
Journal of Computer Science 4 (1): 36-41, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: K. Somasundaram, Department of Computer Science and Engineering,
Arulmigu Kalasalingam College of Engineering, Krishnankoil-626190, Tamilnadu, India
Tel: +91-4563-289042 Mobile: +91-9443467264 Fax: +91-4563-289322

36

Nimble Protein Sequence Alignment in Grid (NPSAG)

K. Somasundaram and S. Radhakrishnan

Department of Computer Science and Engineering,
Arulmigu Kalasalingam College of Engineering, Krishnankoil-626190, Tamilnadu, India

Abstract: In Bio-Informatics application, the analysis of protein sequence is a kind of computation
driven science which has rapidly and quickly growing biological data. Also databases used in these
applications are heterogeneous in nature and alignment of protein sequence using physical techniques
is expensive, slow and results are not always guaranteed/accurate. So this application requires cross-
platform, cost-effective and more computing power algorithm for sequence matching and searching a
sequence in database. Grid is one of the most emerging technologies of cost effective computing
paradigm for large class of data and compute intensive application which enables large-scale
aggregation and sharing of computational data and other resources across institutional boundaries. We
proposed the Grid architecture for searching of distributed, heterogeneous genomic databases which
contained protein sequences to speed up the analysis of large scale sequence data and performed
sequence alignment for residues match.

Key words: Grid computing, bio-informatics, sequence alignment, dynamic programming

INTRODUCTION

 Grid computing, most simply stated, is distributed
computing taken to the next evolutionary level. The
goal is to create the illusion of a simple yet large and
powerful self managing virtual computer out of a large
collection of connected heterogeneous systems sharing
various combinations of resources.
 Another key technology in the development of grid
networks is the set of middleware applications that
allows resources to communicate across organizations
using a wide variety of hardware and operating
systems. The promise of grid computing is to provide
vast computing resources for computing problems that
require supercomputer type resources in a more
affordable way. Grid computing also offers
interesting opportunities for firms to tackle
tough computing tasks like financial modeling
without incurring high cost for supercomputing
resources.
 Grid computing is applying the resources of many
computers in a network to a single problem at the same
time usually to a scientific or technical problem that
requires a great number of computer processing cycles
or access to large amounts of data. Grid computing is
thought of as a form of network-distributed parallel
processing. It can be confined to the network of

computer workstations within a corporation or it can be
a public collaboration.
 Inexpensive systems such as Beowulf clusters have
become increasingly popular in both the commercial
and academic sectors of the bioinformatics community.
Clusters typically consist of a master node that
distributes the bioinformatics application amongst the
other nodes. The PC clusters can be used to replace
mainframe systems or supercomputers and save much
hardware cost. According to efficiency and cost, using
parallel version software and cluster system is a good
way and it will become more and more popular in the
near future. Grid computing offers significant
enhancements to the capabilities for computation,
information processing and collaboration.
 Bioinformatics and computational molecular
biology are concerned with the use of computing and
mathematical sciences as tools to advance traditional
laboratory based biology. The need to process an
exponentially growing amount of biological
information for further scientific advances and to
understand its role in heredity, chemical processes
within the cell, drug discovery, evolutionary studies etc.
 Proteins are polymers also called polypeptides
consisting of a sequence of amino acids. There are
twenty amino acids that are found in proteins. Figure 1
shows the full name and abbreviation of 20 amino acid
of protein.

J. Computer Sci., 4 (1): 36-41, 2008

 37

Full Name Abbrev. Full Name Abbrev.
Alanine A Ala Methionine M Met
Cysteine C Cys Asparagine N Asn
Aspartic acid D ASP Proline P Pro
Glutamic acid E Glu Glutamine Q Gln
Phenylalanine F Phe Arginine R Arg
Glycine G Gly Serine S Ser
Histidine H His Threonine T Thr
Isoleucine I Ile Valine V Val
Lysine K Lys Tryptophan W Trp
Leucine L Leu Tryosine Y Tyr

Fig. 1: Protein names

 Proteins were first characterized by their primary
sequences, the amino acid sequence[1] and then folded
into complex tertiary (3D) structure, which decided the
corresponding biological functions. The motivation
behind the structural determination of proteins was
based on the belief that structural information would
ultimately result in a better understanding of intricate
biological processes.
 Protein sequence alignment is one of the
bioinformatics research projects, facilitating everything
from identification of gene function to structure
prediction of proteins. Alignment of two sequences
showed how similar the two sequences were, where
there were differences between them and the
correspondence between similar subsequences.
Similarity simply means that two sequences are similar,
by some criterion. All of this represents important
information for biologists. The successful techniques
for prediction of the protein three dimensional
structures rely on aligning the sequence of a protein of
unknown structure. To attempt to align the protein
sequence for large proteins, we needed better
algorithms and larger computational resources like
those afforded by either powerful super computer or
distributed computing.

RELATED WORKS

 The NdPASA[6] is a novel protein sequence
pairwise alignment algorithm. This method employs
neighbor-dependent propensities of amino acids as a
unique parameter for alignment. NdPASA optimizes
alignment by evaluating the likelihood of a residue pair
in the query sequence matching against a corresponding
residue pair in the template sequence. Statistical
analysis of the performance of NdPASA indicated that
the introduction of sequence patterns of secondary
structure derived from neighbor-dependent sequence
analysis clearly improved alignment performance for
sequence pairs sharing less than 20% sequence identity.
For sequence of pairs sharing 13-21% sequence identity

NdPASA improved the accuracy of alignment over the
conventional global alignment algorithm using
BLOSUM 62 by an average of 8.6%
 Pattern Hunter[7] is a general purpose homology
search tool, it uses novel approaches to substantially
improve sensitivity and speed simultaneously. One new
idea in Pattern Hunter was the introduction of an
optimized spaced seed. In Blast, exact matches of k
continuous letters is used as a seed to find long matches
around it, whereas in Pattern Hunter, a seed is k
discontinuous letter matches, where the relative
positions of the k letters are optimized in advance. This
has helped Pattern Hunter to significantly increase its
sensitivity over Blast. Given k seeds, computing the hit
probability under the uniform distribution is NP-hard.
The problem of finding k optimal seeds is NP-hard.
Using optimized multiple spaced seeds; Pattern Hunter
is faster than Smith-Waterman at approximately the
same sensitivity, for DNA sequence search. But
investigation is going on for new multiple optimal seed
schemes to approximate the Smith-Waterman
sensitivity for protein-protein searches.
 In the subquadratic sequence alignment
algorithm[8] data compression techniques were
employed to speed up the alignment of two strings.
Instead of dividing the dynamic programming matrix
into uniform-sized blocks they employed a variable
sized block partition and speeding up dynamic
programming by keeping and computing only a
relevant subset of important values. Here the dynamic
programming solution to the string comparison
computation problem can be represented in terms of a
weighted alignment graph. The subquadratic sequence
comparison algorithms presented were perhaps close to
optimal in time complexity. However, an important
concern was the space complexity of the algorithms. If
only the similarity score value was required, the
classical, quadratic time sequence alignment algorithm
could easily be implemented to run in linear space by
keeping only two rows of the dynamic programming
table alive at each step. If the recovery of either global
or local optimal alignment traces was required,
quadratic-time and linear-space algorithms could be
obtained by applying Hirschberg’s refinement to the
classical sequence alignment algorithms.
 ParAlign[9] is a parallel sequence alignment
algorithm specifically designed to take advantage of
SIMD technology. The initial filtering method used in
the ParAlign was very sensitive (few false negatives),
but gave too many unwanted false positives in some
cases. This happened occasionally with certain query
sequences and was caused by repetitions in the
sequences. An improved statistical evaluation method

J. Computer Sci., 4 (1): 36-41, 2008

 38

was needed in order to improve performance. The
Smith-Waterman algorithm was generally considered to
be the most sensitive, but long computation times
limited the use of this algorithm. Special purpose
hardware with parallel processing capabilities
performed smith-waterman searches at high speed, but
these machines were expensive.

PROPOSED SYSTEM (NPSAG)

 NPSAG has three grid sites named as Site1, Site2
and SiteN were connected to the grid environment as
shown in Fig. 2. Each site had more than one grid node.
Grid Index Information Server (GIIS), Global scheduler
(GS), Local Scheduler (LS), Sequence Alignmenter
(ALIG) and Sequence Updater were the components of
NPSAG. User can get the services available in a Grid
using GIIS and submit the sequence alignment of some
protein structure as a request to GS through Grid GUI.
Global Scheduler (GS) will direct the jobs to the local
grids and execute the tasks in local grids using Local
Scheduler (LS).
 In each grid, the service discovery discovered what
were the services and grid nodes available and collected
the information from local sites and updated the same
to GIIS. Each grid node became a peer node. All nodes
in the grid had equal capability.
 User can login to Grid using Grid GUI and search
similar sequences for the particular protein sequence.
NPSAG searched the grid and found out the more
suitable protein sequence from GIIS and distributed to
the destinations grid sites through the use of Global
Scheduler. Once the location is found out from the
NPSAG, direct communication will be established to

GUI

GIIS

GS

L
S

SEQ Updater

A
L
IG

LALIG

GALIG

L
S

SEQ Updater

A
L
IG

LALIG

GALIG

L
S

SEQ Updater

A
L
IG

LALIG

GALIG

Site 1

Site 2

Site N

Fig. 2: Architecture of proposed system

the desired grid sites and align the protein sequence for
residues match using alignmenter. NPSAG has 2 main
alignmenters namely Local Alignmenter (LALIG) and
Global Alignmenter (GALIG).
 If any new protein sequences are discovered by a
person who is the participant of grid environment then
he can update these details to the grid GIIS with the use
of content distribution algorithm[5]. Content distribution
system creates a distributed storage medium that allows
for the publishing, searching and retrieval of files by
members of its network. By use of content distribution
the new data are updated to the GIIS in a faster manner.
The Gird server in the NPSAG updates this information
to in the GIIS. From the GIIS it can be distributed to the
local grids with the use of sequence updater.

IMPLEMENTATION

 To form an alignment between two sequences,
spaces were inserted in arbitrary positions in the
sequences so that they ended up with same length and
then each character or space in one sequence would
have a corresponding character or space in the other
sequence. An alignment score can then be assigned to
such an alignment: if a character is in sequence A
matches its corresponding character in sequence B, it
will receive a score of 1 (match); otherwise it will
receive a score of -1(mismatch) and if one of the two
characters is a space, it will receive a score of -2 (gap)
and the total score over the whole sequence is the score
of this alignment. The optimal alignment problem was
to find the maximal score of all possible alignments
between two sequences. This maximal score can be
used to measure the similarity between the two
sequences.
 Computational approach for sequence alignment
generally falls into two categories: global alignment
and local alignment. Global alignment is a form of
alignment that assumes that the two proteins are
basically similar over the entire length of one another.
By contrast, a local alignment searches for segments of
the two sequences that match well. There is no attempt
to force entire sequences into an alignment; just those
parts that appear to have good similarity, according to
some criterion identify regions of similarity within long
sequences that are often widely divergent overall.
Global alignments, which attempt to align every residue
in every sequence, are most useful when the sequences
in the query set are similar and of roughly equal size. A
general global alignment technique is called the
Needleman- Wunsch algorithm and is based on
dynamic programming. Local alignments are most
useful for dissimilar sequences that are suspected to

J. Computer Sci., 4 (1): 36-41, 2008

 39

contain regions of similarity or similar sequence motifs
within their larger sequence context. The Smith-
Waterman is general local alignment method also based
on dynamic programming.
Global Alignment:

F T F T A L I L L A V A V
F - - T A L - L L A - A V

Local Alignment:

F T F T A L I L L - A V A V
- - F T A L - L L A A V - -

Global and Local Alignments

GALIG: The standard global alignment algorithm
computes the similarity between two sequences A and
B of lengths m and n, respectively, using a dynamic
programming approach. Dynamic programming is a
strategy of building a solution gradually using simple
recurrence. The key observation for the alignment
problem was that the similarity between sequences A
[1...n] and B [1...m] could be computed by taking the
maximum of the three following values:

• The similarity of A [1...n -1] and B [1...m -1] plus

the score of substituting A[n] for B[m]
• The similarity of A [1...n -1] and B [1...m] plus the

score of deleting aligning A[n]
• The similarity of A [1...n] and B [1...m -1] plus the

score of inserting B[m]

From this observation, the following recurrence can be
derived:

sim (A[1..i], B[1..j]) = max {
 sim (A[1..i -1], B[1..j -1]) + sub (A[i], B[j]);
 sim (A[1..i -1], B[1..j]) + del (A[i]);
 sim (A[1..i], B[1..j -1]) + ins (B[j]) }

Where sim (A, B) is a function that gives the similarity
of two sequences A and B and sub (a, b), del (c) and ins
(c) are scoring functions that give the score of a
substitution of character a for character b, a deletion of
character c and an insertion of character c, respectively.
This recurrence is complete with the following base
case: sim (A [0], B [0]) = 0
Where A[0] and B[0] are defined as empty strings. To
solve the problem with this recurrence, the algorithm
builds an (n +1) × (m +1) matrix M where each M[i, j]
represents the similarity between sequences A[1..i] and
B[1..j] The first row and the first column represent
alignments of one sequence with spaces. M [0, 0]

represents the alignment of two empty strings and is set
to zero. All other entries are computed with the
following formula:

M[i, j] = max {
M[i -1, j -1] + sub (A[i], B[j]);
 M[i -1, j] + del (A[i]);
 M [i, j -1] + ins (B[j]) }

 The matrix can be computed either row by row
(left to right) or column by column (top to bottom). In
the end, M [n, m] will contain the similarity score of the
two sequences. Once the matrix has been computed, the
actual alignment can be retrieved by tracing a path in
the matrix from the last position to the first. The trace is
a simple procedure that compares the value at each M
[i, j] to the values of its left, top and diagonal entries
according to the formula given above. It is often useful
to see the dynamic programming solution for the
sequence alignment problem as a directed weighted
graph with (n +1) × (m +1) nodes representing each
entry (i, j) of the matrix and having the following
edges:

• ((i -1, j -1), (i, j)) with weight equals to sub (A[i],

B[j])
• ((i -1, j), (i, j)) with weight equals to del (A[i])
• ((i, j -1), (i, j)) with weight equals to ins (B[j])

 A path from node (0, 0) to (n, m) in the alignment
graph corresponds to an alignment between the two
sequences and the problem of retrieving an optimal
alignment was converted to the problem of finding a
path in the graph with highest weight.

LALIG: Local alignment was defined as the problem
of finding the best alignment between substrings of
both sequences. The main difference was that M[i, j]
contains the similarity between suffixes of A[1..i] and
B[1..j]. As a result, the recurrence relation is slightly
altered because an empty string is a suffix of any
sequence and, therefore, a score of zero is always
possible. The formula for computing M [i, j] becomes:

 M [i, j] = max {0;
 M[i -1, j -1] + sub (A[i], B[j]);
 M[i -1, j] + del (A[i]);
 M[i, j -1] + ins (B[j]) }

 Another important distinction was that the score of
the best local alignment was the highest value found
anywhere in the matrix. This position was the starting

J. Computer Sci., 4 (1): 36-41, 2008

 40

point for retrieving an optimal alignment using the
same procedure described for the global alignment case.
The path ended, however, as soon as an entry with
score zero was reached. It is trivial to see that the
Smith-Waterman algorithm has the same time and
space complexity as the Needleman-Wunsch[10].
 The dynamic programming method is guaranteed
to find an optimal alignment given a particular scoring
function; however, identifying a good scoring function
is often an empirical rather than a theoretical matter.
Although dynamic programming is extensible for more
than two sequences, it is prohibitively slow for large
numbers or extremely long sequences. This method
requires large amounts of computing power or a system
whose architecture is specialized for dynamic
programming. Hence the computation complexity of
this problem can be overcome by using a dynamic
hierarchical environment like Grid Computing.

PERFORMANCE ANALYSIS

 Here we have included a sample observation of our
work to indicate the behavior of protein sequence
alignment, the graphs in Fig. 3 and 4 indicates that the
time and number of proteins are directly proportional to
each other as the number of protein for analysis
increases, the time required to analyze also increases.

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700 800 900 1000 1200
No. of protein sequence

Ti
m

e
(m

 s
ec

)

Fig. 3: Performance analysis in single system

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700 800 900 1000 1200
Number of protein sequence

Ti
m

e
(m

 s
ec

)

Fig. 4: Performance analyses in grid environment

Better accuracy was achieved when we performed
analysis over a large database of proteins and hence the
degree of accuracy improved over the increase of
proteins.
 To cope with the computational requirements for
analysis on a large database, our work included Grid
Computing environment. In grid computing
environment time for sequence alignment was reduced.
Hence our approach was a nimble process.

CONCLUSION AND FUTURE WORK

 The physical methods, X-ray crystallography and
nuclear magnetic resonance (NMR) spectroscopy can
accurately perform protein sequence alignment; but
these experimental methods are labor intensive and
time consuming and for some proteins are not
applicable at all. The computational prediction of
accurate protein structure from the amino acid sequence
remains a big challenge. It requires large computing
power like super computer.
 We have proposed an approach in aligning the
protein sequence using Grid Computing. Our prediction
approach matches the given sequence with the genomic
database in one grid and provides the similar sequence.
This was performed the sequence alignment in local
grid using the dynamic programming method. Content
distribution algorithm is used to distribute the sequence
information to all other grids. Our approach has several
advantages. First, it provides an interesting measure,
match rate, for any protein sequence. Second, future
improvement of our approach is incremental: as more
protein structures are discovered each month, the
alignment accuracy will likely get better automatically.
Another advantage is that, the architecture of our
system is flexible enough to allow other biological
knowledge as well as machine learning techniques to be
incorporated into the model to further improve its
alignment accuracy. Our system could make a very
useful addition to the current armory of sequence
alignment methods available to protein chemists,
genome annotators and bioinformaticians.
 In future, we plan to implement the same problem
in semantic grid. In GALIG and LALIG, we use some
efficient Genetic algorithm operators to improve the
over all performance of NPSAG.

REFERENCES

1. Scott Montgomerie, Shan Sundararaj, Warren J.

Gallin and David S. Wishart 2006. Improving the
accuracy of protein secondary structure prediction
using structural alignment. Proc. BMC.
Bioinformatis.

J. Computer Sci., 4 (1): 36-41, 2008

 41

2. Huzefa Rangwala and George Karypis, 2006.
Incremental window-based protein sequence
alignment algorithms. Proc. of Bioinformatics.

3. Nicholas R. Jennings, David De Roure and Nigel
R. Shadbolt, 2005. The Semantic Grid: Past,
Present and Future. Proc. of IEEE.

4. David De Roure, 2005. A Brief History of the
Semantic Grid. Proc. of Dagstuhl Seminar.

5. Stephanos Androutsellis-Theotokis and Diomidis
Spinellis, 2004. A Survey of Peer-to-Peer Content
Distribution Technologies. Proc. ACM Computing
Surveys, 36.

6. Junwen Wang and Jin-An Feng, 2004. NdPASA: A
novel pairwise protein sequence alignment
algorithm that incorporates neighbor-dependent
amino acid propensities. Proteins.

7. Ming Li and Bin Ma, 2003. PatternHunterII:
Highly sensitive and fast homology search. Proc.
Genome Informatics.

8. Siam J. Comput, 2003. A Subquadratic sequence
alignment algorithm for unrestricted scoring
matrices. Proc. Soc. Ind. Applied Math.

9. Torbjorn Rognes, 2001. ParAlign: A parallel
sequence alignment algorithm for rapid and
sensitive database searches. Nucleic Acid Res., 29.

10. James A. Cuff and Geoffrey J. Barton, 1999.
Evaluation and Improvement of Multiple Sequence
Methods for Protein Secondary Structure
Prediction. PROTEINS: Structure, Function and
Genetics.

