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Abstract: We have formalized the semantics of lazy evaluation for the lambda calculus using the two-
level grammar formalism. The resulting semantics enjoys several properties, e.g., there is a sharing in 
the recursive computation, there is no � conversion, the heap is automatically reclaimed, an attempt to 
evaluate an argument is done at most once and there is a sharing in the evaluation of partial application 
to functions.  
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INTRODUCTION 

 
 Lazy evaluation delays expression evaluation and 
avoids multiple evaluation of the same expression. Any 
implementation of lazy evaluation or call by need has 
two ingredients[7].  

• Arguments to functions should be evaluated only 
when their values are needed.  

• Arguments should only be evaluated once, further 
uses of them within the function body should use 
the values computed before. This means that there 
is a sharing of arguments. 

 The first ingredient is taken from normal order 
evaluation while the other is taken from applicative 
order evaluation, i.e. Lazy evaluation is a normal order 
evaluation with sharing of arguments. We capture 
laziness in two stages; the first stage is a static 
transformation of lambda terms to a normalized forms 
in which there are no free variables and the second 
stage is a dynamic semantics for those normalized 
forms using the two-level grammar formalism, 
separating these phases means that the dynamic 
semantics is much simpler than otherwise be the case.  
 Following Johnsson[2] these normalized 
expressions are called supercombinators and the 
transformation from lambda expressions to 
supercombinators are called 'lambda-lifting' since all 
the lambda abstraction are lifted to the top level.  
 There are many implementation techniques of 
supercombinators, the most efficient of them are the 
one in the G-machine[2] and the one in the Tim 
machine[1], both of them compile the supercombinator 
body into a sequence of instructions which will create 
an instance of this body. In this research we will not 

give the full details of an actual implementation of the 
supercombinators, but we will give only a set of rules 
which describe the semantics of lazy evaluation for the 
supercombinators in a general framework without being 
specific to a certain implementation. These rules could 
be used for reasoning and program proofs about lazy 
evaluation, also with little modification they could be 
adapted to a concrete implementation of lazy 
evaluation.   
 We call the calculus we use, with the semantics 
rules LTLS, since our formalism of the semantics is the 
two-level grammar formalism[6]. Although LTLS 
semantics is mainly to model sharing of arguments, it 
also performs many implementation optimizations, like; 
There is a sharing in the recursive computation. The 
heap is automatically reclaimed, since there is an 
automatic deletion of out of scope variables from the 
heap. An attempt to evaluate an argument is done at 
most once, since, once an argument is evaluated the 
result of evaluation is stored and latter reference to this 
argument will copy this stored value directly. There is 
no � conversion (a renaming of variables with a 
completely fresh variables to avoid name clashes). And 
there is a sharing in the evaluation of partial application 
to functions. The key reason for all such optimizations 
is that there are no free variables. 
 There have already been some attempts to provide 
such semantics. The operational semantics LAZY-
PCF+SHAR due to Purushothaman and Seaman[5] and 
the operational semantics due to Launchbury[4] are 
closely related to LTLS, (for simplicity, we rename 
them as S1 and S2, respectively). In S1 and S2, once a 
variable is added to the environment it is not deleted 
from it, so the names of the variables must be unique. 
Consequently they perform � conversion, S1 do this in 



J. Computer Sci., 4 (1): 21-29, 2008 
 

 22 

its {Appl} rule, while S2 do this during its 
normalization step. But in LTLS, the heap is 
automatically reclaimed, once the evaluation of 
function application end with a number, a special rule is 
applied to remove the bindings corresponding to the 
arguments of this function from the environment. So in 
LTLS it is not necessary for variables names to be 
unique. Consequently � conversion will not happen.  

There are two cases in the evaluation of the recursive 
expression µx.e or equivalently letrec x = e in e. 
 
Case 1: e requires the value of x before reducing to 

whnf, this means that e depends directly on x, 
e.g. x, + x x, 2*x. 

Case 2: e reduces to whnf without requiring the value 
of x, e.g. + 2 5.  

 
The results of the evaluation of S1, S2 and LTLS for 
these two cases are;  
 
Case 1:  

• S1: there is no sharing and the evaluation will enter 
an infinite loop. 

• S2: there is a sharing and the evaluation will fail. 
• LTLS: there is a sharing and the evaluation will 

enter an infinite loop.  
 
Case 2:  

• S1: there is no sharing and the evaluation will 
terminate with a whnf value. 

• S2: there is a sharing and the evaluation will 
terminate with a whnf value. 

• LTLS: there is a sharing and the evaluation will 
terminate with a whnf value.  

Where, entering an infinite loop results from using an 
infinite data structure which is possible only with lazy 
evaluation. The evaluation will fail when it requires the 
value of a certain variable and this variable does not 
exist in the environment.  
 The rest of this research is organized as follows, 
after defining the normalization process we will define 
the two level grammar notations, then the semantics 
rules are given, finally the conclusion and the 
bibliography. 

 
THE NORMALIZATION PROCESS 

It is the process of transforming �-terms into 
supercombinators; usually it is called �-lifting. 

Supercombinators: A supercombinator, $S, of arity n 
is a lambda expression of the form �x1, �x2…�xn.E 
where E is not a lambda abstraction (this ensures that 
all the leading lambdas are accounted for by x1  ... xn). 
Such that; $S has no free variables, any lambda 
abstraction in E is a supercombinator and n � 0 that is 
there need be no lambdas at all. 
 A supercombinator redex consists of the 
application of a supercombinator to n arguments, where 
n is its arity. It is reduced by replacing the redex by an 
instance of the supercombinator body with the 
arguments substituted for free occurrences of the 
corresponding formal parameter, which is called multi 
argument reduction. For example, all the following 
expressions are supercombinators  
3, (+ 2 5),  �.x.x,  �.x.+ x 1,   �.x.+ x x,   �.x. �.y.- y x,   
�.f. (�.x.+ x x), while the following expressions are not, 
due to the reasons indicated beside each expression: 
�.x.y (y occurs free), �.y.- y x (x occurs free). 
 Such a supercombinator is somewhat analogous to 
a Pascal function which takes several (value) 
parameters, which does not refer to any global variables 
and which has no side-effects.  
 A crucial point in the definition of a 
supercombinator given above is that a supercombinator 
reduction only takes place when all the arguments are 
present. Real programs, of course have many lambda 
abstractions which are not supercombinators. It is 
straightforward to transform such programs so that they 
contain only supercombinators.  
 
Transforming Lambda Abstraction into 
supercombinators 'lambda-lifting': This process 
could easily be explained using an example; consider 
the expression (�.x. (�.y.+ y x ) x) 4 it contains two 
lambda abstraction that are not supercombinator. The 
innermost lambda abstraction �.y. - y x has a free 
variable x, so it is not a supercombinator. A simple 
transformation will make it into one; make each free 
variable into an extra parameter (this is called, 
abstracting the free variable). Thus (�y.-y x) is 
transformed to (�x.�y. + y x) x. For clarity �-conversion 
is performed on the �x abstraction, it gives (�w.�y.+ y 
w) x. Now the lambda abstraction (�w.�y.+ y w) is a 
supercombinator. We give it the name $Y and we write 
it in the form $Y w y = + y w, substituting this in the 
original expression gives (�x. $Y x x) 4. Now the �x 
abstraction is also a supercombinator, we give it the 
name $X. Thus the original expression is transformed 
into the following supercombinators  
$Y w y = + y w $X x = $Y x x $X 4  
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We can now execute our program by performing 
supercombinator reduction as:  
$X 4 � $Y 4 4 � + 4 4 � 8 
 

THE TWO-LEVEL GRAMMAR  
  
 Two-level grammar is a formalism for defining the 
syntax and the semantics of programming languages. It 
is used to formalize the context sensitive as well as 
context free aspects of programming languages. 
Usually, in two level grammar we will use the 
following terminologies[6]; 
 
• Protonotion: it is any word of lower case letters; it 

stands for terminals and nonterminals. 
• Metanotion: it is any word of upper case letters, for 

each metanotion there must be a metarule 
• Metarule: it states which protonotion the 

metanotion stands for. 
• Hyper rule: it is a kind of abbreviation or 

abstraction for a number of production rules that 
share a common pattern. Production rules can be 
obtained from hyper rules by substituting the same 
protonotion for all occurrence of a certain 
metanotion in the hyper rule. 

• Predicate: it is the protonotion that starts with the 
word where, it is used to formalize the syntax and 
the semantics conditions, it evaluates to true or 
false, it is true when it leads to an EMPTY 
alternative and it is false when it leads to a blind 
alley. 

  
In two level grammars; Each terminal end with word 
sy e.g., commasy, lpasy. Semicolon is used to separate 
alternatives in the same rule. Comma not space is 
considered as the separator for protonotions in the same 
rule. We will use two colons in a metarule, while a 
single one for a hyper rule. The metanotion EMPTY 
represent the number zero and the Boolean value true. 
A positive number is a sequence of i's as represented by 
the metanotion TALLY, while the negative number is a 
sequence of i's preceded by the word negative. 
 

THE LTLS PROGRAM 
 

 The LTLS program consists of a set of 
supercombinators definitions plus the expression to be 
evaluated. This expression plus the supercombinators 
body can do arithmetic calculations in infix form with 
the rules of precedence applied, can call 
supercombinators, and can contain let and letrec 
expressions provided that they do not introduce 

supercombinators definitions. This means that 
supercombinators definitions are allowed at the top 
level only.  
 

THE LTLS SEMANTICS 
 
 The semantics we present here is an intermediate-
level semantics, lying midway between, a 
straightforward denotational semantics, as that of 
Josephs[3] and a full operational semantics of the 
abstract machines[1,2]. It actually captures sharing within 
lazy evaluation without requiring extra machinery 
either of continuations, heaps, code pointers, dumps and 
the like. The stack (environment) is the only 
computational structure required. The semantics rules 
are shown in Fig. 2, while the syntax rules are omitted 
to save space, but they could be derived from the first 
and the second branches of the right hand side of the 
program rule. The rules in Fig. 2 depend on the 
conventions that: the metanotion that end with ETY 
corresponds to this metanotion or EMPTY e.g., 
TALLETY :: TALLY; EMPTY. The metanotion that 
end with LIST corresponds to a list of this metanotion 
e.g. TAGLIST :: TAG; TAGLIST commasy TAG. And 
the metanotion that end with S corresponds to a 
sequence of this metanotion e.g.   DFS: DF; DFS DF. 
 Terms are evaluated with respect to a single 
environment. Rules 3 to 12 describe the structure of this 
environment; it is simply a stack of a list of bindings of 
variables to expressions. There are four kinds of 
binding’s lists; either starts with let, letrec, args or refs. 
In general, the bindings in the args bindings lists are 
defined by the metarule DEF :: IND TAG value EXP. 
Where the metanotion TAG record the name of the 
variable and the metanotion EXP record the value of 
the variable. The bindings in the let and the letrec 
bindings lists are defined by the metarule MDEF :: DEF 
ENV. This means that they are the same as that of the 
args bindings lists, except that, they could be any other 
binding's lists, usually those results from the evaluation 
of local definitions to the let (rec) expressions.  
 The bindings in the refs bindings lists are defined 
by the rule ZDEF: IND ZTALLY value EXP. We consider 
ZTALLY as a pointer to the expression EXP. Such 
bindings lists is used during the evaluation of functions 
applications to a few arguments or to a more arguments 
e.g., if F is a function with three arguments then F e1 e2 
is an application of F to a few arguments, while F e1 e2 
e3 e4 is an application of F to a more arguments. In our 
formalization; we stipulate that the names of the 
pointers in the environment are unique, so we will use 
special names for them as; z1, z2, z3… etc. To guarantee 
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the uniqueness of these names in the environment we 
will use a counter to keep track of the index of the last 
pointer added to the environment, say this counter have 
the value p then the next available pointer to be used is 
zp+1. During the reclamation of the environment we will 
delete unused pointers bindings lists. For example; 
assume before we start the evaluation of the expression 
E, the value of the pointer counters is p and during the 
evaluation of E we have used two pointers, then these 
two pointes must be zp+1, zp+2 and the pointer counter is 
changed to p+2. Also assume that the evaluation of E 
ends with a number then zp+1, zp+2 will be deleted during 
the reclamation of the environment and the pointer 
counter will return back to the value p again. 
 The metanotion IND in the binding of any 
binding's list acts as a marker, it has one of two values 
var or evar. Originally when a binding is added to the 
environment IND is set to var and EXP is set to the 
original value of the variable/pointer. Once this 
variable/pointer is evaluated then IND is changed to 
evar and the result of the evaluation is stored in the 
metanotion EXP.  
 
As an example: The bold x in the expression (�xy.+ * 
((�x.x)(- 4 2)) x x) (+3 7) (* 2 6) is evaluated w.r.t. the 
environment env args var letter x value iii plus iiiiiii var 
letter y value ii mult iiiiii end args var letter x value iiii 
minus ii end. that contains two bindings list, while the 
first light x is evaluated w.r.t. the environment env args 
var letter x value iii plus iiiiiii var letter y value ii mult 
iiiiii end. that contains only one bindings list and the 
seconds light x is evaluated w.r.t. the environment env 
args evar letter x value iiiiiiiiii var letter y value ii mult 
iiiiii end. which is the same environment as that of the 
first light x, but the information that x is evaluated 
before is taken into consideration.  
 As shown from this example that the args bindings 
list is a list of bindings corresponding to the arguments 
of the function, it is pushed onto the stack before the 
evaluation of the function body starts, the function body 
is evaluated with respect to this new stack and the stack 
is poped to remove this bindings list when the 
evaluation of the function body end with a number. The 
let   and   letrec binding's lists will be treated in the 
same way.  
 
How the Environment is reclaimed in LTLS; During 
the evaluation of a certain expression we may push 
binding's lists onto the environment and if the 
evaluation ends with a number then we no longer need 
these binding's lists, therefore they must be poped from 
the environment to free space. The question is; how 

many ones should be deleted? To be able to answer this 
question we will use a counter, to count the number of 
let and letrec binding's lists that are pushed onto the 
environment during the evaluation. We will call this 
counter the letr counter. Therefore, expressions are 
evaluated with respect to an environment plus the 
pointer and the letr counters. As an example; consider 
the following set of supercombinators definitions 
 
$F x y z = + ($G y) ($H 2y z) 
$G x = 2x 
$H x y = x/y 
 
 The evaluation of the expression $F 3, 2*1, 4 starts 
with an empty environment and the two counters are 
zeros, it is shown step by step in Fig 1. For clarity we 
will use the following notations <env, p, c> where p is 
the pointer counter and c is the letr counter, we call this 
triple the configuration.  
 
<env, 0, 0> $F 3, 2*1, 4  
�<env args var letter x value iii var letter y value ii mult i var  
     letter z value iiii end, 0, 1> +($G y) ($H 2y z) 
  �<env args var letter x value iii var letter y value ii mult i var  
       letter z value iiii end, 0, 0> $G y 
    �<env args var letter x value iii var letter y value ii mult i var  
         letter z value iiii end args var letter x value y end, 0,1>  
         ii mult x  
      �<env args var letter x value iii evar letter y value ii var  
        letter z value iiii end args evar letter x value ii end , 0, 1> iiii 
      �<env args var letter x value iii evar letter y value ii var  
          letter z value iiii end , 0, 0> iiii 
  �<env args var letter x value iii evar letter y value ii var letter z  
      value iiii end , 0, 0> $H 2y z   
  �<env args var letter x value iii evar letter y value ii var letter z  
       value iiii, args var letter x value ii mult y var letter y value z  
       end, 0, 1> x div y  
   �<env args var letter x value iii evar letter y value ii evar letter  
        z value iiii end, args evar letter x value iiii evar letter value  
        iiii , 0, 1> i 
   �<env let var letter x value iii evar letter y value ii evar letter z  
         value iiii , 0, 0> i 
�<env let var letter x value iii evar letter y value ii evar letter z  
     value iiii, 0, 1> iiii plus i  
�<env let var letter x value iii evar letter y value ii evar letter z  
     value iiii, 0, 1> iiiii 
�<env, 0, 0> iiiii   

Fig 1: Example evaluation 
 
Note that:  

• During the evaluation of the expression $G y, one 
bindings list was added to the environment and was 



J. Computer Sci., 4 (1): 21-29, 2008 
 

 25 

deleted at the end of this evaluation, since this 
evaluation ends with a number. The same are done 
for the expression $H 2y z. 

• $G y is evaluated with the letr counter equal zero, 
although there is an args bindings list in the 
environment, this because we don't want this 
bindings list to be deleted when the evaluation of 
$G y end with a number, since we need this 
bindings list in the evaluation of the expression $H 
2y z. If we use another copy of this bindings list in 
the evaluation of the $H 2y z, then we may lose 
sharing (e.g. the information that the binding of the 
variable y is updated during the evaluation of $G y 
must be taken into consideration during the 
evaluation of $H 2y z).  

• Finally the environment is empty, since the 
evaluation of the whole expression end with a 
number. 

 
The Semantics Rules: The Semantics rules are listed in 
Fig 2, these rules depend on the fact that the name of 
each supercombinator must start with the character $ 
and no two supercombinators have the same name (a 
property we guarantee from lambda lifting). The 
evaluation process may results with the semantics 
values $TAG ZLIST, $TAG ZLIST EXLIST, ZTALLY, 
adding these values to the syntax expression EX will 
result with the semantics expression EXP. Similarly 
AC, ACC are the syntax and semantics accumulator 
and DF, DEF are the syntax and semantics binding 
respectively. The rules in Fig 2 shows that EX, AC, DF 
is a subset of EXP, ACC, DEF respectively, then in this 
context we could generally concentrate our interest on 
the semantics ones. ACC is used to store the temporary 
and the final result of the evaluation. It has two values; 
either acc which represents the empty store or acc e 
which represents a store that contains the expression e. 
 We also need a metanotion STATE which 
corresponds to 'states' existing at various stages during 
the computation. It is defined by the metarule STATE :: 
state num1 TALLYETY1 num2 TALLYETY2 ENV 
ACC. Where TALLYETY1, TALLYETY2 are the 
pointer and letr counters respectively. The technique we 
use depends on; the meaning of a program should be 
described essentially in terms of the correspondence it 
defines between its initial and final states. The topmost 
hyper rule is program : FUNCSETY of 
supercombinators gives $TAGLISTETY, vars snams 
$TAGLISTETY expression of EX , env, acc, ENV, 
AC, where FUNCSETY EX transform state num1 
num2 env acc into state num1 TALLYETY1 num2 
TALLYETY2 ENV AC, where reclaim num1 

TALLYETY1 num2 TALLYETY2 ENV gives num1 
num2 env.  
Where: EX is the actual expression to be evaluated, 
env is the initial environment, ENV is final 
environment, acc is the initial store, AC is final store, 
TALLYETY1 is the pointer counter, TALLYETY2 is 
the letr counter and FUNCSETY records the set of 
supercombinators definitions; it is calculated once and 
before the evaluation of the expression EX starts. The 
first predicate ensures that AC store the result of 
evaluating the expression EX in the initial state and the 
second predicate ensures that the reclamation process 
will result with an empty environment. 
 Rules 1 to 26 for the basic definitions, while, the 
rest of the rules define the predicates part. Rules 31 to 
33 correspond to the first evaluation of a variable; they 
are used when the indicator (IND) in the recent binding 
of this variable in the environment is var. Then the 
metanotion EXP is updated with the result of its 
evaluation to capture sharing and the indicator IND is 
set to evar. Following evaluations of the same variable 
will use the rule 34 or rule 35 (according to the type of 
bindings list), since the indicator is now evar. They will 
return the value EXP directly without reevaluation and 
no changes are made to the environment. This shows 
that in LTLS an attempt to evaluate an argument is 
done at most once. Rule 36 is used when a variable is 
applied to arguments e.g. x e1 e2 e3, in this case the 
result of evaluating the expression which this variable is 
bound must be a partially applied function and the 
result of evaluation is an application of this partially 
applied function to these arguments. Rule 37 to 40 
evaluate the predicate when the expression is a pointer. 
Rule 37 and 38 will find a var indicator of this pointer, 
so the expression bound to this pointer is evaluated and 
the result is stored to capture sharing. While Rule 39 
and 40 will find an evar indicator, so no evaluation 
happens in this case and the value bound to this pointer 
is returned directly. Rule 50 evaluate the predicate 
when the expression to be evaluated is a number, in this 
case the result of evaluation is this number itself and the 
environment is reclaimed. Rule 51 to 57 evaluate the 
predicate which reclaims the environment, it do this, by 
repeatedly popping the environment to remove 
TALLYETY2 let, letrec and/or args binding's lists and 
all the pointers binding's lists that meet us during this 
process, where TALLYETY2 is the letr counter. Rules 
63 to 77 are concerned with evaluating the predicate 
when the expression is a calling to a supercombinator. 
Rule 65 shows three cases to be considered; the first 
case is a calling of a supercombinator with the exact 
number of arguments, then an args bindings list of the 
arguments of the supercombinator is pushed onto the 
environment, the letr counter is increased by 1 and the 
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body of the supercombinator is executed with respect to 
this new configuration. The second case is a calling of a 
supercombinator with a few arguments, in this case a 
pointers bindings list of the arguments (other than 
pointers arguments) is pushed onto the environment, the 
pointer counter is increased by the number of pointers 
used in this pointers bindings list to record this and the 
result of the evaluation is a calling of the 
supercombinator with these pointers instead of the 
arguments. This result will not be evaluated according 
to rule 63, it remains in this form until it is given the 
rest of the arguments in other stages of the 
computations and we call it suspension. Other 
expressions that share this calling of the 
supercombinator with this few arguments, now share 
this suspension, so there is sharing in the evaluation of 
partial applications to functions. The third case is a 
calling for the supercombinator with a more arguments, 
in this case a pointers bindings list is pushed onto the 
environment for these more arguments and an args 
bindings list is pushed onto the environment for the 
other arguments, the pointer and the letr counters are 
increased to record these information, the 
supercombinator body is executed with respect to this 
new configuration, say it gives another expression G 
(must be a partially evaluated supercombinator) and the 
final result is a calling of G with the pointers in the last 
added pointers bindings list. Rule 64 evaluates the 
predicate when the expression is a calling to a 
supercombinator without parameters; in this case the 
body of this supercombinator is executed without any 
bindings added to the environment.  
 
Note that: We guarantee the uniqueness of the 
supercombinators names, the uniqueness of the 
parameters names of the same supercombinator and the 
exclusion of the free variables, since these conditions 
must be syntactically checked. The rest of the rules are 
the rules for the arithmetic calculations, we have listed 
the rules for addition and multiplication, the rules for 
subtraction and division could be treated similarly. 
 
1) program: FUNCSETY of supercombinators gives 

$TAGLISTETY, vars snams $TAGLISTETY expression of 
EX , env, acc, ENV, AC, where FUNCSETY EX transform 
state num1 num2 env acc into state num1 TALLYETY1 num2 
TALLYETY2 ENV AC, where reclaim num1 TALLYETY1 
num2 TALLYETY2 ENV gives num1 num2 env.  

2) STATE :: state num1 TALLYETY1 num2 TALLYETY2 
ENV ACC.  

3) IND :: var; evar.   
4) AC :: acc; acc EX. 
5) ACC :: AC; acc ZTALLY; acc $TAG ZLIST EXLISTETY. 

6) FUNC :: fun $TAG params TAGLISTETY body EX end. 
7) DF :: IND TAG value EX. 
8) DEF :: DF ; IND TAG value ZTALLY ; IND TAG value $TAG 

ZLIST EXLISTETY. 
9) MDEF :: DEF; ENV. 
10) ZDEF :: IND ZTALLY value EXP.   
11) LR :: let; letrec; 
12) ENV :: env; ENV LR MDEFS end; ENV refs ZDEFS end; 

ENV args DEFS end. 
13) TALLY :: i; TALLY i. 
14) NUMBER :: TALLETY; negative TALLY. 
15) ALPHA :: a;b;c;….;z. 
16) TAG :: ALPHA; TAG ALPHA. 
17) WEAKOP :: plus; minus. 
18) SRTGOP :: times; over. 
19) EXP :: EX ; ZTALLY; $TAG ZLIST EXLISTETY. 
20) EX :: TERM; EX WEAKOP TERM. 
21) TERM :: ELEMENT; TERM STRGOP ELEMENT. 
22) ELEMENT :: TAG EXLISTETY; NUMBER; lpasy EX 

rpasy; letsy DFS insy EX endsy; letrecsy DFS insym EX 
endsy; $TAG EXLISTETY. 

23) ST :: num1 TALLYETY1 num2 TALLYETY2 ENV. 
24) LARGS :: LR MDEFS; args DEFS; 
25) XTZ :: TAG ; EX ; ZTALLY.  
26) EMPTY commasy ZLIST : ZLIST 
27) where FUNCSETY EXP transform STATE1 into STATE2 : 

where FUNCSETY EX transform STATE1 into STATE2 ; 
where FUNCSETY ZTALLY transform STATE1 into 
STATE2; where FUNCSETY $TAG ZLISTETY 
EXLISTETY transform STATE1 into STATE2.  

28) where FUNCSETY EX transform STATE1 into STATE2 : 
where FUNCSETY TERM transform STATE1 into 
STATE2; where FUNCSETY EX WEAKOP TERM 
transform STATE1 into STATE2. 

29) where FUNCSETY TERM transform STATE1 into STATE2 
: where FUNCSETY ELEMENT transform STATE1 into 
STATE2; where FUNCSETY TERM STRGOP ELEMENT 
transform STATE1 into STATE2. 

30) where FUNCSETY ELEMENT transform STATE1 into 
STATE2: where FUNCSETY TAG EXLISTETY transform 
STATE1 into STATE2; where NUMBER transform STATE1 
into STATE2; where FUNCSETY lpasy EX rtpasy transform 
STATE1 into STATE2; where FUNCSETY letsy DFS insy 
EX endsy transform STATE1 into STATE2; where 
FUNCSETY letrecsy DFS insy EX endsy transform STATE1 
into STATE2; where FUNCSETY $TAG EXLISTETY 
transform STATE1 into STATE2.  

31) where FUNCSETY TAG transform state num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 let 
MDEFSETY1 var TAG value EX MDEFSETY2 end 
ENVETY2 acc into state num1 TALLYETY11 num2 
TALLYETY21 ENVETY3 let MDEFSETY3 ENVETY4 var 
TAG value EXP MDEFSETY2 end ENVETY2 acc EXP : 
where FUNCSETY EX transform state num1 num2 
ENVETY1 let MDEFSETY1 end acc into state num1 
TALLYETY12 num2 TALLYETY22 ENVETY5 let 
MDEFSETY4 ENVETY6 end acc EXP, where reclaim num1 
TALLYETY12 num2 TALLYETY22 ENVETY5 let  
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MDEFSETY4 ENVETY6 end gives num1 TALLYETY11 
num2 TALLYETY21 ENVETY3 let MDEFSETY3 
ENVETY4 end , where TAG not in ENVETY2 , where TAG 
not in MDEFSETY2. 

32) where FUNCSETY TAG transform state num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 letrec 
MDEFSETY1 var TAG value EX MDEFSETY2 end 
ENVETY2 acc into state num1 TALLYETY11 num2 
TALLYETY21 ENVETY3 letrec MDEFSETY3 ENVETY4 
var TAG value EXP MDEFSETY4 end ENVETY2 acc EXP 
: where FUNCSETY EX transform state num1 num2 
ENVETY1 letrec MDEFSETY1 var TAG value EX 
MDEFSETY2 end acc into state num1 TALLYETY12 num2 
TALLYETY22 ENVETY5 letrec MDEFSETY5 ENVETY6 
var TAG value EXP MDEFSETY6 end acc EXP, where 
reclaim num1 TALLYETY12 num2 TALLYETY22 
ENVETY5  letrec MDEFSETY5 ENVETY6 var TAG value 
EXP MDEFSETY6 end gives num1 TALLYETY11 num2 
TALLYETY21 ENVETY3 letrec MDEFSETY3 ENVETY4 
var TAG value EXP MDEFSETY4 end, where TAG not in 
ENVETY2, where TAG not in MDEFSETY2.  

33) where FUNCSETY TAG transform state num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 args 
DEFSETY1 var TAG value EX DEFSETY2 ENVETY2 acc 
into state num1 TALLYETY11 num2 TALLYETY21 
ENVETY3 args DEFSETY1 var TAG value EXP 
DEFSETY2 ENVETY2 acc EXP: where FUNCSETY EX 
transform state num1 num2 ENVETY1 acc into state num1 
TALLYETY12 num2 TALLYETY22 ENVETY4 acc EXP, 
where reclaim num1 TALLYETY12 num2 TALLYETY22 
ENVETY4 gives num1 TALLYETY11 num2 
TALLYETY21 ENVETY3, where TAG not in ENVETY2. 

34) where FUNCSETY TAG transform state num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 LR 
MDEFSETY1 evar TAG value EXP MDEFSETY2 end 
ENVETY2 acc into state num1 TALLYETY1 num2 
TALLYETY2 ENVETY1 LR MDEFSETY1 evar TAG value 
EXP MDEFSETY2 end ENVETY2 acc EXP : where TAG 
not in ENVETY2, where TAG not in MDEFSETY2.  

35) where FUNCSETY TAG transform state num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 args 
DEFSETY1 evar TAG value EXP DEFSETY2 end 
ENVETY2 acc into state num1 TALLYETY1 num2 
TALLYETY2 ENVETY1 args DEFSETY1 evar TAG value 
EXP DEFSETY2 end ENVETY2 acc EXP : where TAG not 
in ENVETY2.    

36) where FUNCSETY TAG EXLIST transform state num1 
TALLETY1 num2 TALLETY2 ENV1 acc into state num1 
TALLETY11 num2 TALLETY21 ENV2 acc EXP: where 
FUNCSETY TAG transform state num1 TALLETY1 num2 
TALLETY2 ENV1 acc into state num1 TALLETY12 num2 
TALLETY22 ENV3 acc $TAG ZLISTETY, where 
FUNCSETY $TAG ZLISTETY EXLIST transform state 
num1 TALLETY12 num2 TALLETY22 ENV3 acc into state 
num1 TALLETY11 num2 TALLETY21 ENV2 acc EXP. 

37) where FUNCSETY ZTALLY transform state num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 refs 
ZDEFSETY1 var ZTALLY value EX ZDEFSETY2 ENVETY2 
acc into state num1 TALLYETY11 num2 TALLYETY21 
ENVETY3 refs ZDEFSETY1 var ZTALLY value EXP 
ZDEFSETY2 ENVETY2 acc EXP: where FUNCSETY EX 
transform state num1 num2 ENVETY1 acc into state num1 

TALLYETY12 num2 TALLYETY22 ENVETY4 acc EXP, 
where reclaim num1 TALLYETY12 num2 TALLYETY22 
ENVETY4 gives num1 TALLYETY11 num2 
TALLYETY21 ENVETY3. 

38) where FUNCSETY ZTALLY transform state num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 LR 
MDEFSETY1 refs ZDEFSETY1 var ZTALLY value EX 
ZDEFSETY2 end MDEFSETY2 end ENVETY2 acc into 
state num1 TALLYETY11 num2 TALLYETY21 ENVETY3 
LR MDEFSETY3 refs ZDEFSETY1 var ZTALLY value EXP 
ZDEFSETY2 end MDEFSETY2 end ENVETY2 acc EXP: 
where FUNCSETY EX transform state num1 num2 
ENVETY1 LR MDEFSETY1 end acc into state num1 
TALLYETY12 num2 TALLYETY22 ENVETY4 LR 
MDEFSETY4 end acc EXP, where reclaim num1 
TALLYETY12 num2 TALLYETY22 ENVETY4 LR 
MDEFSETY4 end gives num1 TALLYETY11 num2 
TALLYETY21 ENVETY3 LR MDEFSETY3.  

39) where FUNCSETY ZTALLY transform state num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 refs 
ZDEFSETY1 evar ZTALLY value EXP ZDEFSETY2 end 
ENVETY2 acc into state num1 TALLYETY1 num2 
TALLYETY2 ENVETY1 refs ZDEFSETY1 evar ZTALLY 
value EXP ZDEFSETY2 end ENVETY2 acc EXP: EMPTY.  

40) where FUNCSETY ZTALLY transform state num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 LR 
MDEFSETY1 refs ZDEFSETY1 evar ZTALLY value EXP 
ZDEFSETY2 end MDEFSETY2 end ENVETY2 acc into 
state num1 TALLYETY1 num2 TALLYETY2 ENVETY1 
LR MDEFSETY1 refs ZDEFSETY1 evar ZTALLY value EXP 
ZDEFSETY2 end MDEFSETY2 end ENVETY2 acc EXP : 
EMPTY.    

41) where TAG not in ENVETY LR MDEFS end :: where TAG 
not in ENVETY, where TAG not in MDEFS.  

42) where TAG not in ENVETY args DEFS end :: where TAG 
not in ENVETY, where TAG not in DEFS.  

43) where TAG not in MDEFS DEF : where TAG not in 
MDEFS, where TAG not in DEF. 

44) where TAG not in MDEFS ENV : where TAG not in 
MDEFS.  

45) where TAG1 not in var TAG2 value EXP : where TAG1 is 
not TAG2. 

46) where TAGETY1 ALPHA1 is not TAGETY2 ALPHA2 : 
where TAGETY1 is not TAGETY2; where ALPHA1 
precedes ALPHA2 in abcdefghijklmnopqrstuvwxyz; where 
ALPHA2 precedes ALPHA1 in 
abcdefghijklmnopqrstuvwxyz. 

47) where TAG is not EMPTY : EMPTY.   
48) where EMPTY is not TAG: EMPTY. 
49) where ALPHA1 precedes APLHA2 in TAGETY1 ALPHA1 

TAGETY2 ALPHA2 TAGETY3: EMPTY. 
50) where NUMBER transform state ST1 acc into state ST2 acc 

NUMBER: where reclaim ST1 gives ST2.  
51) where reclaim num1 TALLYETY1 i  num2 TALLYETY2 

ENVETY1 refs ZDEFSETY ZDEF end  gives num1 
TALLYETY11 num2 TALLYETY21 ENVETY2 : where 
reclaim num1 TALLYETY1 num2 TALLYETY2 ENVETY1 
refs ZDEFSETY end gives num1 TALLYETY11 num2 
TALLYETY21 ENVETY2. 

52) where reclaim num1 TALLYETY1 num2 TALLYETY2 
ENVETY1 refs end gives num1 TALLYETY11 num2 
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TALLYETY21 ENVETY2 : where reclaim num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 gives num1 
TALLYETY11 num2 TALLYETY21 ENVETY2.  

53) where reclaim num1 TALLYETY1 num2 TALLY2 
ENVETY1 LR MDEFSETY DEF end gives num1 
TALLYETY11 num2 TALLY21 ENVETY2 : where reclaim 
num1 TALLYETY1 num2 TALLY2 ENVETY1 LR 
MDEFSETY end gives num1 TALLYETY11 num2 
TALLY21 ENVETY2.  

54) where reclaim num1 TALLYETY1 num2 TALLY2 
ENVETY1 LR MDEFSETY ENV end gives num1 
TALLYETY11 num2 TALLY21 ENVETY2: where reclaim 
num1 TALLYETY1 num2 TALLY2 ENVETY1 LR 
MDEFSETY end ENV gives num1 TALLYETY11 num2 
TALLY21 ENVETY2.  

55) where reclaim num1 TALLYETY1 num2 TALLYETY2 i 
ENVETY1 LR end gives num1 TALLYETY11 num2 
TALLYETY21 ENVETY2: where reclaim num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 gives num1 
TALLYETY11 num2 TALLYETY21 ENVETY2.  

56) where reclaim num1 TALLYETY1 num2 TALLYETY2 i 
ENVETY1 args DEFS end gives num1 TALLYETY11 num2 
TALLYETY21 ENVETY2: where reclaim num1 
TALLYETY1 num2 TALLYETY2 ENVETY1 gives num1 
TALLYETY11 num2 TALLYETY21 ENVETY2.  

57) where reclaim num1 TALLYETY1 num2 ENVETY LARGS 
gives num1 TALLYETY1 num2 ENVETY LARGS : 
EMPTY.  

58) where FUNCSETY lpasy EX rtpasy transform STATE1 into 
STATE2 : where FUNCSETY EX transform STATE1 into 
STATE2. 

59) where FUNCSETY letsy DFS insy EX endsy transform state 
num1 TALLYETY1 num2 TALLYETY2 ENV1 acc into 
state num1 TALLYETY11 num2 TALLYETY21 ENV2 
ACC : where FUNCSETY EX transform state num1 
TALLYETY1 num2 TALLYETY2 i ENV1 let DFS end acc 
into state num1 TALLYETY11 num2 TALLYETY21 ENV2 
ACC. 

60) where FUNCSETY letrecsy DFS insy EX endsy transform 
state num1 TALLYETY1 num2 TALLYETY2 ENV1 acc 
into state num1 TALLETY11 num2 TALLETY21 ENV2 
ACC : where EX transform state num1 TALLYETY1 num2 
TALLYETY2 i  ENV1 letrec DFS end acc into state num1 
TALLYETY11 num2 TALLYETY21 ENV2 ACC.  

61) where FUNCSETY EX WEAKOP TERM transform state 
num1 TALLYETY1 num2 TALLYETY2 ENV1 acc into 
state num1 TALLYETY13 num2 TALLYETY21 ENV2 acc 
NUMBER: where FUNCSETY EX transform state num1 
TALLYETY1 num2  ENV1 acc into state num1 
TALLYETY11 num2 ENV3 acc NUMBER1, where 
FUNCSETY TERM transform state num1 TALLYETY11 
num2 ENV3 acc into state num1 TALLYETY12 num2 
ENV4 acc NUMBER2, where NUMBER1 WEAKOP 
NUMBER2 equal NUMBER, where reclaim num1 
TALLYETY12 num2 TALLYETY2 ENV4 gives num1 
TALLYETY13 num2 TALLYETY21 ENV2.  

62) where FUNCSETY TERM STRGOP ELEMENT transform 
state num1 TALLYETY1 num2 TALLYETY2 ENV1 acc 
into state num1 TALLYETY13 num2 TALLYETY21 ENV2 
acc NUMBER: where FUNCSETY TERM transform state 
num1 TALLYETY1 num2  ENV1 acc into state num1 

TALLYETY11 num2 ENV3 acc NUMBER1, where 
FUNCSETY ELMENT transform state num1 TALLYETY11 
num2 ENV3 acc into state num1 TALLYETY12 num2 
ENV4 acc NUMBER2, where NUMBER1 STRGOP 
NUMBER2 equal NUMBER, where reclaim num1 
TALLYETY12 num2 TALLYETY2 ENV4 gives num1 
TALLYETY13 num2 TALLYETY21 ENV2.  

63) where FUNCSETY $TAG ZLIST transform state num1 
TALLYETY1 num2 TALLYETY2 ENV acc into state num1 
TALLYETY1 num2 TALLYETY2 ENV acc $TAG ZLIST: 
EMPTY.   

64) where FUNCSETY1 fun $TAG params body EX end 
FUNCSETY2 $TAG transform state num1 TALLYETY1 
num2 TALLYETY2 ENV1 acc into state num1 
TALLYETY11 num2 TALLYETY21 ENV2 ACC : where 
FUNCSETY1 fun $TAG params body EX end  EX transform 
state num1 TALLYETY1 num2 TALLYETY2 ENV1 acc 
into state num1 TALLYETY11 num2 TALLYETY21 ENV2 
ACC. 

65) where FUNCSETY1 fun $TAG params TAGLIST body EX 
end FUNCSETY2 $TAG ZLISTETY EXLIST transform 
state num1 TALLYETY1 num2 TALLYETY2 ENV1 acc 
into state num1 TALLYETY11 num2 TALLYETY21 ENV2 
ACC : where numberof ZLISTETY is TALLETY, where 
numberof EXLIST is TALLY1, where numberof TAGLIST 
is TALLY2, where TALLETY plus TALLY1 equal 
TALLY2, where FUNCSETY1 fun $TAG params TAGLIST 
body EX end FUNCSETY2 EX transform state num1 
TALLYETY1 num2 TALLYETY2 i ENV1 args DEFS DFS 
end acc into state num1 TALLYETY11 num2  
TALLYETY21 ENV2 ACC, where TAGLIST bind  
ZLISTETY EXLIST gives DEFS DFS;   where numberof 
ZLISTETY is TALLETY, where numberof EXLIST is 
TALLY1, where numberof TAGLIST is TALLY2, where 
TALLETY plus TALLY1 equal TALLY3, where TALLY3 
lessthan TALLY2, where FUNCSETY1 fun $TAG params 
TAGLIST body EX end FUNCSETY2 $TAG ZLISTETY 
commasy ZLIST1 transform state num1 
TALLYETY1TALLY4 num2 TALLYETY2 ENV1 refs 
ZDEFS end  acc into state TALLYETY11 TALLYETY21 
ENV2 ACC, where makezbindingfrom TALLYETY1 i of 
EXLIST gives ZDEFS anduse ZLIST1 withlength TALLY4;  
where numberof ZLISTETY is TALLETY, where numberof 
EXLIST is TALLY1, where numberof TAGLIST is 
TALLY2, where TALLETY plus TALLY1 equal TALLY3, 
where TALLY2 lessthan TALLY3, where FUNCSETY1 fun 
$TAG params TAGLIST body EX end FUNCSETY2 EX 
transform state num1 TALLYETY1TALLY4 num2 
TALLYETY2 i ENV1 refs ZDEFS end args DEFS DFS end 
acc into state TALLYETY12 TALLYETY22 ENV3 acc 
EXP, where FUNCSETY1 fun $TAG params TAGLIST 
body EX end FUNCSETY2 EXP ZLIST transform state 
TALLYETY12 TALLYETY22 ENV3 acc into state 
TALLYETY11 TALLYETY21 ENV2 ACC, where 
TAGLIST bindr ZLISTETY EXLIST gives DEFS DFS 
andtherestare EXLIST1, where makezbindingfrom 
TALLYETY1 i of EXLIST1 gives ZDEFS anduse ZLIST 
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withlength TALLY4.  
66) where EMPTY bind EMPTY gives EMPTY : EMPTY.  
67) where TAG commasy TAGLIST bind ZTALLY commasy 

ZLIST EXLIST gives var TAG value ZTALLY DEFS DFS: 
where TAGLIST bind ZLIST EXLIST gives DEFS DFS.  

68) where TAG commasy TAGLIST bind EX commasy  
EXLIST gives var TAG value EX DFS : where TAGLIST 
bind EXLIST gives DFS. 

69) where makezbindingfrom TALLY1 of EX commasy EXLIST 
gives var ZTALLY1 value EX ZDEFS anduse ZTALLY1 commasy 
ZLIST withlength TALLY2 i : where makezbindingfrom 
TALLY1 i of EXLIST gives ZDEFS anduse ZLIST 
withlength TALLY2.     

70) where makezbindingfrom TALLY of EMPTY gives EMPTY 
anduse EMPTY withlength EMPTY: EMPTY. 

71) where EMPTY bindr EXLIST gives EMPTY andtherestare 
EXLIST : EMPTY. 

72) where TAG commasy TAGLIST bindr ZTALLY commasy  
ZLIST EXLIST1 gives var TAG value ZTALLY DEFS DFS 
andtherestare EXLIST2 : where TAGLIST bindr ZLIST 
EXLIST1 gives DEFS DFS andtherestare EXLIST2.  

73) where TAG commasy TAGLIST bindr EX commasy 
EXLIST1 gives var TAG value EX DFS andtherestare 
EXLIST2 : where TAGLIST bindr EXLIST1 gives DFS 
andtherestare EXLIST2.  

74) where numberof XTZLIST commasy XTZ is TALLY i : 
numberof XTZLIST is TALLY. 

75) where numberof  EMPTY is EMPTY : EMPTY. 
76) where numberof XTZ is i : EMPTY. 
77) where TALLETY lessthan TALLYETY TALLY : EMPTY. 
78) where TALLYETY1 plus TALLYETY2 equals 

TALLYETY1 TALLYETY2. 
79) where TALLYETY plus negative TALLY equals NUMBER 

: where TALLYETY minus TALLY equals NUMBER. 
80) where negative TALLY plus TALLYETY equals NUMBER 

: where TALLYETY minus TALLY equals NUMBER. 
81) where negative TALLY1 plus negative TALLY2 equals 

negative TALLY3 : where TALLY1 plus TALLY2 equals 
TALLY3. 

82) where NUMBER1 times NUMBER2 equals NUMBER3 : 
where NUMBER2 times NUMBER1 equals NUMBER3. 

83) where EMPTY times NUMBER equals EMPTY : EMPTY. 
84) where i times NUMBER equals NUMBER : EMPTY. 
85) where TALLY1 i times TALLY2 equals TALLY2 TALLY3: 

where TALLY1 times TALLY2 equals TALLY3. 
86) where negative TALLY1 times TALLY2 equals negative 

TALLY3 : where TALLY1 times TALLY2 equals TALLY3. 
87) where negative TALLY1 times negative TALLY2 equals 

TALLY3 : where TALLY1 times TALLY2 equals TALLY3.  

Fig 2: The Semantics Rules 
 

CONCLUSION 
 

 Using the two level grammar formalism we have 
formalized the semantics of lazy evaluation for the 
lambda calculus. Two level grammars are very 
expressive but it is commonly used for defining the 
syntax and semantics for imperative programming 

languages. This research shows that they could also be 
used with functional languages. Our semantics captures 
sharing of the arguments in the environment, 
demonstrated by the absence of duplication of 
arguments evaluation and updating values when 
evaluated. Although this semantics optimizes many 
aspects of implementation, (e.g. there is no � 
conversion, there is a sharing in the recursive 
computation and the heap is automatically reclaimed, 
since there is an automatic deletion of out of scope 
variables from the heap), it is still suitable for reasoning 
about program behavior and proofs of program 
correctness, this is primarily due to the definition via a 
set of predicates which allows for proofs by evaluating 
the predicates. The main defect of this semantics is that, 
it is little bit lengthy. 
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