
Journal of Computer Science 4 (1): 59-65, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: B.G. Geetha, Department of Computer Science and Engineering, K.S.R. College of Technology,
Tiruchengode-637215, Nammakkal Dt, Tamilnadu, India

 Tel: +91 98946 88866 Fax: +91 04288 2747451
59

A Tool for Testing of Inheritance Related Bugs in Object Oriented Software

1B.G. Geetha, 2V. Palanisamy, 1K. Duraiswamy and 3G. Singaravel

1Department of Computer Science Engineering,
K.S. Rangasamy College of Technology, Tiruchengode, India

2Government College of Technology, Coimbatore, India
3Department of Computer Science Engineering, KSR College of Engineering, Tiruchengode, India

Abstract: Object oriented software development different from traditional development products. In
object oriented software polymorphism, inheritance, dynamic binding are the important features. An
inheritance property is the main feature. The compilers usually detect the syntax oriented errors only.
Some of the property errors may be located in the product. Data flow testing is an appropriate testing
method for testing program futures. This test analysis structure of the software and gives the flow of
property. This study is designed to detect the hidden errors with reference to the inheritance property.
Inputs of the tool are set of classes and packages. Outputs of the tools are hierarchies of the classes,
methods, attributes and a set of inheritance related bugs like naked access, spaghetti inheritance bugs
are automatically detected by the tool. The tool is developed as three major modules. They are code
analysis, knowledge base preparation and bugs analysis. The code analysis module is designed to parse
extract details from the code. The knowledge base preparation module is designed to prepare the
knowledge base about the program details. The bug’s analysis module is designed to extract bugs
related information from the database. It is a static testing. This study focused on Java programs.

Key words: Dataflow testing, inheritance property, class hierarchy, inheritance related bugs

INTRODUCTION

Software testing concepts: Software Testing is the
process used to help identify the correctness,
completeness, security and quality of software. product
against a specification. An important point is that
software testing should be distinguished from the
separate discipline of Software Quality Assurance
(SQA), which encompasses all business process areas,
not just testing. Whether software satisfies customers
needs or not is a purpose of testing. Testing focus on
two ways. (1) black box testing and (2) white box
testing. white box testing exercise all independent
paths, all logical conditions, execute all loops and
exercise data structures. Black box testing are used to
test that software functions are operational, that input is
properly accepted and output is correctly produced.
Control structure testing is a white box testing[1].

Data flow testing: One common approach to structural
testing of software programs is to design and select test
cases according to control flows of software programs.

Common control-flow-based test coverage criteria
include the statement coverage criterion, the branch
coverage criterion and the path coverage criterion.
 Data flow testing is a testing technique based on
the observation that values associated with variables
can effect program execution. Data flow testing not
only explores program control flows but also pays
attention to how a variable is defined and used at
different places along control flows, which could lead
to more efficient and targeted test suites than pure
control-flow-based test suites. An important insight that
data flow testing can provide is that it shows a way to
distinguish between the useful ones and the less useful
ones among test cases generated from pure control-
flow-based testing techniques and trim the number of
required test cases without reducing the effectiveness of
the test suite.

Inter procedural data flow testing: Testing the data
dependencies that exist among procedures (i.e., inter
procedural) requires information about the flow of data
across procedure boundaries, including both calls and

J. Computer Sci., 4 (1): 59-65, 2008

 60

returns. The data dependencies that exist between
procedures both directly over single calls and returns
and indirectly over multiple calls and returns are
needed.

Intra procedural data flow testing: Testing within a
procedure is called as Intra Procedure Analysis
Testing[2].

OBJECT ORIENTED DATA FLOW TESTING

 Object oriented software is different from
traditional software development. Object oriented
development is a way to develop software by building
self contained modules or objects that can be easily
replaced, modified and reused. Each object had
attributes and methods. Objects are grouped into
classes. Basic concepts of object oriented programmed
are data abstraction and encapsulation which is
wrapping up of data and methods in to a single unit.
Inheritance is the process by which objects of one Class
acquire the properties of objects of another class. It
supports the concepts of hierarchical classification.
Polymorphism means ability to take more than on form.

Class testing: Class testing is the base of object-
oriented software testing. It involves three aspects -
testing each method, testing the relations among class
methods and testing inheriting relation between class
and subclass. In object-oriented programs, the methods
are bounded (or encapsulated) within a large entity-
class. So, testing each method independently is
meaningless in object-oriented testing unless the
relations among methods of a class and their joint effect
on shared states are also tested. Hence, in object-
oriented testing, the significant testing unit cannot be
smaller than a class.

Fragment class analysis: The existing body of work
on class analysis cannot be used directly to compute the
RC and TM coverage requirements in a coverage tool.
The key problem is that the vast majority of existing
class analyses are designed as whole-program analyses-
i.e., analyses that process complete programs. In
contrast, testing is rarely done only on complete
programs and many testing activities are performed on
partial programs. Any realistic coverage tool should be
able to work on partial programs and, therefore, needs
analysis techniques beyond traditional whole-program
class analyses.

 To solve this problem, we need a class analysis that
can operate on fragments of programs rather than on
complete programs. We refer to such an analysis as a
fragment class analysis. In previous research general
method for constructing fragment class analyses for the
purposes of testing of polymorphism in object oriented
software using Java. Using this method, fragment class
analyses can be derived from a wide variety of flow.
 Insensitive whole-program class analysis. The
significance of this technique is that it allows tool
designers to adapt available technology for whole-
program class analysis to be used in coverage tools for
testing of polymorphism in partial programs[7,8].

Static testing: Static Testing is a form of software
testing where the software isn't actually used. This is in
contrast to dynamic testing. It is generally not detailed
testing, but checks mainly for the sanity of the code,
algorithm, or document. It is primarily syntax checking
of the code or and manually reading of the code or
document to find errors. This type of testing can be
used by the developer who wrote the code, in isolation.
Code reviews, inspections and walkthroughs are also
used.

Static code analysis: Static code analysis is the
analysis of computer software that is performed without
actually executing programs built from that software
(analysis performed on executing programs is known as
dynamic analysis). In most cases the analysis is
performed on some version of the source code and in
the other cases some form of the object code. The term
is usually applied to the analysis performed by an
automated tool, with human analysis being called
program understanding or program comprehension.
 The sophistication of the analysis performed by
tools varies from those that only consider the behavior
of individual statements and declarations, to those that
include the complete source code of a program in their
analysis. Uses of the information obtained from the
analysis vary from highlighting possible coding errors
(e.g., the lint tool) to formal methods that
mathematically prove properties about a given program
(e.g., its behavior matches that of its specification).
 Some people consider software metrics and reverse
engineering to be forms of static analysis. A growing
commercial use of static analysis is in the verification
of properties of software used in safety-critical
computer systems and locating potentially vulnerable
code.

J. Computer Sci., 4 (1): 59-65, 2008

 61

THE INHERITANCE CONCEPT IN OBJECT
ORIENTED SOFTWARE

 In object oriented programming, objects will
be characterized by classes. It is possible to learn a lot
about an object based on the class it belongs to.
Objected oriented programming takes this concept to a
Whole new level .It permits classes to be defined in
relation to other classes. Every subclass will inherit a
state from the super class. Despite this, subclasses are
not restricted to the behaviors and states that they have
taken from their super class. A subclass can combine
methods and variables with the traits they have
inherited from their super class. It is also possible for
subclasses to override any methods that they have
inherited, and they can create unique implementations
for these methods. It is also possible to use more than
just one level of inheritance. An inheritance structure
can be generated which can be as deep as you want it to
be. This inheritance structure is called a class hierarchy.
The variables and methods can extend through the
levels of the class hierarchy. In most cases, a hierarchy
that is deep tends to have behaviors which are distinct.
It should always define what the classes are instead of
how they are used. The object class should be at the
zenith of the class hierarchy. Every class should
descend from it in a direct or indirect manner. The
variable of an object type can retain a reference for any
object, and an example of this would be a class. For
example, the object could define behaviors that may be
attributed to the objects that are processed by the Java
Virtual Machine. There are a number of power
advantages to the concept of inheritance. Subclasses
can generate distinct behaviors which are based on the
common attributes that are present in their super class.
Because of inheritance, it is possible for programmers
to use the same code many times over. Programmers
can generate super classes which are named abstract
classes. Abstract classes will characterize behaviors
which are common. While some aspects of this
behavior may be defined, a large portion of it will not
be defined at all. It shows how subclasses are
connecting to their super classes, and it can also allow
you to understand which traits have been passed from
the super class to its subclasses. It is one of the most
powerful features of object oriented programming. It is
used in a number of popular programming languages
such as C++, Java, Small talk, Objective-C. It is
features like this that makes OOP a powerful tool that

many programmers use to create important programs.
However, it is just one of the few concepts that you
must understand if you wish to use this programming
paradigm [3].

Types of Inheritance: Inheritance is also sometimes
called generalization, because the is-a relationships
represent a hierarchy between classes of objects

Single Inheritance

• Derived class has only one direct base class
• Creates “simple” hierarchy of classes - trees
• One to one inheritance of members
• Specializes a base class

Multiple Inheritance
• Derived class has more than one direct base

class
• Creates “complex” hierarchy of classes -

graphs
• Possible multiple inheritance of members

• Combines multiple classes
• Same Inheritance and Access Rules

� Derived class contains all members from all
base classes

� Regardless of access modes
Inheritance Conflicts :

• Member Conflicts
� Name conflicts can occur - same member

name from more than one base class
� Derived class can overshadow base class

members name
� Use scope resolution operator to resolve

conflicts
• Multiple Inheritance Conflicts
� Derived class may combine more than one

copy of a member
� Base class may combine more than one copy

of a member

C++ and Java difference in terms of Inheritance

C++ JAVA

C++ supports multiple inheritance of
arbitrary classes

In Java a class can derive
from only one class, but a
class can implement
multiple interfaces

In C++ multiple inheritance and
pure virtual functions makes it
possible to define classes that
function just as Java interfaces do.

Java explicitly
distinguishes between
interfaces and classes

J. Computer Sci., 4 (1): 59-65, 2008

 62

INHERITANCE RELATED BUGS

The following are some common inheritance related
bugs.
 Incorrect Initialization: Super class initialization is
omitted or incorrect Deep hierarchies may lead to
initialization bugs. Determining how initialize is used in a
subclass requires examination of the super class that defines
new. The initialize message must be sent to super, not self.
Suppose that new is refined and does not send initialize to it.
Super’s initialize will not be executed.
Example

Class shape
 {
 Public
 Virtual void draw();
 };
Class Rect: public shape
 {
 Public:
 Void draw();
 …….
 };

Void main()
{
 Shape s; /* Incorrect initialization*/
 …….
}

 In the above example, the object for ‘shape’ class
is created in ‘main’ function. It doesn’t accept for
drawing an object. The ‘shape’ is an abstract or base
class. So it provides only information about the shape
object.

Inadvertent bindings: Incorrect bindings can result
from misunderstood name scooping rules the bindings
of names under multiple inheritances introduces more
subtleties.

Missing override: A subclass specific implementation
of a super class method is omitted. As a result, that
super class method might be incorrectly bound to a
subclass object and a state could result that was valid
for the super class but invalid for the subclass owing to
a stronger subclass invariant.
Example
Class shape
{public:
Void area(); /* missing virtual keyword*/
};

Class circle:public shape
{
…….
Public:
Void area();
……
};

 If base and derived classes are having member
functions in same name may make function overriding.
So avoid function overriding, use ‘virtual’ functions to
execute both base and derived class member functions.

Naked access: A super class instance variable is visible
in a subclass and subclass methods update these
variables directly. Naked access creates the same
problems as unrestricted access to global data. Changes
to the super class implementation can easily induce
subclass bugs or side effects. Subclass bugs or side
effects, in turn, can cause failures in super class
methods.

Square peg in a round hole: A subclass is incorrectly
located in a hierarchy.

Naughty children: A subclass either does not accept
all messages that the superclass accepts or leaves the
object in a state that is illegal in the superclass.

Worm holes: A sub class values that are not consistent
with the super class invariant or superclass state
invariants. The state space of lower classes of a well
formed class hierarchy must not expand on superclass
state space.

Spaghetti inheritance: A number of multiple
inheritance and very deep hierarchies (More than 5
Levels) are error prone, even when they conform to
good design practice. The wrong variable type,
variable, or method may be inherited[2].

TOOL DESIGN

 The inheritance bug identification tool is developed
as a graphical user interface based system. The system
is designed to analyze the Java based source code only.
This analysis is called as static analysis. The system
implementation is carried out by using the Java
language and Microsoft Access back end tool. The
system is designed to analyze any third party and Sun
Microsystems open source code. The knowledge model
is updated for each test cycle. Future test cycles use the
knowledge model details.

J. Computer Sci., 4 (1): 59-65, 2008

 63

 Three major modules are used in the system
implementation. They are the code analysis, knowledge
model preparation and the bug analysis. The code
analysis module is developed to extract details from the
source code files. The knowledge base preparation
module is developed to update the knowledge base in
an organized manner. The bug analysis is done on the
source code details that are maintained in the database.
The system uses the product path as the input. The
system products a list of bugs with its occurrence
details.
Code analysis: The code analysis is the initial module
for the system. The product path is given as the input
for the system. The Java source code files are identified
first. Then each file content is fetched from the file. The
noise filtering is performed after the code fetching
process. The documentation comments and general
comments from the source are removed. These
comments are called as noise in the source code. The
filtered code and class details are extracted. The
package details and class details are updated into the
database.

Knowledge base preparation: The knowledge base is
a collection of source code elements for all Java
programs in the product source code. The packages are
the top level elements in the knowledge base. Each
class details like method and attribute details are
collected and updated into the database. The class
relationship with other classes are also maintained
separately. The interface for the class details are also
collected and maintained in the database. The attribute
details include the name of the attribute, type of the
attribute, modifier details. The method details also
include the method name, argument details and return
type values.

Bug analysis: The bug analysis module is designed to
detect the hidden errors in the source code. Incorrect
Initialization, inadvertent bindings, missing override,
naked access, naughty children and spaghetti
inheritance and Fat Interface bugs are detected by the
system. The bugs are related to the inheritance
concepts. Each type of bug is detected for the source
code and listed in a separate form.
 Already number of tools are available for testing of
object oriented software’s. In this study developing a
data flow testing tool for testing of Inheritance
property. Input of the tool is set of procedures, set of
classes or packages. Output of the tool is class list,

attributes and methods list for particular class. It shows
the hierarchy of the classes.

Experimental results: For convenient Java software is
taken for testing. Tool is developed as three modules.
1. Code analysis 2. knowledge base preparation 3. Bug
analysis.
 In code analysis tool read every token and store it
in a database. After reading documents lines are
eliminated and store it in separate database. Tool search
for key words related to class, methods, attributes and
inheritance declaration. All are stored in data base.
Knowledge base contains information about document,
 Eliminated source code, keywords, size of the
class, lines of code in each class. Finding relation first
one class to same class, one class to next level class
checking for inheritance relationship up to ‘n’ level. In
java multilevel inheritance available. Instead of
multiple level interfaces are used. In this focus towards
multilevel inheritance. The output of the relation
displayed as a matrix which contains Boolean value.
Number of rows and columns equal to number of class
hierarchies.
 For Experiment Standard Sunsoft Java 1.4
Software have taken and experimented.

MAIN SCREEN OF THE TOOL

Table 1: Samples java files with size after removal of document lines
Size
Applet Java 17641
Applet Context Java 6887
Applet Stub Java 2780
Audio Clip Java 866

Table 2: Number of Classes in Each Package
Package Name
Classes
Applet 4
Callback 10
CORBA 9
Event 44
Jar 8
Reflect 57
Zip 18

Table 3: Number of lines in class after removal of document line for
analysis
ATTRIBUTE DESCRIPTION
Private long stem;
Private int off, len;
Private int level, strategy
Private boolean setParams;
Private Boolean finish, finished
Public static final int DEELALTED = 8;

J. Computer Sci., 4 (1): 59-65, 2008

 64

Table 4: Attributes in classes
Class Name
File Size
Line of Code
Action Event 7237 220
Adjustment Event 6430 232
AWT Event Listnernpr 1745 62
Component Adapter 2049 56
Componentevent 4747 140

Table 5: Methods in class
METHOD DESCRIPTION
Public Deflate (intlevel, Boolean nowrap)
Public Deflate (int level)
Public Deflater()
Public synchronized void setinput (byte[]b,iny ogg, iny lrn)
Public void setinput(byte[]b_
Public synchronized void setDictonary[]b, int off, intlen)

Table 6: Classes with four level
Action Event
Inheritance Hierarchy
Java.awt.event.ActionEvent 4
Java.awt.AWTEvent 3
Java.Util.EventObject 2
Java.lang.Object 1

Table 7: Classes with six level
KeyEvent
Inheritance Hierarchy
Java.awt.event.KeyEvent 6
Java.awt.Event.inputevent 5
Java.awt.event.componentEvent 4
Java.awt.AWTEvent 3
Java.Util.EventObject 2
Java.lang.Obejct 1

Table 8: Classes with Seven Level
MouseWheelEvent
Inheritance Hierarchy
Java.awt.event.mousewheelEvent 7
Java.awt.event.mouseEvent 6
Java.awt.event.inputEvent 5
Java.awt.event.ComponentEvent 4
Java.awt.AWTEvent 3
Java.Util.Event.Object 2
Java.lang.Object 1

 From the Table 7 & 8 the level increased more
than five. So there is a possibility to Spaghetti
Inheritance error. Table 6 can be Represented in Matrix
Format for inheritance relationship.

0 1 1
 0 0 1
 0 1 0

CONCLUSION

 Object oriented programming system is the popular
software development mechanism in the recent days.
Inheritance is one of the important features for the
object oriented systems. A class can be inherited by
another class. Multiple level and multilevel of
inheritance are used in a product. In this case there is a
chance to errors in the product. The compiler does not
detect property errors. The compiler only detects the
syntax errors.
 The system is developed as an automation tool for
the static testing process to the Java language. The open
source code for the Sun Micro system is tested using
the system. All the code details are updated into the
knowledge base. The system is also tested with some
other third party software products. The system detects
a hidden inheritance related bugs.
 The compiler checks the syntax errors and converts
the source code into byte code. But the compiler is not a
complete solution for the error detection requirements.
This system is developed to test the Java based products
as a static testing tool. The static test is applied to detect
the inheritance related bugs in the Java programs. The
system can be enhanced with the following features.

• The current system is designed to find out the

inheritance related bugs from the Java products
only. In future the system can be enhanced to
detect multiple inheritance hierarchy.

• Tool can be developed for other object oriented
softwares like Smart Talk, Objective -C.

• The current hidden bug detection scheme can be
integrated to a compiler to detect the hidden errors
during the compile time.

• The knowledge base model can be used to find
object oriented metric analysis for quality product.

• The current system is developed as static analysis
tool to test the source code. The same concept can
be implemented under the dynamic testing
mechanism to analyze the product using the byte
code to analyze the third party products.

REFERENCES

1. Binder, R. Testing object oriented software: Surve,

software testing, verification reliablity, 6 125-252.

J. Computer Sci., 4 (1): 59-65, 2008

 65

2. Binder, 1999. Testing Object-iented Systems:
Models, Patterns and Tools, Addison Wesly.

3. Chun-Chia Wang and Wen C. Pai. An Automated
Object-Oriented Testing for C++ Inheritance
Hierarchy. Department of Information M
Management Kuang Wu Institute of Technology
and Commerce.

4. Harrold, M. J.D. McGregor and K. Fitzpatrick,
1992. Incremental testing of object-oriented class
structure. In: Proceedings of the 14th International
Conference on Software Engineering, pp: 68-80.

5. Jacobson, I., M. Christerson, P. Jonsson and
G. Overgaard, 1992. Object oriented Software
Engineering: A Use Case Driven Approach,
Addison-Wesley, Reading, MA.

6. Perry, D.E. and E.G. Kaiser, 1990. Adequate
testing and object-oriented programming, J.
Object-Oriented Programming, 2 (5): 13-19.

7. Rountev, A., 2002. Dataflow Analysis of Software
Fragments, Ph.D Thesis Rutgers Univ., Aug 2002.

8. Rountev, A. Milanova and B.G. Ryder. Fragment
Class Analysis for Testing of Polymorphism in
Java Software.

9. Smith, M.D. and D.J. Robson, 1992. A framework
for testing object-oriented programs, J. Object-
Oriented Programming, 5 (3): 45-63.

