
Journal of Computer Science 4 (1): 72-79, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: P. Sammulal, Department of CSE, JNT University, Kakinada, India
72

Effective Load Metric and Efficient Initial Job Placement for

Dynamic Load Balancing in Cluster

1P. Sammulal, 1M. Venu Gopalachari and 2A. Vinaya Babu

1Department of CSE, JNT University, Kakinada, India
2Department of CSE, JNT University, Hyderabad, India

Abstract: High performance clusters are being configured specially to give data centers that require
extreme performance and the processing power they need. When the data is accessed across clusters
the data latency time has significant impact on the performance. In the literature it is given that
memory and I/O have become the new bottleneck, instead of processing power in achieving efficient
load balance at higher performance for cluster computer systems. Initial job placement and load
balancing are the key aspects affecting the performance. The proposed technique combines data access
patterns, memory and CPU utilization and locality of memory to consider as load metric in the load
balancing aspect across cluster. A scheduling algorithm based on this metric has been proposed to
dynamically balance the load in the cluster. Initial job placement for a job in the cluster considers data
access patterns and for load balance aspect metric constitutes CPU, memory utilization including
locality of memory. Experimental results shown performance improvement to considerable levels with
the implementation of the concept, specifically when the cost of data access from other clusters is
higher and is proportionate to the amount of data.

Keywords: High Performance Cluster Computing, Load Balancing, Memory Management, Load

Metric, Initial Job Placement.

INTRODUCTION

 A cluster computer is a collection of computers
interconnected with a High-speed network technology.
The individual computers can be PCs or workstations.
Ideally, a cluster works as an integrated computing
resource and has a single system image spanning all its
nodes. Hence, the users see only a single system. User
processes can be executed on any node of the cluster. A
cluster can be used for scientific applications that need
supercomputing power and in domains such as
databases, web service and multimedia, which have
diverse QualityofService (QoS) demands. In addition,
users can access any node within the cluster and run
different types of applications simultaneously. The
main goals are to minimize the total response time and
maximize throughput.
 However, a cluster system has the tendency to
concentrate the system load on to certain nodes,
resulting in coexistence of overloaded nodes and idle
resources[3]. Therefore, the development of a load
balancing system for utilizing computing resources of
lightly loaded nodes is crucial to resolving the problem
of load imbalance in the cluster system. Dynamic load
balancing systems can be classified into initial job

placement and process migration. An initial job
placement system traces the node that best meets the
task requirements before the execution[10]. A system
based on process migration, however, functions by
transferring tasks from an excessively loaded node to
another node when a load imbalance occurs[8].
Employing either initial job placement or process
migration alone is not as efficient as exploiting both of
these methods simultaneously[5]. Initial job placement
improves the resource utilization of the entire system by
distributing the workload on to several nodes. However,
we can expect further improvement in performance if
the initial job placement system enhances resource
utilization not only system-wide, but also in terms of
each node[4]. Therefore, it is necessary for the initial job
placement to consider the resource requirement of the
job to be assigned. Many studies have been conducted
on prediction of job resource requirement before
starting execution; these include, estimation of the
future behavior of a job resource requirement by the
historical data[9], a statistical approach[4], providing user
estimation about a job resource requirement to the load
balancing system[7], and estimation by the process
behavior during the initial one-second execution[6].
However, these approaches are likely to incur mistakes

J. Computer Sci., 4 (1): 72-79, 2008

73

because the resource usage is limited to the information
provided in terms of estimation. Furthermore, these
approaches can severely affect the execution time when
using an inaccurate estimation. Scheduling is a
challenging task in this context. The data intensive
nature of individual jobs means it can be important to
take data location into account when determining job
placement. Despite the other factors which contribute
performance in a cluster computing environment,
optimizing memory management can improve, the
overall performance.
 Memory management becomes a prerequisite when
handling applications that require immense volume of
data for e.g., satellite images used for remote sensing,
defense purposes and scientific applications. Here even
if the other factors perform to the maximum possible
levels and if memory management is not properly
handled the performance will have a proportional
degradation. Hence it is critical to have a fine memory
management technique deployed to handle the stated
scenarios. To address this problem, we have defined a
combined memory management technique.
 The proposed technique focuses on optimizing
memory usage, assuming the other factors which
contribute to performance are performing to the
optimum level. Initial job placement in the cluster
considers data access patterns to designate a node for a
job. For this purpose, we have developed a new
algorithm and a new load metric which contains
information about both the system load and resource
utilization. The parameters considered are queue length,
instances of CPU and memory utilization, number of
page faults. If any node failure is found in the middle,
then those processes get high priory to migrate to light
loaded nodes. A dynamic load balancing algorithm is
designed and implemented using the load metric and its
performance is evaluated.

RELATED WORK

 The control of a cluster can be centralized and
distributed. In a centralized cluster, all users interact
with the cluster through a central node. The other nodes
are processing nodes. User processes are allocated to
processing nodes by the central node. The central node
collects system state information and makes all
scheduling decisions. In a distributed cluster, a user can
connect directly to any one of the cluster nodes. There
is no master node. Each node is considered a local
controller. They run asynchronously and concurrently
to each other. Each node is responsible for making
scheduling decisions for the processes submitted by its
users and for accepting remote processes.

 Paul werstien and et al. proposed a dynamic load
balancing algorithm which is decentralized to avoid
bottlenecks and single point of failure, considered CPU
and memory utilization and as load metric in addition
with CPU queue length[1]. The experimentation results
with proposed algorithm had shown better results than
traditional one that considers only queue length as
metric.
 Sammulal et al. proposed an algorithm which
assigns a cluster for an incoming job[2]. Here authors
used data access patterns to decide the node to
designate. And the simulation results shown better
performance than using data availability for the node
selection.
 Min Choi et al. proposed a new load metric termed
as number of effective tasks in order to solve the
problem arising from inaccurate predictions[11]. The
proposed algorithm designates a node for a job using
this metric. The simulation results had shown better
performance than history based algorithm.
 Nayeem Islam et al. proposed a new resource
management system, Octopus, which supports
extensibility as well as fault tolerant. It contains mainly
two components, hierarchical software architecture and
flexible dynamic partitioning, but didn’t focus on load
balance aspect which differentiates from our work.
 Shirazi et al.[12] summarized two general location
policies to select the destination node to transfer the
load. The node selected should be lightly loaded and
have the correct environment to run the process.

• Minimum load: Select a node with the minimum

current load
• Low load: Select the first node whose load is

below some threshold value. This policy is applied
to a transfer policy based on thresholds. There is a
possible problem of several heavily loaded nodes
transferring their processes to a lightly loaded
node, causing it to become heavily loaded. A
simple solution is to randomly select one of the
lightly loaded nodes for transfer

 Although many schemes exist, the policies should
be decided according to the desired environment, such
as application types or cluster environment. It is very
difficult to say which algorithms are most efficient.
There is no single algorithm which is optimal for all
purposes. We can only find a best solution for a
particular situation. In most clusters, processes will
arrive randomly, and it is difficult to know their
characteristics such as execution time. We can only
take into account the current states of the nodes such as
CPU utilization and CPU queue length.

J. Computer Sci., 4 (1): 72-79, 2008

74

 Radha et al., projected a predictive and prefetching
method to utilize remote memory in the grid[13]. The
Remote memory paging could be a potential option in
the presence of memory pressure due to the following
facts: Internet has made almost all machines part of
network, existence of idle memory in the machines in
the network.

PROPOSED LOAD BALANCING
TECHNIQUE

Initial job placement based on data access patterns:
The scheduler after the reception of a new request
makes an analysis to identify a particular node to which
the request can be forwarded. The scheduler primarily
takes in to consideration the load of the processors of
the nodes of the concerned cluster before the task is
assigned. But this process of designating nodes for
processing tasks would not yield optimum performance
because bandwidth is also a major factor in determining
the performance levels. So to overwhelm this problem
we have proposed a new algorithm using global
memory and local memory.
 The conventional scheduling algorithm blindly
fixes a particular node taking into account the
availability of data the as the sole criterion. This
method of designating a particular node for a request
would lead to performance degradation. To illustrate
the above scenario let us consider a particular request
requires certain the cluster that is identified for the
given request is based on the presence of major portion
of required data and the cost for accessing remaining
data is not considered and if it is significantly higher,
then it has to be treated in a separately[2].
 At the same time, if the task is designated to a node
irrespective of the percentage of data present in that
node and considering the cost of accessing the
remaining data from the rest of the clusters through
global memory the performance can be optimized
further.

Assumptions:

N C � Total number of clusters
Cji � The cluster handling the current job i.
S F � Set of files requires for the file job (I)
SN WC � Set of nodes having the SFWC in the Mg
within Cluster CJi
SSC � Set of clusters having SFMg
SF WC � Is a set of files available in CJi
SF Mg � Is a set of files to be transferred from SSC

Through Mg

For Files within a Cluster
for each files in SF WC
for each node in SN WC
t = Calculate time
end
t min = min (t)
Update SQN WC

End

WCsizeof (SF)

WC min
i 0

T t
=

= �

For Files between Clusters

for each files in Mg SF
for each cluster in SSC
t = Calculate time to transfer file from SS Ci through
Mg
end
t min = min (t)
Update S qc
End

qcsizeof (SF)

BC min
i 0

T t
=

= �

 T = T WC + T BC

Repeat the above steps for all the clusters
S T = (T0, T1, T 2… T NC)
T Q = min (ST).

Corresponding node is chosen to allot the job as shown
in Fig. 1.

Load balancing system based on proposed load
metric including memory locality: Ideally, the load
information should reflect the current CPU utilization,
memory utilization and memory locality of a node.
Traditionally, the load of a node at given time was
described simply by CPU queue length. CPU queue
length refers to the number of processes which are
either executing or waiting to be executed. The
processes which are waiting for other system resources
are not included. So the CPU queue length does not
reflect directly and memory utilization. In the proposed
algorithm, CPU utilization, CPU queue length, and
memory utilization considering memory locality are
used. The system statistics such as CPU utilization,
CPU queue length of a node changes during the life of
processes. For example, the CPU utilization may be
high in one second but low in the next second.

J. Computer Sci., 4 (1): 72-79, 2008

75

Global Memory

Cluster3

Local Memory2

N

1

N
3

N
2

Local Memory1

N
1

N

2
N
3

Local Memory3

N

2

N

3

N

1

P ersistent Memory Temporary Memory

Cluster1 Cluster2

Job Queue

Fig. 1: Schematic diagram of designating a node for a

job at initial job placement

 Therefore it is reasonable to average these statistics
over several seconds. Also number of page faults is
considered to measure the memory locality for each
process in every node. In the proposed algorithm, 5
seconds is set for the averaging interval. CPU
utilization (CPUu), CPU queue length (Nop), memory
utilization (memu), number of page faults (npf) are
considered as load information parameters to measure
load of a node.
 The following equation is used to calculate each
metric.

 i

v1 v2 vt
Load (par)

t
+ + +=

Where

LoadI → The average load metric of the specified

parameter over the previous t seconds for a
particular node.

Par → The information parameter of load. (Par is
Nop, CPUu, or memu).

VI → The value of a given parameter in a previous
one second interval.

 T → ��� number of time intervals. t is set to 5 for
this research.

 The averaged information including CPU, memory
utilization is the load metrics used to describe the load
on a node. And CPU queue length, number of page
faults of each node are considered to measure the
memory locality based on which the process migration
is performed. The information exchange policy chosen
for this research is a periodic policy with a time interval
of one second.
 The second part of load classification is to group
the nodes into one of four classes. Using the threshold
values of each parameter, the nodes will be grouped as
idle, low, normal or high according to the following
criteria. For each node, the CPU utilization, CPU queue
length, memory utilization will be checked to decide
whether it is in idle, high, low or normal level.

u

u

u

u

u

Idle CPU 1%

(mem 85%)or

CPU isHigh

and

mem ishigh

Load High or (Nop is High)

CPU is low

Low and

mem islow

or (Nop is low)
Normal Otherwise

≤�
� >�
� � �
� � �
� � �
� � �
� � 	
�=

�

� �� � �� � �� � �� � 	
�
�
�
�

 After the load of each node has been classified, the
next step of the process transfer policy is to decide if a
newly arriving process should be run locally or on some
other node.
 The following pseudo code defines how this
decision is made:

IF the local host is idle THEN
Run locally
 ELSE IF there is idle nodes THEN
Run on an idle node
 ELSE IF the local host is high loaded AND
There are low loaded nodes THEN
Select the node Nsel from which majority of page
Faults served
Run on the node Nsel
 ELSE
Run locally
ENDIF

 This pseudo code gives preference to running a
process locally if the local node is idle. The next choice

J. Computer Sci., 4 (1): 72-79, 2008

76

is any other idle node. The next choice is a node with a
low load level if the local node is highly loaded. The
final part is to migrate the process to make its locality
of memory maximum. The number of page faults is
calculated on high loaded nodes and the node will be
selected by which majority of page faults are served to
migrate the process. Thereafter if the selected node is
high loaded the process will b run on the local host
itself. If no node can be found in the previous choices,
the process is assigned to the local host.

RESULTS AND DISCUSSION

 The proposed initial job placement algorithm is
based on data access patterns and load balancing
algorithm is based on CPU utilization, CPU queue
length, memory utilization. It is compared to the
traditional CPU queue length based policy. This allows
a comparison between the two load estimation policies.
 The performance tests use a variety of different
types of applications: CPU bound, memory bound, and
mixed applications. All nodes in the cluster are
homogeneous and have the same hardware and
operating system. For the simulation results ,we
evaluate the performance of the proposed dynamic load
balancing system with the with proposed new load
metric. We used a Pentium Dual-Core 3.2 GHz
machine with 2 GB RAM as a global job scheduler with
8 computation nodes. Each node is a Pentium IV 2.8
GHz machine with 512MB RAM. The network is
switched 100 Mbps Ethernet. Here the assumption is
zero network latency for transfer load information
among nodes in the cluster.
 The experiments are done based on a variety of
applications. These applications are meant to simulate
what might occur in a cluster that is used by a computer
science laboratory, for example. The tests are not meant
for simulating parallel programming applications.
These applications include two types: CPU-bound
process and Memory-bound process. CPU-bound
process is the program that computes a mathematical
expression recursively. When run, the CPU utilization
is about 100%. And Memory-bound process is the
programs that is to simulate a memory-bound process
uses the malloc() function to allocate 600 Mbytes or
700 Mbytes of memory. Then the processes gradually
load the memory. Since the nodes only have 512
Mbytes of physical memory, the memory is exhausted,
and virtual memory software has to move pages to
swap space on a local disk.
 Finally there are Mixed processes that include one
program recursively reads a small file every second.
This simulates a process with low CPU utilization. The

average CPU utilization is about 3%. The terms low
and high with respect to utilization are relative. That is,
there is no absolute value that is considered low or
high.
 The tests consist of two parts:

• Workload: The workload of the tests includes a

batch of programs which simulates a user’s work.
These programs are chosen from the above pool of
programs as needed. The programs are randomly
chosen each time. Between two programs, there is
a random several seconds sleep time to simulate a
user’s thinking time.

• Background programs: A series of background
programs are used to simulate different loadings of
the nodes, such as some nodes with low CPU
utilization, some nodes with low CPU utilization
and high memory utilization, some nodes with high
CPU utilization, and some nodes with high
memory utilization. The background programs and
random workload processes can make a node’s
loading random. In this situation, the proposed load
balancing algorithm can make each process in the
workload choose the proper node from the different
loadings of the nodes.

Idle nodes based on CPU and memory utilization:
As previously discussed, CPU queue length might not
reflect correctly whether a node is idle. For some
processes, a node may have a low CPU utilization but
have high memory utilization. For these kinds of
processes, the process is normally not on the CPU
queue when collecting information every second. The
CPU queue length based load estimation policy will
determine the nodes running these kinds of processes as
idle nodes, although the node has high memory
utilization. In addition, the type of each new process is
unknown. Ideally if there are idle nodes, the new
process should run on an idle node. If an idle node
cannot be detected correctly, the performance will be
degraded. For example, if a new process needs high
memory size, and a node with high memory utilization
but zero CPU queue length is chosen as an idle node,
the performance will be greatly reduced.
 In the first part of evaluation a test is conducted to
see whether an incoming process can be allocated to an
idle node correctly. For this purpose, three test
programs having different characteristics are executed
on the cluster where CPU queue length for all these
cases is assumed as zero. The three Cases are: CPU
utilization is zero, low CPU - low memory utilization
and low CPU – high memory utilization and forcing
memory paging to the hard disk.

J. Computer Sci., 4 (1): 72-79, 2008

77

Fig. 2: Run times of different programs on the

proposed and traditional systems

 The result is the average run time of the workload
being presented to each of the nodes (Fig. 2). For the
proposed load balancing algorithm, different nodes may
be chosen as target nodes for each new process. In fact,
for this algorithm, the node with zero CPU utilization is
the only idle node, and it is always chosen. When using
node with second case characteristics, there is a small
overhead associated with remotely starting the new
processes on first node. When using node with high
memory and low CPU utilization, there is a slightly
larger overhead waiting on the virtual memory system
to allocate pages so the new processes can be remotely
started on second node. The CPU queue length based
model always chooses the local node to run since the
CPU queue length is zero. When using this model, first
case is truly idle and gives the best overall time. Second
case is lightly loaded and takes a longer time due to its
background processes. Third case takes a very long
time because the virtual memory system is forced into
paging to continue running the background processes
and the new process. Thus the proposed load balancing
algorithm performs better than a CPU queue length
based algorithm in detecting truly idle nodes.

CPU-bound and memory-bound processes: In the
second part of the evaluation, the assumption is the
types of new processes are known (CPU-bound and
memory-bound). The test is to explore the effect of the
load estimation policy on different types of
applications.
 The methodology is to run a similar set of
programs on various nodes with different loading
characteristics and compare the performance of the two
load balancing algorithms. The background processes
are similar to the previous test. The difference is
the addition of another node with another new

Fig. 3: Average run time for the test about different

types of applications

characteristic, that is high CPU utilization and low
memory utilization
 There are two groups of workloads, one is CPU-
bound workload, constitutes of 25 arithmetic computing
processes. Another one is Memory-bound workload,
consists of 25 processes which need a large amount of
memory. Both workloads execute the programs
independently and run one by one either locally or
remotely.
 Initially both groups are started with an interval of
one second on all 4 nodes having different
characteristics which are described above. Thereafter,
based on the random wait between each new process on
each node, the remaining execution performed
according to the proposed algorithm. First test is to run
CPU-bound processes and second test is to run
memory–bound processes on all nodes at the same
time. These tests run twice and the averages run times
are considered as results.
 The results shown that the performance of
proposed scheme for only CPU-bound processes is
about 11 % worse than CPU queue length based model.
Whereas the performance for only memory-bound
processes the proposed scheme is about 55 % better
than the traditional one Fig. 3. The reason for this is
that CPUbound processes mainly consume CPU time.
The best node should be the node with the lowest CPU
utilization regardless of whether there is high memory
utilization. The CPU queue length based algorithm fits
this workload type easily. That is, it will treat all nodes
with low CPU utilization and zero CPU queue length as
idle nodes. While the proposed model tries to choose
the node with low CPU utilization and low memory
utilization. In addition, the node with high memory
utilization is considered a highly loaded node. Thus the
number of selectable nodes is lower and more processes
have to run locally.

J. Computer Sci., 4 (1): 72-79, 2008

78

 In the second case, CPU queue-length model will
not consider memory utilization to decide whether a
node is idle. When the physical memory of a node is
exhausted, it needs to page. In this situation, a new
memory-bound process running on this node makes the
performance significantly worse. Therefore memory
utilization is worth considering in a load balancing
algorithm.

Mixed types of applications: The strategy is the same
as Section 5.2. But the workload on each node is mixed.
The workload consists of 25 programs. Each program
in the workload is randomly selected from the pool of
programs. Thus we do not know the type of each new
process a priori. The type of program is decided at run
time. These tests run on the nodes with the described
characteristics in the above section. Each test is run two
times with a different random seed each time.
 The cluster performance with the different
algorithms is shown by the total run time of all
programs on all cluster nodes. The maximum
differential of the run time of each node can indicate the
balance of the load on each node. According to the
tests, the result shows that the overall performance of
the proposed algorithm is about 50.5% better than the
CPU queue-length based algorithm. The maximum
differential of the run time of proposed algorithm is
better than the CPU queue-length based algorithm. This
indicates the proposed algorithm more effectively uses
the cluster than the CPU queue-length based algorithm.
When there is a reasonable amount of memory
utilization, the proposed algorithm shows better
performance.

CONCLUSION

 In this study an efficient load balancing system has
been developed with a new load metric that considers
the CPU and memory utilization and CPU queue
length. Also we developed a new initial job placement
algorithm that designates a node for a job considering
data access patterns as key issue which can perform
efficiently than existing ones. Most of the cluster
applications are memory bound, so without considering
memory utilization will pose the performance
degradation. And using number of page faults as
parameter to represent memory locality for efficient
process migration from heavily loaded to low loaded
node will show the optimum performance.
 A number of tests were performed on different
scenarios and from these results we can conclude that
the combination of the proposed initial job placement
algorithm and the proposed load balancing algorithm

exhibits better performance than traditional schemes
that uses CPU queue length as the load metrics.

REFERENCES

1. Werstein, P., H. Situ and Z. Huang, Load balancing

in a cluster computer. Proceedings of the 7th
International Conference on Parallel and
Distributed Computing, Applications and
Technologies (PDCAT'06). DOI Bookmark:
10.1109/PDCAT.2006.77-22k

2. Sammulal, P. and A. Vinaya Babu, 2008. Efficient
and collective global local memory management
for high performance cluster computing. IJCSNS
Int. J. Comput. Sci. Network Secur., 8 (4). http:
//paper.ijcsns.org/07_book/200804/20080412.pdf

3. Suzuki, M., H. Kobayashi, N. Yamasaki and
Y. Anzai, 2003. A task migration scheme for high
performance real-time cluster system. 19th
International Conference on Computers and Their
Applications, pp: 228-231. http://doi.ieeecomputer
society.org/10.1109/CLUSTR.2003.1253344.

4. Bubendorfer, K., 1996. Resource based policies for
load distribution. Master’s Thesis in Victoria
University of Wellington, 1996. http://homepages.
mcs.vuw.ac.nz/~kris/ http://homepages.mcs.vuw.
ac.nz/~hine/jh/Papers/loadBalancing/uniforum97.p
s.gz.

5. HaMahmoud, Y., P. Sens and B. Folliot, 1999.
Quantifying the performance improvement of
migration in load sharing systems. International
Conference on Parallel and Distributed Processing
Techniques and Applications, pp: 241-299. doi: 10.
1.1.41.5831 http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.41.5831.

6. Hotovy, S., D. Schneider and T. O’Donnell, 1996.
Analysis of the early workload on the cornell
theory center ibm sp2. ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems, pp: 272-273. http://doi.acm.org
/10.1145/233008.233060.

7. Krueger, P. and R. Chawla, 1991. The stealth
distributed scheduler. 11th IEEE International
Conference on Distributed Computing Systems,
pp: 336-343. doi: 10.1109/ICDCS.1991.148686

8. Milojicic, D., F. Douglis, Y. Paindaveine,
R. Wheeler and S. Zhou, 2000. Process migration.
ACMComputing Surveys, pages 241-299. http://
doi. acm.org/10.1145/367701.367728.

9. Pasquale, J., B. Bittel and D. Kraiman, 1991 A
static and dynamic workload characterization study
of the san diego supercomputer center cray x-mp.
ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pp: 218-219.
http://doi.acm.org/10.1145/107972.107998

J. Computer Sci., 4 (1): 72-79, 2008

79

10. Shivaratri, N., P. Krueger and M. Singhal, 1992.
Load distributing for locally distributed systems.
IEEE Computer, pp: 33-44. DOI Book Mark:
10.1109/2.179115

11. Min Chi, Jung-Lok Yu, Ho-Joong Kim and Seung-
Ryoul Maeng, 2003. Improving performance of
a dynamic load balancing system by using
number of effective tasks. IEEE International
Conference on Cluster Computing Proceedings
2003. pp: 436-441 ISBN: 0-7695-2066-9
http://ieeexplore.ieee.org/xpl
/freeabs_all.jsp?arnumber=1253

12. Shirazi, B.A., A.R. Hurson and K.M. Kavi, 1995.
Scheduling and load balancing in parallel and
distributed systems. IEEE Computer Society
Press, Los Alamitos, California,
http://portal.acm.org/citation.cfm?id=583069&dl
GUIDE,ACM&coll=GUIDE&CFID=33653278&C
FTOKEN=23960045#

13. Radha, S., S. MarySairaBhanu, N.P. Gopalan,
Remote memory management and prefetching
techniques for jobs in grid. Proceedings of the
Second International Conference on Semantics,
Knowledge, and Grid (SKG'06). DOI: 10.1109/
SKG.2006.73.

