
(excluding the diagonal) are stored row by row in a 
single array with a parallel array holding their column 
subscripts. A third array indicates the position of each 
row and a fourth array contains the sophistication of the 
storage scheme increases. Exploiting more and more 
zeros, the primary storage decreases, but the overhead 
usually increases. There is usually a point where it pays 
to ignore some zeros, because the overhead storage 
required to exploit them far more than the decrease in 
primary storage[5]. 
 

CONCLUSION 
 
 The above discussion proves the values of the 
elements of the matrix. The Gauss elimination for 
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symmetric, positive definite matrix for share memory 
has been studied. The classical problem for sequential 
algorithm for UTDU factorization of a matrix A was 
computed by A. Sherman. The results are given as 
follows: θS(A) ≈ O(n2),θM(A) ≈ O(n3),θA(A) ≈ O(n3) 
where θS, θM and θA denote the storage, the number of 
multiplication/division and addition/subtraction 
respectively. The matrix multiplication (SIMD-
Hypercube) example of Dekel, Nassimi and Sahni 1981 
is extended to sparse linear systems now. Consider a 
cube connected computer with n3 PEs. Conceptually, 
these PEs may be regarded as arranged in an n×n×n 
array pattern. If it is assumed that the PEs are indexed 
in row-major order, the PE, PE(i,j,k) in position (i,j,k) 
of this array has index in2+jn+k (note that array indices 
are in the range[0, n-1]). Hence, if r3q-1,...,r0 is the 
binary representation of the PE position (i,j,k) then i = 
r3q-1,...,r2q, j = r2q-1,...,rq and k = rq-1,...,r0. In mapping of 
data into the hypercube it was indicated that the data is 
mapped to its all possible neighbor processors in the n-
cube which has hamming distance exactly by one bit, 
which makes like a tree structure of having leaf of all 
its possible dimensions (i.e. for n-cube the tree has n 
leaf). The complexity of these parallel algorithm is 
OS(A) = O(log2n), OM(A) = O(log3n) and OA(A) = 
O(log3n) and the number of PE are as shown in Fig. 2 
for the case of lower triangular matrix (i.e. only 
(i(i+1)/2) PE are required). Same way for upper 
triangular matrix only (i-1) (n-i)/2) + j, processors for 
diagonal matrix on i (or j) number of processors, for tri-
diagonal matrix only 2 + 2 x (i-2) + j no. of processors 
and for αβ-band matrix only no of processors for Case 
1 is α × (i-1) + ((i-1) (i-2)) / 2 + j for Case 2 is 
αβ+(β(β-1))/2+(α+β-1)(i-β-1)+j-i+β and for Case 
3isαβ+(β(β-1))/2+(α+β-1) (n-α-β+1)+(α+β) (i-n+α-1)-
((i-n+α-1)×(i-n+α-2))/2+1 is required to calculate 
UTDU factors. Based on the above concept we 
developed the following Algorithm. Row-oriented 
dense UTDU factorization PRAM-CREW Algorithm, 
Row oriented sparse UTDU factorization (with zero 
testing). PRAM-CREW Algorithm, Row oriented 
sparse UTDU factorization (with pre-processing 
PRAM-CREW Algorithm and O(θA) symbolic 
factorization PRAM-CREW Algorithm respectively. It 
has been shown that the access function or routing 
function to map data on hypercube contains topological 
properties. This function is convergent in the finite 

interval. The hypercube is modeled as a discrete space 
with discrete time because the processor's are in 
Hamming distances, where as hypercube is an 
undirected graph consisting of n = 2k vertices, if and 
only if the binary representation of their labels   differ   
by   one   and   only one bit.   
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Fig. 2: Array view of a 16 PE for a lower triangular 

matrix. Each square matrix represents a PE. 
The number in a square is the PE index (both 
decimal and binary representation are provided) 

 
The   most important property is that the degree of the 
graph and the diameter are always equal, which will 
achieve a good balance between the communication 
speed and the complexity of the topology network. 
These structures are restricted to having exactly 2k 
nodes. Because structure sizes must be a power of 2, 
there are large gaps in the sizes of the system that can 
be built with the hypercubes. This severely restricts the 
number of possible nodes. A hypercube architecture has 
a delay time approximately equal to 2 log n and has a 
skew, i.e. different delay times for different inter 
connecting nodes[11]. 
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