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Abstract: In a wireless sensor network, several sensor nodes obtain local data and communicate 
among themselves in order to create a global vision of an object of study. The idea of a self-managed 
network of low-power, autonomous devices, that collects data from an environment and propagates 
information through a wireless link brought about several new challenges and requirements in 
application run-time support. Several research projects have aimed at solving the problem of system 
support for sensor networks. However, most of them have failed in dealing with two requirements: 
transparent configuration of the data communication channel and efficient and unified sensor hardware 
abstraction. In this work we designed and implemented a run-time support environment for wireless 
sensor network applications based on the EPOS operating system. Through this environment, 
applications were allowed to configure the communication channel according to their needs and to 
acquire sensor data through a family-based, uniform, sensor data acquisition API. Our tests showed 
that the introduction this environment did not incur in excessive overhead and presented significant 
advantages in relation to the solutions found in other operating systems for sensor networks. 
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INTRODUCTION 

 
 Recent advances in hardware design and 
miniaturization have enabled the emergence of a new 
set of applications to the fundamental concept of 
computer, in the form of low-power, wireless micro-
sensors. These micro-sensors are equipped with analog 
or digital sensor devices (e.g., temperature, magnetic, 
acoustic sensor), a digital processor, a wireless 
communication module (e.g., low-power radio) and a 
power module (e.g., battery, solar cell). Each individual 
sensor is able to obtain a local vision of its environment 
and to coordinate and communicate with other sensors 
in order to create a global vision of a given object of 
study. 
 The idea of a self-managed network of autonomous 
devices, which collect and forward data through a 
wireless link, brings about a series of new challenges to 
hardware design. In order to be unobtrusive and to 
operate autonomously for long periods of time, the 
sensor nodes must be small and low-power. To allow a 
wide range of applications to share a common platform, 
the nodes must be modular and allow different sensing 
devices to be used according to the needs of specific 
applications. Similarly, the communication hardware 
should allow wide configuration of the data channel, so 

that different applications may benefit from different 
modulation and medium access control schemes. As the 
complexity of wireless sensor network technologies 
increases, the need for runtime support to mediate 
hardware capabilities and application needs becomes 
critical. 
 System requirements for sensor networks include 
basic operating system functionality, power 
management, field reprogramming mechanisms, 
sensing hardware abstraction and a configurable 
communication stack. Restricted hardware capabilities 
require these systems to operate with limited resources 
and make the use and adaptation of traditional operating 
systems impossible. Several research projects[1-3,5,7,9] 
have aimed at solving the problem of system support 
for sensor networks. However, most of them have failed 
in dealing with two requirements: transparent 
configuration of the data communication channel and 
efficient and unified sensor hardware abstraction. 
 The EPOS system[4,11] is a component-based 
framework for the generation of dedicated runtime 
support environments. The EPOS system framework 
allows programmers to develop platform-independent 
applications and analysis tools allow components to be 
automatically adapted to fulfill the requirements of 
these particular applications. By definition, one instance 
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of the system aggregates all the necessary support for 
its dedicated application and nothing else. EPOS 
provides a wide set of operating system services 
through platform-independent interfaces and supports a 
wide range of platforms, such as IA32, PowerPC, 
Sparc, MIPS, H8 and AVR  
 This study shows the design and implementation of 
a run-time support environment for wireless sensor 
network applications based on the EPOS operating 
system. This environment includes platform support, 
power management services, configurable 
communication through the C-MAC (Configurable 
MAC) medium access control protocol, which allows 
applications to configure the communication channel 
according to their needs and a sensor data acquisition 
system, which abstracts families of sensing devices in 
an uniform fashion, without incurring excessive 
overhead and presenting significant advantages in 
relation to the solutions found in other operating 
systems for sensor networks. 
 

OPERATING SYSTEMS FOR SENSOR 
NETWORKS 

 
 In a sensor network, application-specific 
requirements drive the entire hardware design, from 
processing capabilities to radio bandwidth and sensor 
modules, thus requiring the hardware to be modular. 
However, these requirements have led to a huge variety 
of hardware components, making wireless sensor 
networks hardware not only modular, but also 
heterogeneous. In this scenario, a sensor application 
developed for a given platform will seldom be portable 
to a different one, unless the run-time support systems 
on those platforms deliver mechanisms that abstract and 
encapsulate the sensor platform in an adequate manner. 
At the same time, the limited resources typically found 
in sensor networks hardware require any runtime 
support for these systems to be efficient and not to use 
excessive resources. 
 The need for connectivity, hardware abstraction 
and management of limited resources makes operating 
system support imperative for sensor network 
applications. Considering current research, technology 
and applications[7], we may list a series of operating 
system requirements for wireless sensor networks. Such 
a system should: 
 
Provide basic operating system functionality: In 
order not to restrict the functionality and portability of 
sensor networks applications, an operating system for 
such devices should provide traditional operating 
system services such as: hardware abstraction, process 

management (usually following the mono-task, multi-
thread prism), timing services and memory 
management. 
 
Provide efficient power management mechanisms: 
Efficient power management in the sensor nodes is a 
determining factor for the network's life time. A 
runtime support system for sensor networks 
applications should provide power management 
mechanisms to the applications, as well as use as little 
power as possible to provide its services. 
 
Provide field reprogramming mechanisms: Given 
that the sensor nodes may be located in inhospitable 
regions and that application requirements and 
parameters may change with time, field reprogramming 
through the communication network is an important 
service in this type of networks. An operating system 
for sensor networks should ideally provide total or 
partial field reprogramming mechanisms for deployed 
applications. 
 
Abstract heterogeneous sensing hardware in a 
uniform fashion: The application-specific 
requirements of sensor networks make its hardware not 
only modular, but also heterogeneous. In this scenario, 
a sensor application developed for a given platform will 
seldom be portable to a different one, unless the run-
time support systems on those platforms deliver 
mechanisms that abstract and encapsulate the sensor 
platform in an adequate manner. Architectural 
differences aside, sensor modules (e.g., temperature, 
light and motion sensors) present an even wider range 
of variability. Sensor modules presenting the same 
functionality often vary in their access interface, 
operational characteristics and parameters. A properly 
designed run-time support system could free application 
programmers from such architectural dependencies and 
promote application portability among different sensing 
platforms.  
 
Provide a configurable communication stack: Given 
the specific communication requirements of different 
applications, communication hardware for sensor 
networks should be widely configurable. The operating 
system should provide means to configure the 
communication protocol stack, starting from the 
medium access control protocols.  
 
Operate with limited resources: As sensor nodes must 
be low power, their hardware design will tradeoff 
computation capabilities for lower power consumption. 
As such, the nodes will have limited processing power 
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and memory resources. An operating system for sensor 
networks should deliver the required application 
services without using a significant amount of the 
computational resources available to the nodes. 
 Typical embedded operating systems, such as 
VxWorks, QNX, OS-9, WinCE and �Clinux provide a 
programming environment similar to those existing in 
traditional computers, usually through POSIX-
compliant services. Many of these operating systems 
provide and thus require hardware support to, memory 
protection. Although these systems are adequate for 
mobile phones, set-top-boxes and other complex 
embedded applications, their memory and processing 
requirements makes their use in wireless sensor 
networks impossible. Several systems have been 
developed specifically for these networks, including 
MagnetOS[2], Contiki[3] and AmbientRT[9]. However, 
the most prominent of these systems are the TinyOS[7], 
MANTIS OS[1] and SOS[5] systems. 
 TinyOS is an event-based operating system for 
sensor networks[7]. The system is organized as a 
collection of components. Each TinyOS configuration 
is composed by and application and its required 
operating system services and consists in a scheduler 
and a component graph. Each component is composed 
by commands, event handlers, tasks and an execution 
frame. Each component declares the commands to 
which it responds and the events it signals. Commands 
are non-blocking method calls and are typically used to 
initiate software and hardware requests and, 
conditionally, initiate tasks. Event handlers are used to 
handle hardware interrupts and may call commands or 
post tasks. 
 The system provides a simplified concurrence 
model, based in run-to-completion tasks, which may 
only be preempted by interrupts. This model brings 
about negative and positive consequences. In a 
traditional thread-based model, where each thread has 
its own stack, each thread must reserve space in the 
node's limited memory for its execution context. 
Depending on the architecture, context switching may 
be a lengthy operation. By restricting this model, 
TinyOS reduces most of this overhead, but also loses 
most of the characteristics of a traditional multithread 
model. This restriction of concurrence may also hinder 
the system's ability to deal with real-time metrics. 
TinyOS does not provide dynamic memory allocation 
mechanisms. Timing services are provided by a Timer 
interface. The component model of TinyOS, along with 
its simplified concurrence model, allows the system to 
run in platforms with less than 1KB of RAM. 
 Power management in TinyOS is implemented by 
the task scheduler, which makes used of the StdControl 

interface to start and stop components. When the 
scheduler queue is empty, the main processor is put in 
sleep mode. This way, new tasks will only be posted in 
the execution of an interrupt handler. This method 
yields good results for the main microcontroller, but 
leaves more aggressive methods (including starting and 
stopping peripheral components) to the application.  
 TinyOS features a three-tiered hardware 
abstraction architecture, comprised by a Hardware 
Presentation Layer, a Hardware Adaptation Layer and a 
Hardware Interface Layer[6]. The Hardware 
Presentation Layer is placed directly over the 
underlying hardware and presents the hardware to the 
operating system. Components in the Hardware 
Presentation Layer are unique for each device they 
present, but may share a common structure. The 
Hardware Adaptation Layer groups the hardware-
specific components into domain-specific models, such 
as Alarm or ADC Channel. The Hardware Adaptation 
Layer provides the ‘best’ possible abstraction in terms 
of effective resource usage, but also tries not to hinder 
application portability. The Hardware Interface Layer 
uses the adapted components to implement platform-
independent abstractions. The TinyOS application 
developer may choose to use any of the available 
interface levels, trading off application portability and 
efficient resource usage. 
 The TinyOS communication stack is based on the 
B-MAC medium access control protocol[12]. The 
protocol is implemented in layers (low-level hardware 
control and protocol logic). The low-level control layer 
allows static and dynamic configuration of basic 
communication parameters (e.g., frequency, 
transmission power). The system also allows some level 
of configuration of protocol logic (duty cycle, free 
channel detection algorithm, use of 
acknowledgements). 
 MANTIS OS (Multimodal networks of in situ 
sensors)[1] is a multithread operating system for sensor 
networks, with an application programming interface 
inspired by POSIX adapted to the needs and restrictions 
of wireless sensor networks. The architecture of 
MANTIS is based on the classical layered 
multithreaded design. The system's application 
programming interface is preserved between different 
platforms. The system kernel is comprised of a 
scheduler and device drivers. A communication stack 
and a command server are provided as user-level 
services.  
 The MANTIS scheduler provides a subset of the 
POSIX thread package, with priority-based round-robin 
scheduling. The system supports static and dynamic 
heap allocation for threads. The scheduler is called 
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periodically according to a timer, or through semaphore 
operations. An idle thread is used as entry point for the 
system's power management policies, which put the 
processor in sleep mode whenever there are no threads 
waiting for the processor. Timing and synchronization 
services are provided through POSIX-like interfaces. 
The complex scheduling mechanism used in MANTIS 
incurs in greater overhead than that of a simpler, event-
based model. Thus, the system has a larger footprint 
than, for example, TinyOS. However, the system is still 
adequate for use in current sensor network prototypes. 
 MANTIS uses a monolithic hardware abstraction 
layer, with dev read(), dev write(), dev mode() and dev 
ioctl() functions. Each function takes a device as a 
parameter and a function table redirects general calls to 
specific device drivers. Parameters for the dev mode() 
and dev ioctl() are device-specific and there is no 
unified abstraction for sensing hardware (each device 
driver has specific semantics). 
 The system provides a unified communication 
interface through user-level threads. There is a unified 
packet format for different communication interfaces 
(e.g., serial interfaces, USB, radio). This 
communication layer manages packet synchronization 
and buffering. Underneath this communication API, 
MANTIS uses traditional device drivers. The 
monolithic nature of the MANTIS system may incur in 
unnecessary overhead. On the other hand, the apparent 
advantages of a single communication entry-point are 
diminished due to the specific semantics and 
parameters of the communication methods for each 
interface.  
 SOS[5] is a dynamically reconfigurable operating 
system for sensor networks. The system's kernel 
includes message passing services, dynamic memory 
allocation and dynamic module loading. SOS is 
organized as a series of binary modules that implement 
specific tasks. These components are comparable in 
functionality to TinyOS components. An application is 
comprised by a series of interacting modules, which 
present both a method call interface and a message 
passing interface. Message passing is asynchronous and 
coordinated by a scheduler that uses a priority-ordered 
queue. Direct function calls are used for synchronous 
operations between modules. Module loading and 
distribution are implemented by kernel-independent 
distribution protocols and meta-description structures. 
The system integrates dynamic memory allocation and 
garbage collection. As in the TinyOS and MANTIS 
systems, SOS puts the processor in sleep mode 
whenever there are no messages to schedule. The 
dynamic reconfiguration model of SOS incurs in 
considerably higher overhead than its static 

counterparts. However, this overhead is still acceptable 
for most sensor network applications[5]. 
 SOS provides services for dynamically including, 
updating and removing modules to previously deployed 
sensing programs. The system divides program memory 
in pages and keeps state and context structures in RAM 
for each module.  
 The system uses the loadable kernel modules 
mechanisms for sensing hardware abstractions. 
Through this architecture device drivers can register 
their services and associate it to a name, allowing 
applications to access components through these names. 
For instance, an analog sensor driver can bind itself to 
an ADC Channel and register a sensor type as PHOTO. 
When the application requests data from PHOTO, the 
kernel uses the registered driver to obtain the 
appropriate ADC reading. This semantic abstraction of 
sensor readings promotes application portability. 
However, since the operating system has to keep a table 
of function pointers indexed by name, the registering of 
drivers incurs in some memory overhead.  
 

THE EPOS SYSTEM 
 
 EPOS (Embedded Parallel Operating System)[4,11] 
is a component-based framework for the generation of 
dedicated runtime support environments. The EPOS 
system framework allows programmers to develop 
platform-independent applications and analysis tools 
allow components to be automatically adapted to fulfill 
the requirements of these particular applications. By 
definition, one instance of the system aggregates all the 
necessary support for its dedicated application and 
nothing else.  
 The modular design of EPOS was guided by the 
Application-Oriented System Design (AOSD) 
methodology. AOSD elaborates on the well-known 
domain decomposition strategies behind Family-Based 
Design (FBD) and Object-Orientation (OO), i.e., 
commonality and variability analysis, to add the 
concept of aspect identification and separation yet at the 
early stages of design[4]. In this way, AOSD guides 
domain engineering towards families of components, of 
which execution scenario dependencies are factored out 
as ‘aspects’ and external relationships are captured in a 
component framework. This domain engineering 
strategy consistently addresses some of the most 
relevant issues in component-based software 
development: 
 
Reusability: Components tend to be highly reusable, 
for they are modeled as abstractions of real elements of 
a given domain and not as parts of a target system. 
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Moreover, by factoring out execution scenario 
dependencies as aspects, components can be reused 
unmodified in a variety of scenarios simply by defining 
new aspect programs. 
 
Complexity management: The identification and 
separation of execution scenario dependencies 
implicitly reduces the number of components in each 
family, since those components that would have been 
modeled to express a variation in the domain that 
originates from a scenario dependency are suppressed 
whenever the dependency can be modeled as an aspect. 
Simply stated, a set of 100 components could be 
modeled as a set of 10 components plus a set of 10 
aspects and a mechanism to apply aspects to 
components. The overall complexity (and functionality) 
in the new set of 100 generated components is the 
same, but it is now confined in fewer constructs. This 
directly improves maintainability. 
 
Composability: By capturing component relationships 
in a component framework, AOSD enables components 
to be more easily combined while generating a system 
instance. It also put some limits to the misbehaviors that 
can arise from applying aspect programs to pre-
validated components. Feature-based models are of 
great value at this point to capture configuration 
knowledge and thus make system generation a more 
predictable procedure. 
 Figure 1 shows the application-oriented system 
design domain decomposition process. Abstractions are 
identified from the problem domain and arranged in 
families according to their common characteristics. 
Scenario dependencies are modeled as aspects that may 
be applied through scenario adapters. Families of 
abstractions are visible to applications through inflated 
interfaces, which export their members as a single 
super-component. System architectures are captured in 
component frameworks, which are defined in terms of 
scenario aspects. 
 Families of abstractions in EPOS represent 
traditional operating system abstractions and implement 
services such as memory and process management, 
process coordination, timing and communication. 
Abstractions are designed and implemented 
independently from execution scenarios and 
architectures. All architecture-dependent hardware units 
are abstracted as hardware mediators which export, 
though their platform independent interfaces, the 
functionality demanded by abstractions. Due to the use 
of static meta-programming and function inlining, 
hardware mediators implement their functionality 
without  forming  a  conventional  hardware  abstraction 

 
 
Fig. 1: AOSD domain decomposition process 
 
layer. Through the use of hardware mediators, EPOS 's 
abstractions have reached a level of reusability that 
allows, for example, the same family of Thread 
abstractions to be used in a mono-task or multitask 
environment, as part of a �kernel or completely 
embedded in the application, in an 8-bit microcontroller 
or a 64-bit processor. 
 Processes in EPOS are managed by the Thread and 
Task abstractions. Each Thread stores its context in its 
own stack. The Context abstraction defines all data that 
must be stored for an execution flow and this way, each 
architecture defines its own context. 
 Time is handled by the Timepiece family of 
abstractions. These abstractions are supported through 
the Timer, Timestamp Counter (TSC) and Real-Time 
Clock (RTC) mediators. The Clock abstraction is 
responsible for keeping track of current time and is 
available only on systems that feature a real-time clock 
device. The Alarm abstraction can be used to generate 
events that can wake-up a thread or call a function. 
Alarms also have a master event with high priority that 
is associated with a certain period of time. This master 
event is used to call the process scheduling algorithm at 
each quantum of time, when the active scheduler 
feature is configured on the system. Finally, the 
Chronometer abstraction is used to perform time 
measurements. 
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 The Synchronizer family of abstractions provides 
mechanisms to ensure data consistency in a concurrent 
process environment. The Mutex member implements a 
simple mutual exclusion mechanism that supplies two 
atomic operations: lock and unlock. The Semaphore 
member realizes a semaphore variable, that is a integer 
variable whose value can only be manipulated 
indirectly through the atomic operations p and v. The 
Condition member realizes a system abstraction 
inspired on the condition variable language concept, 
which allows a thread  to wait  for a predicate to 
become true. 
 In EPOS, details pertaining to address space 
protection and translation, as well as memory 
allocation, are abstracted through the MMU (Memory 
Management Unit) family of mediators. The Address 
Space abstraction is a container for chunks of physical 
memory called segments. It does not implement any 
protection, translation or allocation duties, handing then 
over to the MMU mediator. The Flat Address Space 
defines a memory model in which logical and physical 
addresses match, thus eliminating the need for MMU 
hardware. In platforms that do not feature a MMU, the 
MMU mediator simply mantains the interface contract 
with the Flat abstraction, providing empty method 
implementations whenever necessary. Methods 
concerning memory allocation operate on bytes in a 
way that is similar to libc's malloc function. 
 Input/Output control for peripheral devices in 
EPOS is provided by the hardware's corresponding 
mediator. The Machine mediator stores I/O locations 
and handles dynamic interrupt registering. The IC 
(Interrupt Controller) mediator handles enabling and 
disabling individual interrupts. In order to deal with 
different interrupts available in different platforms and 
contexts, EPOS assigns platform-independent name and 
syntax to interrupts pertinent to the system (e.g., timer 
interrupt). 
 

RESULTS AND DISCUSSION 
  
 Wireless sensor network applications present 
specific requirements in addition to traditional 
operating system services. These include efficient 
power management, field reprogramming, uniform 
abstraction of heterogeneous sensor devices and 
configurable communication services. In this work, we 
introduced extensions to the EPOS operating system in 
order to fulfill these requirements.  
 EPOS provides application-driven power 
management services that allow power aware operation 
of deeply embedded systems, without compromising 
application portability and without incurring excessive 

overhead. The goal of our power management system is 
to allow applications to express when certain software 
components are not being used, permitting the system 
to migrate hardware resources associated with these 
components to lower power levels. Several issues 
regarding architectural differences between different 
hardware devices and concurrent access of hardware 
resources by different software components emerged 
from this goal. In order to deal with these issues, our 
system was built upon a generic power management 
interface, a message propagation system and on the 
formalization of changes in operating modes[8]. 
 In our power management strategy, the application 
programmer is expected to specify in his source code, 
whenever certain components will not be used. Thus, a 
uniform API to allow power management was defined. 
This interface allows interaction between the 
application and the system, between system 
components and hardware devices and directly between 
application and hardware. In order to free the 
application programmer from having to wake up 
components whenever they are needed, the power 
managing mechanism abstracted by this interface 
ensures that components return to their previous 
operational states whenever they are used. 
 The application may, for example, access a global 
component (System) that has knowledge of every other 
component in the system, triggering a system-wide 
power mode change. Another way the application may 
use this interface is through subsystems (e.g., Inter-
Process Communication (IPC), Processing and 
Sensing). In this way, messages are propagated only to 
the components used in the implementation of each 
subsystem. The application may also access the 
hardware directly, using the API available in the device 
drivers, such as Network Interface Card (NIC), CPU, 
Thermistor. The same API is also used between the 
system's components. 
 In order to attain application portability and to 
facilitate application development, the power managing 
interface was defined with a minimal set of methods 
and universal operating modes with unified semantics 
throughout the system. Portability comes from the fact 
that the application does not need to implement specific 
procedures for each device in order to change its 
operating mode. These procedures are abstracted by the 
API. Easiness of use comes from the fact that the 
application programmer does not need to analyze 
specific hardware manuals in order to identify available 
operating modes, the procedures to change those modes 
and the consequences of these changes. 
 In order to map coherent connectivity between 
different abstraction levels in the system, a formal 
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operating mode migration net was defined. In this 
study, we describe this formal mechanism, which was 
defined through Petri nets. These nets feature clear 
graphical representation and a wide range of 
mathematical analysis models. These models allow 
proof of liveness and reachability of desirable states, as 
well unreachability of incorrect states. Although the 
procedures to migrate power states are specific to each 
component (both software and hardware), the control 
and dispatch of these migrations may be expressed in a 
generic form. In order to allow that, a network of mode 
migrations, that specifies the transitions between 
different operating modes was formalized. 
 By using the hierarchical architecture by which 
system components are organized in EPOS, effective 
power management was achieved for deeply embedded 
systems without the need for costly techniques or 
strategies, thus incurring in no unnecessary processing 
or memory overheads. Case studies[8] have shown 
significant power savings, with minimal application 
intervention. This hierarchical power management 
infra-structure is also used by an active, opportunistic 
power manager, which is executed either periodically or 
when there are no tasks to schedule. This power 
manager checks the utilization timestamps of each 
registered component against the current timestamp of 
the system. A configurable power management 
heuristic then decides if and when to change a 
component's power mode. In its simplest form, the 
power manager puts all idle components (components 
that have not been accessed for a pre-set period of time) 
into sleep mode. 
 In order to allow field reprogramming, EPOS 
makes use of an indirection mechanism similar to 
Remote Procedure Calls. In this infrastructure, the 
invocation of a component’s method of the client 
application passes through a Proxy that sends a message 
to an Agent. After the method execution, a message 
with the return value is sent back to the application. 
With this structure, an indirection level is created 
among the application method calls, making the Agent 
the only entity aware of component’s position in the 
system memory. The Agent controls the access to the 
component’s method through a synchronizer 
(Semaphore), not allowing calls to a component that is 
currently being updated. A system thread is responsible 
for receiving an update request and the new component 
code. This request is sent to agent, which overwrites the 
old code by the new one. The framework infrastructure 
for system update is transparent to the application and 
may be ‘turned off’ without overhead. However, when 
update support enabled in the system, system footprint 
increases and the component method calls suffer a 
small delay. 

 In order to provide sensing support for 
applications, EPOS relies on software/hardware 
interface that is able to abstract families of sensing 
devices in a uniform fashion[14]. We define classes of 
sensing devices based on their finality (e.g., sensing 
acceleration, sensing temperature) and establish a 
common substrate for each class. Each individual 
device in a class is able to describe itself and its 
properties, in a similar fashion to the IEEE 1451 
standard sensors transducer electronic data sheet. A thin 
software layer adapts individual devices (e.g., converts 
ADC readings into contextualized values, performs 
calibration) to fit the minimal requirements of its sensor 
class. Thus, a simple thermistor is exported to an 
application in the exact same fashion as a complex 
digital temperature sensor. Software-based self-
description allows applications to use individual 
sensors' extended characteristics. Thus, an application 
may use a Thermometer abstraction, without having to 
address a particular temperature sensor.  
 In the EPOS sensing subsystem, common methods 
for all sensing devices are defined by the Sensor 
Common interface. The get() method provides a single 
sensor, single channel reading (i.e., enables the device, 
waits for data to be ready, reads the sensor, disables the 
device and returns readings converted into pre-
determined physical units). The enable(), disable(), data 
ready() and get raw() methods allow the operating 
system and applications to perform fine-grain control 
over sensor readings (e.g., performing sequential 
readings, obtaining raw sensor values). The convert(int 
v) method may be used to convert raw sensor readings 
(e.g., ADC or duty-cycle outputs) into scientific or 
engineering units. The calibrate() method performs a 
device and platform specific calibration method, which 
may require user interaction, depending on the sensor. 
 Each sensor family may extend the Sensor 
Common interface in order to properly abstract specific 
family characteristics. The Magnetometer family may 
add, for example, method for sampling and reading 
different axes. A Thermistor family, on the other hand, 
will probably not need to extend the basic common 
interface. Each family also defines a specific Descriptor 
structure, which defines specific fields for operation, 
accuracy, timing, calibration data and physical units. 
Every sensing device implements one of the defined 
interfaces and may provide specific methods for 
calibration, configuration and operation. Furthermore, 
each sensing device fills a family-specific Descriptor 
structure with device-specific values. Default 
configuration parameters (e.g., frequency, gain, etc.) for 
each  device are stored in a configuration traits 
structure. 
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Table 1: Sensing components footprint 
 Footprint (bytes) 
 ----------------------------------------------------------------- 
 TinyOS  Mantis  EPOS 
 ------------------- ------------------ ------------------ 
Sensor Code Data Code Data Code Data 
System 10188 455 25500 596 7046 213 
AVR ADC 550 4 538 9 64 3 
ADXL202 722 4 936 10 266 9 
Thermistor 1366 12 1050 11 1064 3 
Photocell 1366 12 1050 11 1064 3 
HMC1002 748 7 910 10 246 9 

 
Table 2: Maximum sampling rate 
 Sampling rate (Hz) 
 --------------------------------------------------------- 
Sensor TinyOS Mantis EPOS 
AVR ADC 8084 3685 24597 
ADXL202 7657 3401 21711 
Thermistor 5766 3107 10999 
Photocell 6009 3117 11121 
HMC1002 7494 3408 23024 

 
 Whenever the operating system or an application 
need to refer to a sensing device, they may either refer 
to the specific device (e.g., MicaSB Temperature) and 
perform device-specific operations, or refer to the 
device class (e.g., Temperature Sensor) and restrict to 
operations defined by that class. The configuration 
traits structure lists all the devices in a given class 
which are present in a given system configuration. A 
statically meta-programmed realization of the device 
class interface aggregates all the devices listed by the 
configuration traits. This realization is concrete when 
all the devices in a class are of the same type and 
polymorphic when different sensor types are present in 
a class. 
 Table 1 shows the memory footprint for sensing 
components in EPOS and their equivalents in TinyOS 
and MANTIS. Table 2 shows the maximum sampling 
rate obtained in tests with the three systems. The lowest 
overhead and higher sampling rate in EPOS are a direct 
result of the system's design, which minimizes 
dependencies between sensing components and the rest 
of the system. In EPOS, a component which abstracts 
an analog sensor usually depends only on the platform's 
analog-to-digital converter and its I/O subsystem, 
which is in turn abstracted by inline or meta-
programmed operators. This minimizes overhead, even 
considering that EPOS includes conversion and 
calibration functions which the other systems do not 
include in equivalent components. 
 The EPOS communication infra-structure relies on 
the C-MAC protocol to provide low-level 
communication support. C-MAC[13] is a Configurable 
Protocol for medium access control in wireless sensor 

networks equipped with low power radio transceivers. 
Its configurable characteristic allows the user to adjust 
several communication parameters (e.g., 
synchronization, data detection, acknowledgments, 
contention, sending and receiving), in order to adjust 
the protocol to the needs of different applications. 
 Given the simplicity of communication hardware 
for sensor networks, Medium Access Control protocols 
and other data link layer services must be implemented 
in software. Services such as data packet detection, 
error detection and treatment, addressing, packet 
filtering and others traditionally implemented in 
hardware become one of the main parts of a 
communication stack implemented by operating 
systems for wireless sensor networks. 
 Medium access control protocols for sensor 
networks compromise performance (latency, 
throughput) for cost (power consumption). Power 
consumption is minimized mainly by shortening the 
period in which the radio listens to the channel when 
there are no communications (idle listening). 
 Contention-based protocols, such as B-MAC[12] 
attain energy efficiency by increasing the message 
preamble, allowing the radio channel to be verified with 
lower periodicity. Slot-based protocols, such as S-
MAC[15], reduce power consumption by limiting 
communication to well-defined periods. Comparisons 
in different application scenarios show that there is no 
‘optimal’ protocol for sensor networks[10]. The choice 
of an adequate MAC protocol for a wireless sensor 
network application depends on the level of 
compromise between power efficiency and 
communication flexibility. Characteristics such as: 
complexity, special hardware requirements (e.g., 
synchronization hardware) and application data 
communication patterns must be taken into 
consideration when determining the ideal MAC for a 
given scenario. In what regards communication support 
in an operating system for sensor networks applications, 
configuration flexibility may be considered the most 
desirable trait. 
 In the EPOS system, the C-MAC protocol uses a 
meta-programmed framework to build a configurable 
communication kernel, over which other protocols may 
be composed. Protocol configuration is performed at 
compile-time and run-time configuration of protocol 
characteristics is not treated in the current C-MAC 
architecture. The overhead of maintaining several 
configuration possibilities programmed in the node and 
the need of a second protocol for synchronization 
makes the use of a run-time configuration system 
impracticable for a protocol as widely configurable as 
C-MAC. The main C-MAC configuration points 
include: 
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Basic communication characteristics: These 
configurations are handled by the communication 
hardware and include: transmission frequency and 
power (which may be altered in runtime); modulation 
type (e.g., Manchester, NRZ); transmission data rate. 
 
Duty cycle and organization: The duty cycle 
determines the active period in which the radio may 
operate. In a simple CSMA-based configuration, the 
radio may transmit at any time it detects the channel is 
free. On the other hand, in a slot-based protocol, the 
duty cycle is limited to the active part of the protocol's 
time slot. 
 
Collision-avoidance mechanism: The collision-
avoidance mechanism in a wireless sensor networks 
MAC protocol may be comprised of a carrier sense 
algorithm, the exchange of contention packets (Request 
to Send (RTS) and Clear to Send (CTS), or a 
combination of both. Furthermore, there must be the 
possibility to not use any collision-avoidance 
mechanism, for example, in a sparse network with little 
communication, in which eventually retransmitting 
corrupted packets is less costly than the mechanism 
itself. 
 
Collision-detection mechanism: As hardware for 
communications in wireless sensor networks is mostly 
half-duplex, the most widely used mechanism for 
collision detection is the use of acknowledgment 
packets, sent from the receiving node to indicate that 
the data was correctly received. In situations where 
packet loss is not a problem (e.g., a densely installed 
network, where many information packets are 
redundant), the collision detection mechanism may be 
eliminated from the protocol configuration, thus 
increasing power efficiency. 
 
Collision handling mechanism: When a collision is 
detected, the protocol may retransmit the packet, or 
simply increment a packet loss counter. 
 C-MAC's configurable characteristics are selected 
by the programmer through Configurable Traits in 
EPOS. Configurable Traits are parameterized classes 
whose static members describe the properties of a 
certain class. When a certain property is selected, the 
functionality it describes is included into the protocol. 
On the other hand, due to the use of function inlining 
and static meta-programming when a certain 
characteristic is not selected, no overhead associated 
with it is added to the final object code of the protocol. 
Furthermore, C-MAC's modular design allows different 
radio transceivers to be used with no alterations in the 
protocol's logic. 

 Tests with C-MAC have presented slightly superior 
performance than a protocol configured in an 
equivalent fashion, with smaller memory footprint[13]. 
This advantage is magnified by C-MAC's configuration 
system, which allows the creation of application-
specific protocols, with only the necessary overhead. 
 

CONCLUSION 
  
 This work presented the design and 
implementation of a runtime support environment for 
wireless sensor network applications based on the 
EPOS system. This environment includes a power 
management strategy, a field reprogramming strategy, a 
sensor data acquisition system and a configurable 
medium access control protocol for sensor network 
radios. 
 Our power management strategy allows 
applications to express when certain software 
components are not being used, permitting the system 
to migrate hardware resources associated with these 
components to lower power levels and features an 
autonomous, opportunistic power manager. Our field 
reprogramming strategy allows dynamic update of 
applications and the system through a transparent 
indirection mechanism. Our uniform abstraction of 
families of sensing device allows applications to collect 
data from sensors without having to deal with specific 
hardware details and without incurring excessive 
overhead. The C-MAC (Configurable MAC) protocol, 
allows applications to configure the communication 
channel according to their needs, including in the final 
protocol only the services selected by the application 
developer. 
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