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Abstract: Present study was proposed the monitoring of mathematical model of electric voltage source 
with using neural network for application in control systems as sensor and command signal. The 
monitoring system, consist of toroidal choke or transformer with high saturated ferromagnetic cores. 
The input information we receive from current periodic curves. The current was distributed into 
Fourier or walsh series. The combination of these harmonics and their amplitude values determine 
monitoring voltage value directly. For increase of this system precision, the mathematical model was 
constructed on basis of partial differential quasi-stationary electromagnetic field equations and ordi-
nary differential electromagnetic circuit equations combination. 
 
Key words: Artificial neural network, differential equations, computer science, electric control, 

information monitoring 
 

INTRODUCTION 
 
 Artificial neural networks are simplified models of 
the central nervous system. They are networks of highly 
interconnected neural computing elements that have the 
ability to respond to input stimuli and to learn to adapt 
to the environment. it is believed by many researchers 
in the field that neural network models offer the most 
promising unified approach to building truly intelligent 
computer systems and that the use of distributed, 
parallel computations as performed in ANNs is the best 
way to overcome the combinatorial explosion 
associated with symbolic serial computations when 
using Von Neuman computer architectures .  
 Neural networks neurocomputing is based on the 
wistful hope that we can reproduce at least some of the 
flexibility and power of the human brain by artificial 
means. Neural networks consists of many simple 
computing elements connected together by connections 
of varying strength, a gross abstraction of the brain, 
which consists of very large numbers of far more 
complex neurons connected together with fare more 
complex and far more structured couplings[1,5].  
 Artificial neural networks are viable computational 
models for a wide variety of problems, including 
pattern classification, speech synthesis and recognition, 
adaptive interfaces between humans a complex physical 
systems, function approximation, image data 
compression, associative memory, clustering, 
forecasting and predication, combinatorial optimization, 
nonlinear system modeling and control. The using of 

computers in monitoring of electric voltage in different 
Systems particular in high voltage Systems is very 
encouraging idea. It may be realized by connection 
precise mathematical model of saturated choke or 
transformer, artificial neural network and computer. We 
propose in the study such, solving which was realized 
successful. For guarantee preciseness of the monitoring 
system we propose original semi field mathematical 
model of choke. 
 

MATERIALS AND METHODS 
 
Differantial equations: Differential equations is an 
equation which contains derivatives or differential 
terms. Differential equations are used to describe the 
behavior of dynamic systems including dynamic neural 
networks. Ordinary Differential Equations (ODE) 
involve derivatives of a function of one independent 
variable, such as time. The order of a differential 
equation is the highest-order derivative appearing in the 
equation[2]. The degree of a differential equation is the 
power of the highest-order derivative in the equation. 
To solve a differential equation, anti derivatives must 
be found for all derivative terms in the equation. An 
example of a system of ODE’s used to model a 
dynamic neural network are as follows:  
 
dy

w v y h(y ), j i kj k jdy i kes j

= χ + −� �  (1) 
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dwij ( w )i ijdt
= α χ −  (2) 

 
 The Eq. 1 show the time rate of change of the 
output y of a unit as a function of external inputs xi and 
internal inputs yj weighted by the connection synoptic 
weights, wij and vkj, respectively.  
 The equation defines the learning dynamics of the 
network where the time rates of change of the weights 
are a function of the inputs and weights[4,5,8]. 
 
Control system applications: Control system 
problems typically require nonlinear time dependent 
mappings of the input signals. The complete dynamics 
of these systems are often unknown. Therefore, it 
would seen that an Recurrent Neural Networks (RNN) 
might be a likely candidate for controller tasks if 
input/output training data is available for the system. 
Indeed, the potential applications for RNNs in the area 
of control appear to be numerous.  
 
The general control problem can be stated as 
follows: Given a system with unknown dynamics, in 
order to construct a suitable controller for the system a 
model is often required. A model is any device that can 
imitate the behavior of the system. The process of 
constructing a model when only the relationship 
between the inputs of the system and the outputs from 
the system are available is known as identification. The 
model itself is called an identifier[3]. Once a model is 
available, an inverse model can be constructed to serve 
as a controller of the real system or plant. This type of 
problem accrues in many control settings including 
robotic systems, drive motors for various systems, 
automatic weld control, truck backer upper and so on. 
Examples of two such systems are described below. 
The nation of using an adaptive ANN as a model is 
shown in Fig. 1, where the weights of the ANN, which 
is receiving the same input signal as the unknown 
system, are adaptively modified until its output closely 
matches the output of the system.  
 Once the ANN has learned to model the system, an 
inverse of the model can be constructed. The inverse 
model is then capable of acting as a controller for the 
system[2,9]. 
 A typical system with its ANN controller is shown 
in Fig. 2, where a unit time delay has been added to 
account for the signal delay through the 
system/controller loop. Noise has also been added in 
the system loop to depict a more realistic system. Note 
that the ANN is a tempting to drive the system to 
produce an output, which matches the delayed input to 
produce a zero error. In doing so, it must learn the 
inverse of the system dynamics.  

 
 
Fig. 1: Adaptive ANN learning to model unknown 

system 
 

 
 
Fig. 2: Adaptive ANN controller for a dynamic system 
 

RESULTS AND DISCUSSION 
 
The mathematical based model.  The toroidal satu-
rated choke is one of widely used electric devices. It 
influences visible on proceed of electromagnetic 
process in system, where it works in whole[4,7]. So, his 
device must be circumscribed with high precision, 
especially, when it works main functions in system, for 
example, in measurement the practice of mathematical 
modeling shows that precision models must be built on 
the basis of electromagnetic field theory. The toroidal 
core of saturated choke is produced from laminated 
magnetic conductor to prevent eddy currents, must 



J. Computer Sci., 4 (10): 815-820, 2008 
 

817 

equivalent by solid anisotropy medium, because the 
computation will be very complicated[5,6,9]. The cross-
section of toroidal core is shown on Fig. 3. 
 In cylindrical coordinates vectors of magnetic field 
intensity H magnetic induction B and electric field 
intensity E we orient as: 
 
H = α0H; B = α0B; E = roEr+Z0Ez  (3) 
 
where, r0, z0 α0 are spatial orts. 
 The exchange of laminated ferromagnetic in axis r, 
z, α is made by summing up electric and magnetic 
conductivities of ferromagnetic and non-magnetic 
layers, in axis r by summing up corresponding 
resistances: 
 

f f
r z

f 0

f 0 f

f 0 f 0

d
0;

d d

(d d ) v
v

d d v / v

α

α

γγ = γ = γ =
+

+=
+

 (4) 

 
where, vf, γf, are static reluctivity and conductivity of 
ferromagnetic, df, d0 are widths of ferromagnetic and 
nonmagnetic gap. 
 The static reluctivity of ferromagnetic we find from 
general magnetization curve. 
 The first Maxwell's equation in quasistationary 
approach with conditions (I) obtain a form: 
 

r r z

H H H
E ; E

z r r
∂ ∂= γ + =
∂ ∂

 (5) 

 
 Let us write the second Maxwell's equation: 
 

B E
t z

∂ ∂=
∂ ∂

 (6) 

 

 
 
Fig. 3: The cross-section of toroidal core 

 The calculation equation of electromagnetic field 
we obtain from solving (5) with (6) taking into 
consideration that according to (3) γr = 0: 
 

2

2 2

B 1 H 1 H H
t r r r r

� �∂ ∂ ∂= + −� �∂ γ ∂ ∂� �α
 (7) 

 
 The connection between components of vectors H 
and B, follow to (4) will be: 
 
H = vα(B). B (8) 
 
where, vα is static reluctivity of equivalent media, 
which we calculate by magnetization curve of fer-
romagnetic. 
 The integration area (7) R1≤0≤R2 where R1 is 
internal radius of toroid; R2 is external radius of toroid.  
The axial dimension of toroid we mark as α. 
 The boundary conditions are defined from 
Ampere's Law: 
 

2
1 2

wi wi
H(R ) ; H(R )1 2 R 2 R

= =
π π

 (9) 

 
Where: 
wi = Magneto-motive force of magnetization) winding  
I = Current 
w = Number of turns 
 
 The toroidal saturated choke ordinary work in 
regime of' given electric voltage for instance of current, 
so the latest is related to unknown values. its calculation 
needs including of addition equations. 
 This equation has form: 
 
di d

U Ri w
dt dt

Φ� �= α − −� �
� �

 (10) 

 
 There u is electric voltage, which we consider as 
given value, i is current; Φ is main magnetic flux; R is 
winding resistance; α is inverse inductively of 
dissipation, which we consider as constant, because on 
the ways of dissipation fluxes the definition is air 
resistance w number of turns of magnetization winding; 
The unknown flux we obtain from spatial time 
distribution of magnetic induction: 
 

R2

s R1

ds a BdrBΦ = =� �  (11) 

 
 The calculation of induction on the border of 
integration zone needs solving of two independent 
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systems of nonlinear algebraic Eq. 8, 10 on every time 
step. Here easy way is using of method of dividing by 
half[9]. 
 Relatively Eq. 11 the Simpson's rule may be used: 
 

n

k k
k 1

a r
q B

3.2m =

∆Φ = �  (12) 

 
Where: 
∆r = Step of spatial discretization in radius dimension  
2m = Number of steps of discretization of integration 

zone 
Bk = Value of induction in k-th node of spatial mesh 
qK = Constant coefficients: 1, 2, 4 
 
 The Eq. 12 after its differentiation by time give the 
following form: 
 

( )d
w P Q

dt
Φ = ξ +  (13) 

 
Where: 
 

n 1
k

k
k 2

di B wa r
p ;Q q ;

dt t 6m

−

=

∂ ∆= λ = ξ=
∂�  (14) 

 
There: 
 

1 1 2 2

w 1 1
2 v (R )R v (R )R∂ ∂

α α

� �
λ = +� �� �π � �

 (15) 

 
where, v∂

α  is differential reluctivity. It we finding 
likewise (5) by main magnetization curve of fer-
romagnetic Hf = Hf(B). 
 Substituting (14),(15) into (13), the next obtaining 
result in (10), we obtain: 
 
di

(u Ri Q)
di

= χ − − ξ  (16) 

 
where, χ is coefficient: 
 

1
αχ =

+ ξαλ
 (17) 

 
 Now the system of mixed  nonlinear differential 
Eq. 7, 16 undergo common integration. 
 Let us create the column of unknown: 
 
X = (B∆,i)t (18) 
 
where, B∆ = (B2, B3, …,Bn-1)t is sub column of discrete 
values of induction in spatial mesh nodes with the 
exception of border nodes. 

 With condition (18) to system (7), (16) we give 
canonical form 
 
dX

f (X, t)
dt

=  (19) 

 
where, f(X, t) is T - periodical. 
 The integration (19) from initial condition Xo is 
initial-boundary (Cauchy) problem for ordinary 
differential equations. The result of such problem 
determines the transient process of device. For 
obtaining steady - state process it needs to put on (19) 
additional condition of T-periodicity: 
 
X(0)- X(T) = (0) (20) 
 
 The common solution (19), (20) constitutes the 
two-point boundary problem for ordinary differential 
equations. The solution with absence of constant 
component in periodical result can be obtained by easy 
way by naive algorithm. 
 

k 1 k k k
max minX(0) X(T) 0.5(X X )+ = − +  (21) 

 
 Where k

maxX , k
minX  are columns of maximum and 

minimum values X(t) on interval of time [0,T]. 
 As we can see the iteration equation is connected 
with integration (19) on  interval  of one Period. On 
Fig. 3-5 are shown the computation result of steady-
state some regime of choke. 
 
The voltage monitoring system: The system consists 
from saturated choke working in certain regime of 
electric voltage and artificial neural network. the goal 
of neural network is to indicate the supplied voltage of 
choke. As the input signal, for the network was used the 
periodical electric current in magnetizing winding. 
 

 
 
Fig. 4: The curve of steady-state current of choke in 

period 
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Fig. 5: The spatial distribution of B in steady-state 

regime of choke in fixed time T/4 
 
In order to decrease neural network architecture was 
necessary pre-processing of input data. In our case 
number of input neurons depends on preciseness of 
Fourier series distribution[1,3,8]. 
 The neural network consists of one hidden layer. In 
output layer there is one neuron indicating measured 
voltage value. In our numerical experiments we tested 
neural network with neuron linear transfer function in 
hidden layer and tan sigmoid and sigmoid transfer 
function in hidden layer. We tested the following neural 
network architectures: 3, 4, 5, 6, 7 and 10 neurons in 
the hidden layer and 4, 5, 6, 7, 8, 9 and 10 receptors 
what is equal to number of current harmonics in the 
Fourier distribution.  As the training algorithm we used 
well-known back-propagation rule with momentum 
technique. In order to obtain proper input signal 
interpolation we tested various network architectures.  
Neural Network efficiency strongly depends on neural 
network architecture and number of learning vector 
presentation simultaneously, but increasing number of 
receptors up to 9 doesn't give effect. For fixed neural 
network architectures we assumed different input 
vectors lengths (number of presentation). In Table 1  we 
present some results obtained for different neural 
network parameters.  For the neural network learning 
process we used learning vector from regime voltage 5: 
IOV. Characteristic   positions   in  Tables   show on 
values in input vector, which were used in learning 
process. 
 In our presentation we selected only some values 
from small range of voltage.  
 As we can show in Table 1 network gives results 
with preciseness 1V but with architecture Table 2 
preciseness reaches 0.1V in this same voltage regime.  

Table: 1 H = 3. ∆U = 0.5V 
Up [V] Ux [V] δ [%] 
7.64 7.63 0.13 
7.80 7.80 0.00 
7.90 7.91 0.13 
8.00 8.00 0.00 
8.10 8.13 0.37 
8.11 8.14 0.37 
8.12 8.15 0.37 
8.13 8.16 0.37 
8.14 8.17 0.37 
8.15 8.18 0.37 
8.16 8.19 0.37 
8.17 8.21 0.49 
81.8 8.21 0.37 
8.19 8.22 0.36 
8.20 8.24 0.49 
8.30 8.35 0.60 
8.50 8.56 0.70 

 
Table : 2  H = 4, ∆U = 0.25V 
AUp [V] Ux [V] δ [%] 
7.64 7.62 0.26 
7.80 7.81 0.13 
7.90 7.91 0.13 
8.00 8.00 0.00 
8.10 8.10 0.00 
8.11 8.11 0.00 
8.12 8.12 0.00 
8.13 8.12 0.12 
8.14 8.13 0.12 
8.15 8.14 0.12 
8.16 8.14 0.25 
8.17 8.16 0.12 
81.8 8.17 0.12 
8.19 8.19 0.00 
8.20 8.21 0.12 
8.25 8.25 0.00 
8.50 8.56 0.00 

 
 Result of numerical experiments for two network 
architectures. 
 

CONCLUSION 
 
 Such mathematical model is constructed on base of 
electric circuit theory and quasistationary 
electromagnetic field theory. It has high precision and 
high usefulness of computer realization simultaneously. 
Especially very important is that the mathematical 
model gives possibility to receive periodical solution, 
which in our research we receive directly the input 
information for Artificial Neural Network from. 
Efficiency of proposed measure system confirm by 
computation results convincible. 
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