
Journal of Computer Science 4 (3): 225-231, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Ali Rezaee, Department of Computer Engineering, Azad University, Science and Research Branch,
Tehran, Iran PO Box: 1991813831 Tel: +989123491692

225

A Multi-Agent Architecture for QoS Support in Grid Environment

Ali Rezaee, Amir Masoud Rahmani, Saeed Parsa, Sahar Adabi

Department of Computer Engineering, Science and Research Branch,
Islamic Azad University, Tehran, Iran

Abstract: Grid computing is emerged as a new distributed computing technology that implements
flexible and coordinated resource sharing among dynamic, heterogeneous, unpredictable and
geographically distributed collections of resources owned by different individuals and organizations.
Due to heterogeneous and dynamic nature of the grid, resource management and application
scheduling is a complex undertaking. This paper proposed a multi-agent architecture that addressed
resource management and application execution with support for Quality of Services (QoS) in grid
environment. Five types of collaborative intelligent and mobile agents proposed to manage grid
resources and applications in a decentralized, autonomous and intelligent manner. In the proposed
architecture, negotiation, advanced reservation and QoS measurements handled by collaborative
intelligent agents. Resources and applications are managed independently with respect to their defined
policies. The simulation results showed that the multi-agent architecture is practical, flexible and
effective.

Keywords: Application agent, grid architecture, intelligent agents, multi-agent, QoS, service agent

INTRODUCTION

 Grid technology enables the sharing and dynamic
allocation of distributed, high-performance
computational resources while minimizing the
associated ownership and operating costs, it also
facilitates access to such resources and promotes
flexibility and collaboration among diverse
organizations[4]. The resources are heterogeneous in
terms of their architecture, power, configuration and
availability. They are managed by different access
policies and cost models that vary with time, users and
priorities. Different applications have different
computational models that vary with the nature of the
problem. The resource owners and end-users have
different goals, objectives, strategies and demand
patterns[3]. Due to large-scale heterogeneity present in
resources and applications requirements in grid
environments, resource management and application
scheduling are complex undertaking[2,6]. In respond to
this heterogeneity, we proposed a new Multi-Agent
Architecture for Grid Environment (MAAG), which fits
in heterogeneous nature of grid’s resources and
applications. Multi-Agent System (MAS) is a
distributed collaborative environment which allows a
number of agents to cooperate and interact with each
other in a complex environment[10]. In a typical multi-

agent system, the agents work together to achieve a
global objective in a distributed manner. In most cases,
the interaction is asynchronous and decentralized.
These characteristic features of MAS make them ideal
for spontaneous and opportunistic collaborations using
autonomous agents[8,10] which continuously adapt to
their environment.
 The proposed architecture MAAG employs five
types of collaborative agents to integrate and coordinate
distributed resources in a computational grid
environment and to support distributed and hybrid
workflows with the aim to deliver expected QoS to
applications. In the MAAG, each service is managed
independently by an intelligent agent. The agent
manages requests, negotiates with service consumers,
performs advanced reservation[4-16] and measures QoS
metrics of all instances of a grid service in a specific
grid site. Also each grid application has an intelligent
agent who is responsible for application execution
respecting to the QoS constraints defined by its owner.
Thin mobile negotiator/watcher agents created and used
by the application agent to negotiate with service agents
in grid sites and to perform advanced reservation and
other application’s related task such as performance
monitoring. The agents cooperate with each other to
handle monitoring and management of the grid services
and applications autonomously with aim to deliver user
expected Quality of Services.

J. Computer Sci., 4 (3): 225-231, 2008

 226

 The AgentScape project[5] provides a multi agent
infrastructure that can be employed to integrate and
coordinate distributed resources in a computational grid
environment. The objective of the AgentScape system
is to provide a minimal but sufficient environment for
agent applications. The A4 project at Warwick has
likewise developed a framework for agent based
resource management on grids. These multi-agent
systems are used to trade with grid resources at the
higher services level and not at the base resource level.
Raw computational resources are normally scheduled
using a more classical scheduler e.g., performance
prediction or time based techniques.
 The GrADS project focuses on building a
framework for both preparing and executing
applications in grid environment[15]. Each application
has an application manager, which monitors the
performance of that application for QoS achievement.
Failure to achieve QoS contract causes a rescheduling
or redistribution of resources. GrADS monitor
resources using NWS and use Autopilot for
performance prediction[12,13]. Also in[14] mobile agent
technology used to perform active monitoring in grid
environment.
 In[1] a multi-agent framework for resource
brokering and allocating in grid environment has been
described. The goal of provided framework is to find
select, reserve and allocate suitable resources to each
submitted job with aim to optimize resource utilization
and fairness. The main stress in [1] is to optimize
resources utilization and there is no QoS support for
grid’s applications in this study.
 Our proposed approach called MAAG employs
intelligent and mobile agents to integrate and
coordinate distributed resources in a grid environment
with the aim to deliver user expected Quality of
services and to optimize resource utilization.

MATERIALS AND METHODS

MAAG‘s Architecture: A general overview of
MAAG‘s architecture with a sample grid in two sites is
shown in Fig. 1. Each site is owned by an individuals or
organizations and managed based its owners policies.
The grid site provides some grid services and it also
may provide an execution pool for local and migrant
agents called Agent Holding Hosts (AHH). There is one
static, intelligent and non-mobile agent in each site
which is called Site Manager Agent (SMA). This agent
monitors, measures and analyzes general QoS metrics
of each site and also manages local AHH and allocate
adequate execution host to migrant agents if
available. The SMA is responsible for registering the

Fig. 1: MAAG architecture used in two grid site

identification information of its site and local available
services on the grid’s global directories. In respond to
site’s user request for new application submission the
SMA creates an Application User Interface Agent
(AUIA) and assigns it to the user. The AUIA is an
interface between user and the agent which is the main
responsible for executing the application.
 In the proposed architecture, each service has an
intelligent and non-mobile agent called Service Agent
(SA). This agent manages service factory and instances.
Each request for using service will handle by its SA.
Also the SA measures service’s QoS parameters,
performs negotiation and advanced reservation.
 Each grid application has an intelligent agent
which is called Application’s Main Agent (AMA). The
AMA is responsible for scheduling, executing and
monitoring the application respecting to its owner’s
expected QoS defined in its Application’s Workflow
Definition Document (AWDD).
 An AMA creates multiple thin mobile intelligent
agents and sends each of them to one of its desired grid
sites to act as its negotiator and watcher agent. These
thin agents are called Application Negotiator and
Watcher Agent (ANWA). Each ANWA migrates to its
defined target site and negotiates with SA agents
according to its Negotiation Bundle (NB) document-
generated by its AMA- and sends back the results as a

J. Computer Sci., 4 (3): 225-231, 2008

 227

negotiation report to AMA. The AMA uses all
negotiation reports received from its ANWA agents to
generate best possible Schedule regarding to application
owner’s QoS delivery expectations. The NB is
generated by AMA for each of its ANWA agents
specifically and it contains the orders describing
ANWA objectives, negotiation constraints and
directives for special conditions.

System Agents:
a) Intelligent Agents: Software agent is a component
with capability of acting in order to accomplish its tasks
on behalf of its owner[10]. The ability of agents to work
autonomously in heterogeneous environments[10]
utilized in the MAAG architecture to overcome
complex tasks of monitoring, resource management and
application scheduling in the large-scale heterogeneity
presents in grid environment agents are shown.
Common features of software agents are listed in the
following[11]:

• Autonomy: Agents operate without the direct

intervention of humans
• Social ability: Agents co-operate with other agents

toward the achievement of certain objectives
• Re-activity: Agents perceive their environment

and respond in a timely fashion to changes that
occur

• Pro-activity: Agents do not simply act in response
to their environment; they are able to exhibit goal-
directed behaviors by taking the initiative

• Mobility: Agents are able to travel through
computer networks and to move from one
computer to another computer during execution
and may carry accumulated knowledge and data
with them[10,11]

• Intelligence: Informally, intelligent agents can be
seen as software agents with intelligent behavior;
that is, they are the combination of software agents
with intelligent systems[11]

b) Overview of MAAG Site and Agents: A Sample
grid site using MAAG Architecture is shown in Fig. 2.
Brief lists of duties assigned to each agent are
introduced in Table 1. Also The SA, AMA and ANWA
agents are described with more detail in part c, d and e
from material and methods section respectively.

c) Service Agent (SA): While standard web services
are persistent, grid services can be transient[15]. OGSA[9]
provides a soft-service management by introducing the
concept of grid service instances[15]. An instantiation
of a grid service can be dynamically created and

Fig. 2: Sample MAAG site

Table 1: Brief lists of duties assigned to each agent
Site Manager Agent (SMA)

1. Registering and updating identification information of site
and local services in global directories.
2. Creating an AUIA agent in response to user’s request for
new application submission.
3. Analyzing and measuring general QoS specifications of
the site.

Service Agent (SA)

1. Monitoring and measuring QoS metrics for service
instances.
2. Negotiating with ANWA agents and generating
reservation offers in response to their requests.
3. Creating and destructing service instances.
This agent described in section c

Application Main Agent (AMA)

This agent described in section d

Application User Interface Agent (AUIA)

1. Creating an AMA for application
2. User interface for AMA.
3. Gathering Application execution status from AMA and
informing the user.

Application Negotiator/ Watcher Agent (ANWA)

This agent described in section e

destroyed. In OGSA a grid service that can create a
service instance is called service factory[9]. A client can
request a factory to create many service instances, also
it is possible that multiple clients access to same service
instance[15].
 Service Agent (SA) is an intelligent and non
mobile agent which is used in the MAAG to handle all
management tasks related to a service including
advanced reservation and service instances creation and
destruction. Advanced reservation is a limited and
restricted delegation of a particular Resource capability
over a certain timeframe[4,16]. General duties assigned to
SA are as illustrated in Table 1. The SA handles the
following tasks:

J. Computer Sci., 4 (3): 225-231, 2008

 228

Fig. 3: Surface output of IGSCDA fuzzy inference system

• Accepting incoming advanced reservation requests

from service consumers and classify the requests
based on their Importance Level (IL)

• Selecting appropriate combination of incoming
requests with different IL using a Novel proposed
queue management algorithm which called
FDWFQ

• Performing advanced reservation on service
instances and dispatching the jobs as their
reservation time slot become available

• Managing service factory and dynamically creating
and destructing service instances using a Novel
proposed Fuzzy based algorithm which called
IGSCDA

• Monitoring and analyzing the utilization and some
QoS related parameters for each service instance to
adapt the agent to latest system’s condition (such
as workload, loss ratio in each IL class and etc)

 Two Major components used in the SA are IGCDA
and FDWFQ. The IGSCDA and FDWFQ components
are using two novel algorithms which are based on
fuzzy inference systems. The Fuzzy Dynamic Weighted
Fair Queue (FDWFQ) algorithm as its name indicates is
Weighted Fair Queue (WFQ) algorithm in which queue
weights are assigned dynamically using a fuzzy
inference system (FDWFQ_FIS).The SA uses IGSCDA
algorithm to balance between loss ratio and utilization
by automatically create/destruct service instances [23].
In Fig. 3 the output surface of IGSCDA fuzzy inference
system is plotted. The CountFitness indicates that the
count of current active service instances is fit for
current system conditions in the view of an specific IL
class. The greater CountFitness, the more need to create
new service instances and vice versa.

d) Application Main Agent (AMA): Each AMA is
responsible for executing the application associated
with it, regarding QoS constraints defined in
Application’s Workflow Definition Document

(AWDD). The AWDD used for job submission
description (JSD[16]) that consists of a set of constructs
which used to specify workflow constraints as part of
the WS-Agreement Specification. General duties
assigned to AMA are as illustrated in Table. 1.
 First part of application submission process for a
sample grid application is illustrated in Fig. 4 as a
sequence diagram. The AMA creates ANWA agents
and sends them to other grid sites for negotiation,
advanced reservation and performance monitoring.
 In MAAG, each application has an Importance
Level (IL) defined by organizational policy and can
assumed as QoS class of the application[7]. Table 2
depicts steps of negotiation, scheduling and reservation
in an AMA. The AMA uses dynamic scheduling
algorithm[16] to generate QoS aware schedules.

e) Application Negotiator/Watcher Agent: The AMA
creates ANWA agents and uses them as its agents in
different grid sites. As described in part b from material
and methods section and Algorithm 1, The AMA
creates multiple ANWA agents and a Negotiation
Bundle (NB) for each of them specifically, then the
AMA requests from each ANWA to migrate to its
target operating site.
 The NB contains list of desired services, workflow
constraints and QoS related expectations expressed in
WS-Agreement format. ANWA should use the contents
of mentioned list in its negotiations with SA agents in
target site, also it contains directives that the ANWA
should follow when special conditions are occurred.
Each ANWA migrates to its target site and starts its
operations defined in its NB (if target SMA permits its
migration and allocates an operational resource in site’s
AHH to it). It requests from service agents for service
reservation in the form of WS-Agreement[16] templates
and the SA generates a set of available reservation
offers in the WS-Agreement format. The WS-
Agreement is the proposed standard for the Grid
Resource Allocation Agreement Protocol (GRAAP)[15].

J. Computer Sci., 4 (3): 225-231, 2008

 229

Fig. 4: First part of submission process for a sample application

Table 2: Application Main Agent (AMA) algorithm
1: Create ReqServiceList by processing the AWDD
2: For each service in ReqServiceList do Calculate reservation

duration based on conservative estimate.
3: Request TargetSitesList from it.
4: For each site in TargetSitesList do
 4.1: Create an ANWA on local AHH
 4.2: Generate specific NB for the ANWA
5: Receive all NegotiationReport from ANWA agents
6: Generate Schedule based on received NegotiationReport using

dynamic scheduling algorithm
7: For each task in Schedule do
 7.1: Order to respective ANWA to perform reservation
8: Store all advanced reservation results received from ANWA

agents in ReservationResults set.
9: If any of reservations, failed then Reschedule
 9.2.2: If rescheduling failed then inform the AUIA to degrade

QoS expectation or abort application)

Table 3: Brief duties of the ANWA
1. Migrating to target site, to negotiate with SA agents
2. Creating a negotiation report containing negotiation results and

sending it to AMA.
3. According to AMA‘s command, performing advanced

reservation with desired SA.
4. According to AMA‘s command, Renewing, extending or

revoking a reservation (if possible).
1. Analyzing QoS provided to each of AMA jobs running in

operating site and check QoS goals achievement using utility
functions[16].

2. Performing adequate action according to NB on reservation
violation or service failure.

The ANWA will send these offers to AMA as its
negotiation report. Two categories of duties assigned to
the ANWA are mentioned in Table 3.

RESULTS AND DISCUSSION

 Simulation software is developed to evaluate the
performance of the Service Agent (SA) as an important
part of the proposed architecture MAAG. The
MATLAB fuzzy engine is used to implement fuzzy

Fig. 5: Output of the service instance count controller

fuzzy inference system for Average service
utilities

based algorithms used in the SA (FDWFQ and
IGSCDA algorithms). Various advanced reservation
and queue management algorithms were implemented
in the simulation software to compare the Service
Agent performance with them.
 In our simulation deadlines are hard, in that a user
receives utility only if the job completes by its deadline.
If Dj is the deadline of job j then it is uniformly
distributed as shown in Eq. 1:

 Rj+Pj �Dj� Rj+Pj+q (Pj)) (1)

where, q is a parameter to control the tightness of job
deadline and it is between 0 and 1. In our simulation we
let q = 0.1.
 The output of the core fuzzy inference system used
for controlling service instances count are plotted
against Average system utility, Drop Ratio and
Importance Level in Fig. 5, 6 and 7.
 In Fig. 8 loss ratio against request arrival rate � is
plotted for the service agent (SA), WFQ and RR by

J. Computer Sci., 4 (3): 225-231, 2008

 230

Fig. 7: Output of the service instance count controller

fuzzy inference system for drop ratio

Fig. 8: Output of the service instance count controller

fuzzy inference system for Importance Level

Fig. 9: Loss ratio vs. requests arrival rate �, for RR and

WFQ n = 10

considering job mean size x = 2.5, 6 and 9 also for
WFQ and RR number of service instances considered
fixed n = 10.

CONCLUSION

 This research presented a new multi-agent
architecture for grid computing environments. Five
types of agents were introduced to handle grid services
and applications management with aim to deliver users
expected Quality of Services (QoS). The introduced
agents work on top of the available Grid middleware
(such as Globus Toolkit) and uses the services available
with it. A brief discussion about the agents and their
interactions is presented in this paper. In the proposed
architecture, negotiation, advanced reservation and
scheduling is performed in a decentralized manner.
Using intelligent agents in service and application
management adds flexibility and intelligence to
negotiation and reservation interactions. Also using thin
intelligent mobile agents makes the application‘s
scheduling, monitoring and execution more
autonomous and optimized. The simulation results
illustrated that the SA as an important part of the
MAAG gives better performance metrics compared
with other commonly used techniques. The future work
will focus on extending agents to make applications and
services fault tolerant.

REFERENCES

1. Roy, S., S. Dasgupta and N. Mukherjee, 2006. A

multi-agent framework for resource brokering of
multiple concurrent jobs in grid environment. In:
Proceedings of the 5th International Symposium on
Parallel and Distributed Computing (ISPDC'06).
doi: 10.1109/ISPDC.2006.3

2. Wolski, R., J. Plank, J. Brevik and T. Bryan, 2001.
Analyzing market-based resource allocation
strategies for the computational grid. J. High-
Performance Comput. Applic., 15: 258-281. doi:
10.1177/109434200101500305

3. Li, C., Z. Lu and L. Li, 2004. Multi-agent
interaction for optimal resource allocation in
computational grid. Proceedings of the 3rd
International Conference on Machine Laming and
Cybernetics, Shanghai, Auf. 26-29. doi:
10.1109/ICMLC.2004.1380596

4. Castillo, C., G.N. Rouskas and K. Harfoush, 2007.
On the design of online scheduling algorithms for
advance reservations and qos in grids. International
Parallel and Distributed Processing Symposium,
IEEE, IPDPS. doi: 10.1109/IPDPS.2007.370226

5. Wijngaards N.J.E., B.J. Overeinder, M. Van Steen,
F.M.T. Brazier, 2002. Supporting Internet-scale
multi-agent systems (2002). Data Knowledge Eng.,
doi:10.1016/S0169-023X(02)00042-3

J. Computer Sci., 4 (3): 225-231, 2008

 231

6. Buyya, R., J. Giddy and D. Abramson, 2001. A
case for economy grid architecture for service-
oriented grid computing. 10th IEEE International
Heterogeneous Computing Workshop, April 2001.
doi: 10.1109/IPDPS.2007.370226

7. Doshi, B., L. Benmohamed and A. DeSimone,
2005. A hybrid end-to-end qos architecture for
heterogeneous networks. Military Communications
Conference, IEEE, 2005. doi:
10.1109/MILCOM.2005.1606078

8. Munindar, P.S. and N.H. Michael, 2005. Service-
Oriented Computing. John Wiley and Sons. doi:
10.1002/0470091509.ch5

9. Foster, I., C. Kesselman, J. Nick and S. Tuecke,
2002. The physiology of the grid: An open grid
services architecture for distributed systems
integration. Open Grid Service Infrastructure WG,
Global Grid Forum, Cambridge University Press,
June 2002. doi: 10.1002/0470867167.ch8

10. Wooldridge, M., 2002. Introduction to Multi-Agent
Systems. John Wiley and Sons. 10.2448/lr-univb-
valentina-1099517115906

11. Yu, T., Y. Yuan, J. Li, F. Xiong and M. Fang,
2005. Multi-agent based approach for
manufacturing grid workflows. Proceedings of
the 4th International Conference on Machine
Learning and Cybernetics, Guangzhou, Aug. 18-
18. doi:10.1109/ICMLC.2005.1526944

12. Wolski, R., N.T. Spring and J. Hayes, 1999. The
network weather service: A distributed
performance forecasting service for
metacomputing, Future Generat. Comput. Syst.,
(FGCS), 15: 757-768. doi:10.1016/S0167-
739X(99)00025-4

13. Ribler, R.L., H. Simitci and D.A. Reed, 2001. The
autopilot performance-directed adaptive control
system. FGCS, 18: 175-187. doi:10.1016/S0167-
739X(01)00051-6.

14. Ruoyun Yang and Mitchell D. Theys, 2005. RMF:
Resource Monitoring Framework for integrating
active and passive monitoring tools in Grid
environments. J. Parallel Distributed Comput., 65.
doi: 10.1016/j.jpdc.2005.05.012.

15. Li, M. and M. Baker, 2005. The Grid Core
Technologies. John Wiley and Sons Ltd. ISBN: 13
978-0-470-09417-4.

16. Siddiqui, M., A. Villaz´On and T. Fahringer, 2006.
Grid capacity planning with negotiation-based
advance reservation for optimized QoS.
Proceedings of the 2006 ACM/IEEE SC|06
Conference (SC'06), 2006. doi:
10.1145/1188455.1188563.

