
Journal of Computer Science 4 (1): 21-29, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Mahmoud Ahmed AbouGhaly, Department of Mathematics, Faculty of Science, Ain Shams University,
Cairo, 11566, Egypt Tel: +20242219893, +20125243452 Fax: +20248262201

21

Semantics of Lazy Evaluation using the Two-Level Grammar

Mahmoud A. AbouGhaly, Sameh S. Daoud, Azza A. Taha and Salwa M. Aly

Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt

Abstract: We have formalized the semantics of lazy evaluation for the lambda calculus using the two-
level grammar formalism. The resulting semantics enjoys several properties, e.g., there is a sharing in
the recursive computation, there is no � conversion, the heap is automatically reclaimed, an attempt to
evaluate an argument is done at most once and there is a sharing in the evaluation of partial application
to functions.

Key words: Heap, � conversion, partial application to functions

INTRODUCTION

 Lazy evaluation delays expression evaluation and
avoids multiple evaluation of the same expression. Any
implementation of lazy evaluation or call by need has
two ingredients[7].

• Arguments to functions should be evaluated only
when their values are needed.

• Arguments should only be evaluated once, further
uses of them within the function body should use
the values computed before. This means that there
is a sharing of arguments.

 The first ingredient is taken from normal order
evaluation while the other is taken from applicative
order evaluation, i.e. Lazy evaluation is a normal order
evaluation with sharing of arguments. We capture
laziness in two stages; the first stage is a static
transformation of lambda terms to a normalized forms
in which there are no free variables and the second
stage is a dynamic semantics for those normalized
forms using the two-level grammar formalism,
separating these phases means that the dynamic
semantics is much simpler than otherwise be the case.
 Following Johnsson[2] these normalized
expressions are called supercombinators and the
transformation from lambda expressions to
supercombinators are called 'lambda-lifting' since all
the lambda abstraction are lifted to the top level.
 There are many implementation techniques of
supercombinators, the most efficient of them are the
one in the G-machine[2] and the one in the Tim
machine[1], both of them compile the supercombinator
body into a sequence of instructions which will create
an instance of this body. In this research we will not

give the full details of an actual implementation of the
supercombinators, but we will give only a set of rules
which describe the semantics of lazy evaluation for the
supercombinators in a general framework without being
specific to a certain implementation. These rules could
be used for reasoning and program proofs about lazy
evaluation, also with little modification they could be
adapted to a concrete implementation of lazy
evaluation.
 We call the calculus we use, with the semantics
rules LTLS, since our formalism of the semantics is the
two-level grammar formalism[6]. Although LTLS
semantics is mainly to model sharing of arguments, it
also performs many implementation optimizations, like;
There is a sharing in the recursive computation. The
heap is automatically reclaimed, since there is an
automatic deletion of out of scope variables from the
heap. An attempt to evaluate an argument is done at
most once, since, once an argument is evaluated the
result of evaluation is stored and latter reference to this
argument will copy this stored value directly. There is
no � conversion (a renaming of variables with a
completely fresh variables to avoid name clashes). And
there is a sharing in the evaluation of partial application
to functions. The key reason for all such optimizations
is that there are no free variables.
 There have already been some attempts to provide
such semantics. The operational semantics LAZY-
PCF+SHAR due to Purushothaman and Seaman[5] and
the operational semantics due to Launchbury[4] are
closely related to LTLS, (for simplicity, we rename
them as S1 and S2, respectively). In S1 and S2, once a
variable is added to the environment it is not deleted
from it, so the names of the variables must be unique.
Consequently they perform � conversion, S1 do this in

J. Computer Sci., 4 (1): 21-29, 2008

 22

its {Appl} rule, while S2 do this during its
normalization step. But in LTLS, the heap is
automatically reclaimed, once the evaluation of
function application end with a number, a special rule is
applied to remove the bindings corresponding to the
arguments of this function from the environment. So in
LTLS it is not necessary for variables names to be
unique. Consequently � conversion will not happen.

There are two cases in the evaluation of the recursive
expression µx.e or equivalently letrec x = e in e.

Case 1: e requires the value of x before reducing to

whnf, this means that e depends directly on x,
e.g. x, + x x, 2*x.

Case 2: e reduces to whnf without requiring the value
of x, e.g. + 2 5.

The results of the evaluation of S1, S2 and LTLS for
these two cases are;

Case 1:

• S1: there is no sharing and the evaluation will enter
an infinite loop.

• S2: there is a sharing and the evaluation will fail.
• LTLS: there is a sharing and the evaluation will

enter an infinite loop.

Case 2:

• S1: there is no sharing and the evaluation will
terminate with a whnf value.

• S2: there is a sharing and the evaluation will
terminate with a whnf value.

• LTLS: there is a sharing and the evaluation will
terminate with a whnf value.

Where, entering an infinite loop results from using an
infinite data structure which is possible only with lazy
evaluation. The evaluation will fail when it requires the
value of a certain variable and this variable does not
exist in the environment.
 The rest of this research is organized as follows,
after defining the normalization process we will define
the two level grammar notations, then the semantics
rules are given, finally the conclusion and the
bibliography.

THE NORMALIZATION PROCESS

It is the process of transforming �-terms into
supercombinators; usually it is called �-lifting.

Supercombinators: A supercombinator, $S, of arity n
is a lambda expression of the form �x1, �x2…�xn.E
where E is not a lambda abstraction (this ensures that
all the leading lambdas are accounted for by x1 ... xn).
Such that; $S has no free variables, any lambda
abstraction in E is a supercombinator and n � 0 that is
there need be no lambdas at all.
 A supercombinator redex consists of the
application of a supercombinator to n arguments, where
n is its arity. It is reduced by replacing the redex by an
instance of the supercombinator body with the
arguments substituted for free occurrences of the
corresponding formal parameter, which is called multi
argument reduction. For example, all the following
expressions are supercombinators
3, (+ 2 5), �.x.x, �.x.+ x 1, �.x.+ x x, �.x. �.y.- y x,
�.f. (�.x.+ x x), while the following expressions are not,
due to the reasons indicated beside each expression:
�.x.y (y occurs free), �.y.- y x (x occurs free).
 Such a supercombinator is somewhat analogous to
a Pascal function which takes several (value)
parameters, which does not refer to any global variables
and which has no side-effects.
 A crucial point in the definition of a
supercombinator given above is that a supercombinator
reduction only takes place when all the arguments are
present. Real programs, of course have many lambda
abstractions which are not supercombinators. It is
straightforward to transform such programs so that they
contain only supercombinators.

Transforming Lambda Abstraction into
supercombinators 'lambda-lifting': This process
could easily be explained using an example; consider
the expression (�.x. (�.y.+ y x) x) 4 it contains two
lambda abstraction that are not supercombinator. The
innermost lambda abstraction �.y. - y x has a free
variable x, so it is not a supercombinator. A simple
transformation will make it into one; make each free
variable into an extra parameter (this is called,
abstracting the free variable). Thus (�y.-y x) is
transformed to (�x.�y. + y x) x. For clarity �-conversion
is performed on the �x abstraction, it gives (�w.�y.+ y
w) x. Now the lambda abstraction (�w.�y.+ y w) is a
supercombinator. We give it the name $Y and we write
it in the form $Y w y = + y w, substituting this in the
original expression gives (�x. $Y x x) 4. Now the �x
abstraction is also a supercombinator, we give it the
name $X. Thus the original expression is transformed
into the following supercombinators
$Y w y = + y w $X x = $Y x x $X 4

J. Computer Sci., 4 (1): 21-29, 2008

 23

We can now execute our program by performing
supercombinator reduction as:
$X 4 � $Y 4 4 � + 4 4 � 8

THE TWO-LEVEL GRAMMAR

 Two-level grammar is a formalism for defining the
syntax and the semantics of programming languages. It
is used to formalize the context sensitive as well as
context free aspects of programming languages.
Usually, in two level grammar we will use the
following terminologies[6];

• Protonotion: it is any word of lower case letters; it

stands for terminals and nonterminals.
• Metanotion: it is any word of upper case letters, for

each metanotion there must be a metarule
• Metarule: it states which protonotion the

metanotion stands for.
• Hyper rule: it is a kind of abbreviation or

abstraction for a number of production rules that
share a common pattern. Production rules can be
obtained from hyper rules by substituting the same
protonotion for all occurrence of a certain
metanotion in the hyper rule.

• Predicate: it is the protonotion that starts with the
word where, it is used to formalize the syntax and
the semantics conditions, it evaluates to true or
false, it is true when it leads to an EMPTY
alternative and it is false when it leads to a blind
alley.

In two level grammars; Each terminal end with word
sy e.g., commasy, lpasy. Semicolon is used to separate
alternatives in the same rule. Comma not space is
considered as the separator for protonotions in the same
rule. We will use two colons in a metarule, while a
single one for a hyper rule. The metanotion EMPTY
represent the number zero and the Boolean value true.
A positive number is a sequence of i's as represented by
the metanotion TALLY, while the negative number is a
sequence of i's preceded by the word negative.

THE LTLS PROGRAM

 The LTLS program consists of a set of
supercombinators definitions plus the expression to be
evaluated. This expression plus the supercombinators
body can do arithmetic calculations in infix form with
the rules of precedence applied, can call
supercombinators, and can contain let and letrec
expressions provided that they do not introduce

supercombinators definitions. This means that
supercombinators definitions are allowed at the top
level only.

THE LTLS SEMANTICS

 The semantics we present here is an intermediate-
level semantics, lying midway between, a
straightforward denotational semantics, as that of
Josephs[3] and a full operational semantics of the
abstract machines[1,2]. It actually captures sharing within
lazy evaluation without requiring extra machinery
either of continuations, heaps, code pointers, dumps and
the like. The stack (environment) is the only
computational structure required. The semantics rules
are shown in Fig. 2, while the syntax rules are omitted
to save space, but they could be derived from the first
and the second branches of the right hand side of the
program rule. The rules in Fig. 2 depend on the
conventions that: the metanotion that end with ETY
corresponds to this metanotion or EMPTY e.g.,
TALLETY :: TALLY; EMPTY. The metanotion that
end with LIST corresponds to a list of this metanotion
e.g. TAGLIST :: TAG; TAGLIST commasy TAG. And
the metanotion that end with S corresponds to a
sequence of this metanotion e.g. DFS: DF; DFS DF.
 Terms are evaluated with respect to a single
environment. Rules 3 to 12 describe the structure of this
environment; it is simply a stack of a list of bindings of
variables to expressions. There are four kinds of
binding’s lists; either starts with let, letrec, args or refs.
In general, the bindings in the args bindings lists are
defined by the metarule DEF :: IND TAG value EXP.
Where the metanotion TAG record the name of the
variable and the metanotion EXP record the value of
the variable. The bindings in the let and the letrec
bindings lists are defined by the metarule MDEF :: DEF
ENV. This means that they are the same as that of the
args bindings lists, except that, they could be any other
binding's lists, usually those results from the evaluation
of local definitions to the let (rec) expressions.
 The bindings in the refs bindings lists are defined
by the rule ZDEF: IND ZTALLY value EXP. We consider
ZTALLY as a pointer to the expression EXP. Such
bindings lists is used during the evaluation of functions
applications to a few arguments or to a more arguments
e.g., if F is a function with three arguments then F e1 e2
is an application of F to a few arguments, while F e1 e2
e3 e4 is an application of F to a more arguments. In our
formalization; we stipulate that the names of the
pointers in the environment are unique, so we will use
special names for them as; z1, z2, z3… etc. To guarantee

J. Computer Sci., 4 (1): 21-29, 2008

 24

the uniqueness of these names in the environment we
will use a counter to keep track of the index of the last
pointer added to the environment, say this counter have
the value p then the next available pointer to be used is
zp+1. During the reclamation of the environment we will
delete unused pointers bindings lists. For example;
assume before we start the evaluation of the expression
E, the value of the pointer counters is p and during the
evaluation of E we have used two pointers, then these
two pointes must be zp+1, zp+2 and the pointer counter is
changed to p+2. Also assume that the evaluation of E
ends with a number then zp+1, zp+2 will be deleted during
the reclamation of the environment and the pointer
counter will return back to the value p again.
 The metanotion IND in the binding of any
binding's list acts as a marker, it has one of two values
var or evar. Originally when a binding is added to the
environment IND is set to var and EXP is set to the
original value of the variable/pointer. Once this
variable/pointer is evaluated then IND is changed to
evar and the result of the evaluation is stored in the
metanotion EXP.

As an example: The bold x in the expression (�xy.+ *
((�x.x)(- 4 2)) x x) (+3 7) (* 2 6) is evaluated w.r.t. the
environment env args var letter x value iii plus iiiiiii var
letter y value ii mult iiiiii end args var letter x value iiii
minus ii end. that contains two bindings list, while the
first light x is evaluated w.r.t. the environment env args
var letter x value iii plus iiiiiii var letter y value ii mult
iiiiii end. that contains only one bindings list and the
seconds light x is evaluated w.r.t. the environment env
args evar letter x value iiiiiiiiii var letter y value ii mult
iiiiii end. which is the same environment as that of the
first light x, but the information that x is evaluated
before is taken into consideration.
 As shown from this example that the args bindings
list is a list of bindings corresponding to the arguments
of the function, it is pushed onto the stack before the
evaluation of the function body starts, the function body
is evaluated with respect to this new stack and the stack
is poped to remove this bindings list when the
evaluation of the function body end with a number. The
let and letrec binding's lists will be treated in the
same way.

How the Environment is reclaimed in LTLS; During
the evaluation of a certain expression we may push
binding's lists onto the environment and if the
evaluation ends with a number then we no longer need
these binding's lists, therefore they must be poped from
the environment to free space. The question is; how

many ones should be deleted? To be able to answer this
question we will use a counter, to count the number of
let and letrec binding's lists that are pushed onto the
environment during the evaluation. We will call this
counter the letr counter. Therefore, expressions are
evaluated with respect to an environment plus the
pointer and the letr counters. As an example; consider
the following set of supercombinators definitions

$F x y z = + ($G y) ($H 2y z)
$G x = 2x
$H x y = x/y

 The evaluation of the expression $F 3, 2*1, 4 starts
with an empty environment and the two counters are
zeros, it is shown step by step in Fig 1. For clarity we
will use the following notations <env, p, c> where p is
the pointer counter and c is the letr counter, we call this
triple the configuration.

<env, 0, 0> $F 3, 2*1, 4
�<env args var letter x value iii var letter y value ii mult i var
 letter z value iiii end, 0, 1> +($G y) ($H 2y z)
 �<env args var letter x value iii var letter y value ii mult i var
 letter z value iiii end, 0, 0> $G y
 �<env args var letter x value iii var letter y value ii mult i var
 letter z value iiii end args var letter x value y end, 0,1>
 ii mult x
 �<env args var letter x value iii evar letter y value ii var
 letter z value iiii end args evar letter x value ii end , 0, 1> iiii
 �<env args var letter x value iii evar letter y value ii var
 letter z value iiii end , 0, 0> iiii
 �<env args var letter x value iii evar letter y value ii var letter z
 value iiii end , 0, 0> $H 2y z
 �<env args var letter x value iii evar letter y value ii var letter z
 value iiii, args var letter x value ii mult y var letter y value z
 end, 0, 1> x div y
 �<env args var letter x value iii evar letter y value ii evar letter
 z value iiii end, args evar letter x value iiii evar letter value
 iiii , 0, 1> i
 �<env let var letter x value iii evar letter y value ii evar letter z
 value iiii , 0, 0> i
�<env let var letter x value iii evar letter y value ii evar letter z
 value iiii, 0, 1> iiii plus i
�<env let var letter x value iii evar letter y value ii evar letter z
 value iiii, 0, 1> iiiii
�<env, 0, 0> iiiii

Fig 1: Example evaluation

Note that:

• During the evaluation of the expression $G y, one
bindings list was added to the environment and was

J. Computer Sci., 4 (1): 21-29, 2008

 25

deleted at the end of this evaluation, since this
evaluation ends with a number. The same are done
for the expression $H 2y z.

• $G y is evaluated with the letr counter equal zero,
although there is an args bindings list in the
environment, this because we don't want this
bindings list to be deleted when the evaluation of
$G y end with a number, since we need this
bindings list in the evaluation of the expression $H
2y z. If we use another copy of this bindings list in
the evaluation of the $H 2y z, then we may lose
sharing (e.g. the information that the binding of the
variable y is updated during the evaluation of $G y
must be taken into consideration during the
evaluation of $H 2y z).

• Finally the environment is empty, since the
evaluation of the whole expression end with a
number.

The Semantics Rules: The Semantics rules are listed in
Fig 2, these rules depend on the fact that the name of
each supercombinator must start with the character $
and no two supercombinators have the same name (a
property we guarantee from lambda lifting). The
evaluation process may results with the semantics
values $TAG ZLIST, $TAG ZLIST EXLIST, ZTALLY,
adding these values to the syntax expression EX will
result with the semantics expression EXP. Similarly
AC, ACC are the syntax and semantics accumulator
and DF, DEF are the syntax and semantics binding
respectively. The rules in Fig 2 shows that EX, AC, DF
is a subset of EXP, ACC, DEF respectively, then in this
context we could generally concentrate our interest on
the semantics ones. ACC is used to store the temporary
and the final result of the evaluation. It has two values;
either acc which represents the empty store or acc e
which represents a store that contains the expression e.
 We also need a metanotion STATE which
corresponds to 'states' existing at various stages during
the computation. It is defined by the metarule STATE ::
state num1 TALLYETY1 num2 TALLYETY2 ENV
ACC. Where TALLYETY1, TALLYETY2 are the
pointer and letr counters respectively. The technique we
use depends on; the meaning of a program should be
described essentially in terms of the correspondence it
defines between its initial and final states. The topmost
hyper rule is program : FUNCSETY of
supercombinators gives $TAGLISTETY, vars snams
$TAGLISTETY expression of EX , env, acc, ENV,
AC, where FUNCSETY EX transform state num1
num2 env acc into state num1 TALLYETY1 num2
TALLYETY2 ENV AC, where reclaim num1

TALLYETY1 num2 TALLYETY2 ENV gives num1
num2 env.
Where: EX is the actual expression to be evaluated,
env is the initial environment, ENV is final
environment, acc is the initial store, AC is final store,
TALLYETY1 is the pointer counter, TALLYETY2 is
the letr counter and FUNCSETY records the set of
supercombinators definitions; it is calculated once and
before the evaluation of the expression EX starts. The
first predicate ensures that AC store the result of
evaluating the expression EX in the initial state and the
second predicate ensures that the reclamation process
will result with an empty environment.
 Rules 1 to 26 for the basic definitions, while, the
rest of the rules define the predicates part. Rules 31 to
33 correspond to the first evaluation of a variable; they
are used when the indicator (IND) in the recent binding
of this variable in the environment is var. Then the
metanotion EXP is updated with the result of its
evaluation to capture sharing and the indicator IND is
set to evar. Following evaluations of the same variable
will use the rule 34 or rule 35 (according to the type of
bindings list), since the indicator is now evar. They will
return the value EXP directly without reevaluation and
no changes are made to the environment. This shows
that in LTLS an attempt to evaluate an argument is
done at most once. Rule 36 is used when a variable is
applied to arguments e.g. x e1 e2 e3, in this case the
result of evaluating the expression which this variable is
bound must be a partially applied function and the
result of evaluation is an application of this partially
applied function to these arguments. Rule 37 to 40
evaluate the predicate when the expression is a pointer.
Rule 37 and 38 will find a var indicator of this pointer,
so the expression bound to this pointer is evaluated and
the result is stored to capture sharing. While Rule 39
and 40 will find an evar indicator, so no evaluation
happens in this case and the value bound to this pointer
is returned directly. Rule 50 evaluate the predicate
when the expression to be evaluated is a number, in this
case the result of evaluation is this number itself and the
environment is reclaimed. Rule 51 to 57 evaluate the
predicate which reclaims the environment, it do this, by
repeatedly popping the environment to remove
TALLYETY2 let, letrec and/or args binding's lists and
all the pointers binding's lists that meet us during this
process, where TALLYETY2 is the letr counter. Rules
63 to 77 are concerned with evaluating the predicate
when the expression is a calling to a supercombinator.
Rule 65 shows three cases to be considered; the first
case is a calling of a supercombinator with the exact
number of arguments, then an args bindings list of the
arguments of the supercombinator is pushed onto the
environment, the letr counter is increased by 1 and the

J. Computer Sci., 4 (1): 21-29, 2008

 26

body of the supercombinator is executed with respect to
this new configuration. The second case is a calling of a
supercombinator with a few arguments, in this case a
pointers bindings list of the arguments (other than
pointers arguments) is pushed onto the environment, the
pointer counter is increased by the number of pointers
used in this pointers bindings list to record this and the
result of the evaluation is a calling of the
supercombinator with these pointers instead of the
arguments. This result will not be evaluated according
to rule 63, it remains in this form until it is given the
rest of the arguments in other stages of the
computations and we call it suspension. Other
expressions that share this calling of the
supercombinator with this few arguments, now share
this suspension, so there is sharing in the evaluation of
partial applications to functions. The third case is a
calling for the supercombinator with a more arguments,
in this case a pointers bindings list is pushed onto the
environment for these more arguments and an args
bindings list is pushed onto the environment for the
other arguments, the pointer and the letr counters are
increased to record these information, the
supercombinator body is executed with respect to this
new configuration, say it gives another expression G
(must be a partially evaluated supercombinator) and the
final result is a calling of G with the pointers in the last
added pointers bindings list. Rule 64 evaluates the
predicate when the expression is a calling to a
supercombinator without parameters; in this case the
body of this supercombinator is executed without any
bindings added to the environment.

Note that: We guarantee the uniqueness of the
supercombinators names, the uniqueness of the
parameters names of the same supercombinator and the
exclusion of the free variables, since these conditions
must be syntactically checked. The rest of the rules are
the rules for the arithmetic calculations, we have listed
the rules for addition and multiplication, the rules for
subtraction and division could be treated similarly.

1) program: FUNCSETY of supercombinators gives

$TAGLISTETY, vars snams $TAGLISTETY expression of
EX , env, acc, ENV, AC, where FUNCSETY EX transform
state num1 num2 env acc into state num1 TALLYETY1 num2
TALLYETY2 ENV AC, where reclaim num1 TALLYETY1
num2 TALLYETY2 ENV gives num1 num2 env.

2) STATE :: state num1 TALLYETY1 num2 TALLYETY2
ENV ACC.

3) IND :: var; evar.
4) AC :: acc; acc EX.
5) ACC :: AC; acc ZTALLY; acc $TAG ZLIST EXLISTETY.

6) FUNC :: fun $TAG params TAGLISTETY body EX end.
7) DF :: IND TAG value EX.
8) DEF :: DF ; IND TAG value ZTALLY ; IND TAG value $TAG

ZLIST EXLISTETY.
9) MDEF :: DEF; ENV.
10) ZDEF :: IND ZTALLY value EXP.
11) LR :: let; letrec;
12) ENV :: env; ENV LR MDEFS end; ENV refs ZDEFS end;

ENV args DEFS end.
13) TALLY :: i; TALLY i.
14) NUMBER :: TALLETY; negative TALLY.
15) ALPHA :: a;b;c;….;z.
16) TAG :: ALPHA; TAG ALPHA.
17) WEAKOP :: plus; minus.
18) SRTGOP :: times; over.
19) EXP :: EX ; ZTALLY; $TAG ZLIST EXLISTETY.
20) EX :: TERM; EX WEAKOP TERM.
21) TERM :: ELEMENT; TERM STRGOP ELEMENT.
22) ELEMENT :: TAG EXLISTETY; NUMBER; lpasy EX

rpasy; letsy DFS insy EX endsy; letrecsy DFS insym EX
endsy; $TAG EXLISTETY.

23) ST :: num1 TALLYETY1 num2 TALLYETY2 ENV.
24) LARGS :: LR MDEFS; args DEFS;
25) XTZ :: TAG ; EX ; ZTALLY.
26) EMPTY commasy ZLIST : ZLIST
27) where FUNCSETY EXP transform STATE1 into STATE2 :

where FUNCSETY EX transform STATE1 into STATE2 ;
where FUNCSETY ZTALLY transform STATE1 into
STATE2; where FUNCSETY $TAG ZLISTETY
EXLISTETY transform STATE1 into STATE2.

28) where FUNCSETY EX transform STATE1 into STATE2 :
where FUNCSETY TERM transform STATE1 into
STATE2; where FUNCSETY EX WEAKOP TERM
transform STATE1 into STATE2.

29) where FUNCSETY TERM transform STATE1 into STATE2
: where FUNCSETY ELEMENT transform STATE1 into
STATE2; where FUNCSETY TERM STRGOP ELEMENT
transform STATE1 into STATE2.

30) where FUNCSETY ELEMENT transform STATE1 into
STATE2: where FUNCSETY TAG EXLISTETY transform
STATE1 into STATE2; where NUMBER transform STATE1
into STATE2; where FUNCSETY lpasy EX rtpasy transform
STATE1 into STATE2; where FUNCSETY letsy DFS insy
EX endsy transform STATE1 into STATE2; where
FUNCSETY letrecsy DFS insy EX endsy transform STATE1
into STATE2; where FUNCSETY $TAG EXLISTETY
transform STATE1 into STATE2.

31) where FUNCSETY TAG transform state num1
TALLYETY1 num2 TALLYETY2 ENVETY1 let
MDEFSETY1 var TAG value EX MDEFSETY2 end
ENVETY2 acc into state num1 TALLYETY11 num2
TALLYETY21 ENVETY3 let MDEFSETY3 ENVETY4 var
TAG value EXP MDEFSETY2 end ENVETY2 acc EXP :
where FUNCSETY EX transform state num1 num2
ENVETY1 let MDEFSETY1 end acc into state num1
TALLYETY12 num2 TALLYETY22 ENVETY5 let
MDEFSETY4 ENVETY6 end acc EXP, where reclaim num1
TALLYETY12 num2 TALLYETY22 ENVETY5 let

J. Computer Sci., 4 (1): 21-29, 2008

 27

MDEFSETY4 ENVETY6 end gives num1 TALLYETY11
num2 TALLYETY21 ENVETY3 let MDEFSETY3
ENVETY4 end , where TAG not in ENVETY2 , where TAG
not in MDEFSETY2.

32) where FUNCSETY TAG transform state num1
TALLYETY1 num2 TALLYETY2 ENVETY1 letrec
MDEFSETY1 var TAG value EX MDEFSETY2 end
ENVETY2 acc into state num1 TALLYETY11 num2
TALLYETY21 ENVETY3 letrec MDEFSETY3 ENVETY4
var TAG value EXP MDEFSETY4 end ENVETY2 acc EXP
: where FUNCSETY EX transform state num1 num2
ENVETY1 letrec MDEFSETY1 var TAG value EX
MDEFSETY2 end acc into state num1 TALLYETY12 num2
TALLYETY22 ENVETY5 letrec MDEFSETY5 ENVETY6
var TAG value EXP MDEFSETY6 end acc EXP, where
reclaim num1 TALLYETY12 num2 TALLYETY22
ENVETY5 letrec MDEFSETY5 ENVETY6 var TAG value
EXP MDEFSETY6 end gives num1 TALLYETY11 num2
TALLYETY21 ENVETY3 letrec MDEFSETY3 ENVETY4
var TAG value EXP MDEFSETY4 end, where TAG not in
ENVETY2, where TAG not in MDEFSETY2.

33) where FUNCSETY TAG transform state num1
TALLYETY1 num2 TALLYETY2 ENVETY1 args
DEFSETY1 var TAG value EX DEFSETY2 ENVETY2 acc
into state num1 TALLYETY11 num2 TALLYETY21
ENVETY3 args DEFSETY1 var TAG value EXP
DEFSETY2 ENVETY2 acc EXP: where FUNCSETY EX
transform state num1 num2 ENVETY1 acc into state num1
TALLYETY12 num2 TALLYETY22 ENVETY4 acc EXP,
where reclaim num1 TALLYETY12 num2 TALLYETY22
ENVETY4 gives num1 TALLYETY11 num2
TALLYETY21 ENVETY3, where TAG not in ENVETY2.

34) where FUNCSETY TAG transform state num1
TALLYETY1 num2 TALLYETY2 ENVETY1 LR
MDEFSETY1 evar TAG value EXP MDEFSETY2 end
ENVETY2 acc into state num1 TALLYETY1 num2
TALLYETY2 ENVETY1 LR MDEFSETY1 evar TAG value
EXP MDEFSETY2 end ENVETY2 acc EXP : where TAG
not in ENVETY2, where TAG not in MDEFSETY2.

35) where FUNCSETY TAG transform state num1
TALLYETY1 num2 TALLYETY2 ENVETY1 args
DEFSETY1 evar TAG value EXP DEFSETY2 end
ENVETY2 acc into state num1 TALLYETY1 num2
TALLYETY2 ENVETY1 args DEFSETY1 evar TAG value
EXP DEFSETY2 end ENVETY2 acc EXP : where TAG not
in ENVETY2.

36) where FUNCSETY TAG EXLIST transform state num1
TALLETY1 num2 TALLETY2 ENV1 acc into state num1
TALLETY11 num2 TALLETY21 ENV2 acc EXP: where
FUNCSETY TAG transform state num1 TALLETY1 num2
TALLETY2 ENV1 acc into state num1 TALLETY12 num2
TALLETY22 ENV3 acc $TAG ZLISTETY, where
FUNCSETY $TAG ZLISTETY EXLIST transform state
num1 TALLETY12 num2 TALLETY22 ENV3 acc into state
num1 TALLETY11 num2 TALLETY21 ENV2 acc EXP.

37) where FUNCSETY ZTALLY transform state num1
TALLYETY1 num2 TALLYETY2 ENVETY1 refs
ZDEFSETY1 var ZTALLY value EX ZDEFSETY2 ENVETY2
acc into state num1 TALLYETY11 num2 TALLYETY21
ENVETY3 refs ZDEFSETY1 var ZTALLY value EXP
ZDEFSETY2 ENVETY2 acc EXP: where FUNCSETY EX
transform state num1 num2 ENVETY1 acc into state num1

TALLYETY12 num2 TALLYETY22 ENVETY4 acc EXP,
where reclaim num1 TALLYETY12 num2 TALLYETY22
ENVETY4 gives num1 TALLYETY11 num2
TALLYETY21 ENVETY3.

38) where FUNCSETY ZTALLY transform state num1
TALLYETY1 num2 TALLYETY2 ENVETY1 LR
MDEFSETY1 refs ZDEFSETY1 var ZTALLY value EX
ZDEFSETY2 end MDEFSETY2 end ENVETY2 acc into
state num1 TALLYETY11 num2 TALLYETY21 ENVETY3
LR MDEFSETY3 refs ZDEFSETY1 var ZTALLY value EXP
ZDEFSETY2 end MDEFSETY2 end ENVETY2 acc EXP:
where FUNCSETY EX transform state num1 num2
ENVETY1 LR MDEFSETY1 end acc into state num1
TALLYETY12 num2 TALLYETY22 ENVETY4 LR
MDEFSETY4 end acc EXP, where reclaim num1
TALLYETY12 num2 TALLYETY22 ENVETY4 LR
MDEFSETY4 end gives num1 TALLYETY11 num2
TALLYETY21 ENVETY3 LR MDEFSETY3.

39) where FUNCSETY ZTALLY transform state num1
TALLYETY1 num2 TALLYETY2 ENVETY1 refs
ZDEFSETY1 evar ZTALLY value EXP ZDEFSETY2 end
ENVETY2 acc into state num1 TALLYETY1 num2
TALLYETY2 ENVETY1 refs ZDEFSETY1 evar ZTALLY
value EXP ZDEFSETY2 end ENVETY2 acc EXP: EMPTY.

40) where FUNCSETY ZTALLY transform state num1
TALLYETY1 num2 TALLYETY2 ENVETY1 LR
MDEFSETY1 refs ZDEFSETY1 evar ZTALLY value EXP
ZDEFSETY2 end MDEFSETY2 end ENVETY2 acc into
state num1 TALLYETY1 num2 TALLYETY2 ENVETY1
LR MDEFSETY1 refs ZDEFSETY1 evar ZTALLY value EXP
ZDEFSETY2 end MDEFSETY2 end ENVETY2 acc EXP :
EMPTY.

41) where TAG not in ENVETY LR MDEFS end :: where TAG
not in ENVETY, where TAG not in MDEFS.

42) where TAG not in ENVETY args DEFS end :: where TAG
not in ENVETY, where TAG not in DEFS.

43) where TAG not in MDEFS DEF : where TAG not in
MDEFS, where TAG not in DEF.

44) where TAG not in MDEFS ENV : where TAG not in
MDEFS.

45) where TAG1 not in var TAG2 value EXP : where TAG1 is
not TAG2.

46) where TAGETY1 ALPHA1 is not TAGETY2 ALPHA2 :
where TAGETY1 is not TAGETY2; where ALPHA1
precedes ALPHA2 in abcdefghijklmnopqrstuvwxyz; where
ALPHA2 precedes ALPHA1 in
abcdefghijklmnopqrstuvwxyz.

47) where TAG is not EMPTY : EMPTY.
48) where EMPTY is not TAG: EMPTY.
49) where ALPHA1 precedes APLHA2 in TAGETY1 ALPHA1

TAGETY2 ALPHA2 TAGETY3: EMPTY.
50) where NUMBER transform state ST1 acc into state ST2 acc

NUMBER: where reclaim ST1 gives ST2.
51) where reclaim num1 TALLYETY1 i num2 TALLYETY2

ENVETY1 refs ZDEFSETY ZDEF end gives num1
TALLYETY11 num2 TALLYETY21 ENVETY2 : where
reclaim num1 TALLYETY1 num2 TALLYETY2 ENVETY1
refs ZDEFSETY end gives num1 TALLYETY11 num2
TALLYETY21 ENVETY2.

52) where reclaim num1 TALLYETY1 num2 TALLYETY2
ENVETY1 refs end gives num1 TALLYETY11 num2

J. Computer Sci., 4 (1): 21-29, 2008

 28

TALLYETY21 ENVETY2 : where reclaim num1
TALLYETY1 num2 TALLYETY2 ENVETY1 gives num1
TALLYETY11 num2 TALLYETY21 ENVETY2.

53) where reclaim num1 TALLYETY1 num2 TALLY2
ENVETY1 LR MDEFSETY DEF end gives num1
TALLYETY11 num2 TALLY21 ENVETY2 : where reclaim
num1 TALLYETY1 num2 TALLY2 ENVETY1 LR
MDEFSETY end gives num1 TALLYETY11 num2
TALLY21 ENVETY2.

54) where reclaim num1 TALLYETY1 num2 TALLY2
ENVETY1 LR MDEFSETY ENV end gives num1
TALLYETY11 num2 TALLY21 ENVETY2: where reclaim
num1 TALLYETY1 num2 TALLY2 ENVETY1 LR
MDEFSETY end ENV gives num1 TALLYETY11 num2
TALLY21 ENVETY2.

55) where reclaim num1 TALLYETY1 num2 TALLYETY2 i
ENVETY1 LR end gives num1 TALLYETY11 num2
TALLYETY21 ENVETY2: where reclaim num1
TALLYETY1 num2 TALLYETY2 ENVETY1 gives num1
TALLYETY11 num2 TALLYETY21 ENVETY2.

56) where reclaim num1 TALLYETY1 num2 TALLYETY2 i
ENVETY1 args DEFS end gives num1 TALLYETY11 num2
TALLYETY21 ENVETY2: where reclaim num1
TALLYETY1 num2 TALLYETY2 ENVETY1 gives num1
TALLYETY11 num2 TALLYETY21 ENVETY2.

57) where reclaim num1 TALLYETY1 num2 ENVETY LARGS
gives num1 TALLYETY1 num2 ENVETY LARGS :
EMPTY.

58) where FUNCSETY lpasy EX rtpasy transform STATE1 into
STATE2 : where FUNCSETY EX transform STATE1 into
STATE2.

59) where FUNCSETY letsy DFS insy EX endsy transform state
num1 TALLYETY1 num2 TALLYETY2 ENV1 acc into
state num1 TALLYETY11 num2 TALLYETY21 ENV2
ACC : where FUNCSETY EX transform state num1
TALLYETY1 num2 TALLYETY2 i ENV1 let DFS end acc
into state num1 TALLYETY11 num2 TALLYETY21 ENV2
ACC.

60) where FUNCSETY letrecsy DFS insy EX endsy transform
state num1 TALLYETY1 num2 TALLYETY2 ENV1 acc
into state num1 TALLETY11 num2 TALLETY21 ENV2
ACC : where EX transform state num1 TALLYETY1 num2
TALLYETY2 i ENV1 letrec DFS end acc into state num1
TALLYETY11 num2 TALLYETY21 ENV2 ACC.

61) where FUNCSETY EX WEAKOP TERM transform state
num1 TALLYETY1 num2 TALLYETY2 ENV1 acc into
state num1 TALLYETY13 num2 TALLYETY21 ENV2 acc
NUMBER: where FUNCSETY EX transform state num1
TALLYETY1 num2 ENV1 acc into state num1
TALLYETY11 num2 ENV3 acc NUMBER1, where
FUNCSETY TERM transform state num1 TALLYETY11
num2 ENV3 acc into state num1 TALLYETY12 num2
ENV4 acc NUMBER2, where NUMBER1 WEAKOP
NUMBER2 equal NUMBER, where reclaim num1
TALLYETY12 num2 TALLYETY2 ENV4 gives num1
TALLYETY13 num2 TALLYETY21 ENV2.

62) where FUNCSETY TERM STRGOP ELEMENT transform
state num1 TALLYETY1 num2 TALLYETY2 ENV1 acc
into state num1 TALLYETY13 num2 TALLYETY21 ENV2
acc NUMBER: where FUNCSETY TERM transform state
num1 TALLYETY1 num2 ENV1 acc into state num1

TALLYETY11 num2 ENV3 acc NUMBER1, where
FUNCSETY ELMENT transform state num1 TALLYETY11
num2 ENV3 acc into state num1 TALLYETY12 num2
ENV4 acc NUMBER2, where NUMBER1 STRGOP
NUMBER2 equal NUMBER, where reclaim num1
TALLYETY12 num2 TALLYETY2 ENV4 gives num1
TALLYETY13 num2 TALLYETY21 ENV2.

63) where FUNCSETY $TAG ZLIST transform state num1
TALLYETY1 num2 TALLYETY2 ENV acc into state num1
TALLYETY1 num2 TALLYETY2 ENV acc $TAG ZLIST:
EMPTY.

64) where FUNCSETY1 fun $TAG params body EX end
FUNCSETY2 $TAG transform state num1 TALLYETY1
num2 TALLYETY2 ENV1 acc into state num1
TALLYETY11 num2 TALLYETY21 ENV2 ACC : where
FUNCSETY1 fun $TAG params body EX end EX transform
state num1 TALLYETY1 num2 TALLYETY2 ENV1 acc
into state num1 TALLYETY11 num2 TALLYETY21 ENV2
ACC.

65) where FUNCSETY1 fun $TAG params TAGLIST body EX
end FUNCSETY2 $TAG ZLISTETY EXLIST transform
state num1 TALLYETY1 num2 TALLYETY2 ENV1 acc
into state num1 TALLYETY11 num2 TALLYETY21 ENV2
ACC : where numberof ZLISTETY is TALLETY, where
numberof EXLIST is TALLY1, where numberof TAGLIST
is TALLY2, where TALLETY plus TALLY1 equal
TALLY2, where FUNCSETY1 fun $TAG params TAGLIST
body EX end FUNCSETY2 EX transform state num1
TALLYETY1 num2 TALLYETY2 i ENV1 args DEFS DFS
end acc into state num1 TALLYETY11 num2
TALLYETY21 ENV2 ACC, where TAGLIST bind
ZLISTETY EXLIST gives DEFS DFS; where numberof
ZLISTETY is TALLETY, where numberof EXLIST is
TALLY1, where numberof TAGLIST is TALLY2, where
TALLETY plus TALLY1 equal TALLY3, where TALLY3
lessthan TALLY2, where FUNCSETY1 fun $TAG params
TAGLIST body EX end FUNCSETY2 $TAG ZLISTETY
commasy ZLIST1 transform state num1
TALLYETY1TALLY4 num2 TALLYETY2 ENV1 refs
ZDEFS end acc into state TALLYETY11 TALLYETY21
ENV2 ACC, where makezbindingfrom TALLYETY1 i of
EXLIST gives ZDEFS anduse ZLIST1 withlength TALLY4;
where numberof ZLISTETY is TALLETY, where numberof
EXLIST is TALLY1, where numberof TAGLIST is
TALLY2, where TALLETY plus TALLY1 equal TALLY3,
where TALLY2 lessthan TALLY3, where FUNCSETY1 fun
$TAG params TAGLIST body EX end FUNCSETY2 EX
transform state num1 TALLYETY1TALLY4 num2
TALLYETY2 i ENV1 refs ZDEFS end args DEFS DFS end
acc into state TALLYETY12 TALLYETY22 ENV3 acc
EXP, where FUNCSETY1 fun $TAG params TAGLIST
body EX end FUNCSETY2 EXP ZLIST transform state
TALLYETY12 TALLYETY22 ENV3 acc into state
TALLYETY11 TALLYETY21 ENV2 ACC, where
TAGLIST bindr ZLISTETY EXLIST gives DEFS DFS
andtherestare EXLIST1, where makezbindingfrom
TALLYETY1 i of EXLIST1 gives ZDEFS anduse ZLIST

J. Computer Sci., 4 (1): 21-29, 2008

 29

withlength TALLY4.
66) where EMPTY bind EMPTY gives EMPTY : EMPTY.
67) where TAG commasy TAGLIST bind ZTALLY commasy

ZLIST EXLIST gives var TAG value ZTALLY DEFS DFS:
where TAGLIST bind ZLIST EXLIST gives DEFS DFS.

68) where TAG commasy TAGLIST bind EX commasy
EXLIST gives var TAG value EX DFS : where TAGLIST
bind EXLIST gives DFS.

69) where makezbindingfrom TALLY1 of EX commasy EXLIST
gives var ZTALLY1 value EX ZDEFS anduse ZTALLY1 commasy
ZLIST withlength TALLY2 i : where makezbindingfrom
TALLY1 i of EXLIST gives ZDEFS anduse ZLIST
withlength TALLY2.

70) where makezbindingfrom TALLY of EMPTY gives EMPTY
anduse EMPTY withlength EMPTY: EMPTY.

71) where EMPTY bindr EXLIST gives EMPTY andtherestare
EXLIST : EMPTY.

72) where TAG commasy TAGLIST bindr ZTALLY commasy
ZLIST EXLIST1 gives var TAG value ZTALLY DEFS DFS
andtherestare EXLIST2 : where TAGLIST bindr ZLIST
EXLIST1 gives DEFS DFS andtherestare EXLIST2.

73) where TAG commasy TAGLIST bindr EX commasy
EXLIST1 gives var TAG value EX DFS andtherestare
EXLIST2 : where TAGLIST bindr EXLIST1 gives DFS
andtherestare EXLIST2.

74) where numberof XTZLIST commasy XTZ is TALLY i :
numberof XTZLIST is TALLY.

75) where numberof EMPTY is EMPTY : EMPTY.
76) where numberof XTZ is i : EMPTY.
77) where TALLETY lessthan TALLYETY TALLY : EMPTY.
78) where TALLYETY1 plus TALLYETY2 equals

TALLYETY1 TALLYETY2.
79) where TALLYETY plus negative TALLY equals NUMBER

: where TALLYETY minus TALLY equals NUMBER.
80) where negative TALLY plus TALLYETY equals NUMBER

: where TALLYETY minus TALLY equals NUMBER.
81) where negative TALLY1 plus negative TALLY2 equals

negative TALLY3 : where TALLY1 plus TALLY2 equals
TALLY3.

82) where NUMBER1 times NUMBER2 equals NUMBER3 :
where NUMBER2 times NUMBER1 equals NUMBER3.

83) where EMPTY times NUMBER equals EMPTY : EMPTY.
84) where i times NUMBER equals NUMBER : EMPTY.
85) where TALLY1 i times TALLY2 equals TALLY2 TALLY3:

where TALLY1 times TALLY2 equals TALLY3.
86) where negative TALLY1 times TALLY2 equals negative

TALLY3 : where TALLY1 times TALLY2 equals TALLY3.
87) where negative TALLY1 times negative TALLY2 equals

TALLY3 : where TALLY1 times TALLY2 equals TALLY3.

Fig 2: The Semantics Rules

CONCLUSION

 Using the two level grammar formalism we have
formalized the semantics of lazy evaluation for the
lambda calculus. Two level grammars are very
expressive but it is commonly used for defining the
syntax and semantics for imperative programming

languages. This research shows that they could also be
used with functional languages. Our semantics captures
sharing of the arguments in the environment,
demonstrated by the absence of duplication of
arguments evaluation and updating values when
evaluated. Although this semantics optimizes many
aspects of implementation, (e.g. there is no �
conversion, there is a sharing in the recursive
computation and the heap is automatically reclaimed,
since there is an automatic deletion of out of scope
variables from the heap), it is still suitable for reasoning
about program behavior and proofs of program
correctness, this is primarily due to the definition via a
set of predicates which allows for proofs by evaluating
the predicates. The main defect of this semantics is that,
it is little bit lengthy.

ACKNOWLEDGMENTS

 Many thanks to Prof. Dr. Mark Brian Josephs the
director of ICR, London South Bank University, for
hosting me for a 6 months visit to ICR. Most of this
research is written during this visit.

REFERENCES

1. Fairbairn, J. and W.S. Stuart, 1987. TIM: A
Simple, Lazy Abstract Machine to Execute
Supercombinators, In: Proceeding of IFIP
Conference on Functional Programming
Languages and Computer Architecture, Portland,
Springer Verlag LNCS 274, pp: 34-45.

2. Johnsson, T., 1984. Efficient Compilation of Lazy
Evaluation, In: Proceeding of the ACM SIGPLAN
Symposium on Compiler Construction, pp: 58-69.

3. Josephs, M., 1989. The Semantics of Lazy
Functional Languages, in TCS 68, pp: 105-111,

4. Launchbury, J., 1993. A Natural Semantics for
Lazy Evaluation, In: Proceedings of 20th
Symposium on Principles of Programming
Languages, Charleston, South Carolina,
pp: 144-154.

5. Seaman, J. and S. Purushothaman, 1996.
Operational Semantics of Sharing In Lazy
Evaluation, Science of Computer Programming
Elsevier, Amsterdam, 27 (3): 289-322.

6. Slonneger, K. and L.B. Kurtz, 1995. Formal Syntax
and Semantics of Programming Languages: A
Laboratory Based Approach, Addison-Wesley
Publishing Company.

7. Wadsworth, C.P., 1971. Semantics and pragmatics
of the lambda calculus. Ph.D thesis, Oxford
University.

