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Abstract: Problem statement: In this study, we proposed a new algorithm M-SMFTF for adaptive 
filtering with fast convergence and low complexity. Approach: It was the result of a simplified FTF 
type algorithm, where the adaptation gain was obtained only from the forward prediction variables and 
using a new recursive method to compute the likelihood variable. Results: The computational 
complexity was reduced from 7L-6L, where L is the finite impulse response filter length. 
Furthermore, this computational complexity can be significantly reduced to (2L+4P) when used with 
a reduced P-size forward predictor. Conclusion: This algorithm presented a certain interest, for the 
adaptation of very long filters, like those used in the problems of echo acoustic cancellation, due to its 
reduced complexity, its numerical stability and its convergence in the presence of the speech signal.  
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INTRODUCTION 

 
 In general the problem of system identification 
involves constructing an estimate of an unknown 
system given only two signals, the input signal and a 
reference signal. Typically the unknown system is 
modelled linearly with a Finite Impulse Response (FIR) 
and adaptive filtering algorithms are employed to 
iteratively converge upon an estimate of the response. If 
the system is time-varying, then the problem expands to 
include tracking the unknown system as it changes over 
time[1-3]. There are two major classes of adaptive 
algorithms. One is the Least Mean Square (LMS) 
algorithm, which is based on a stochastic gradient 
method. The LMS algorithm has been extensively 
studied and many theoretical results on its transient and 
steady state performances have been obtained[3]. The 
LMS algorithm has a computational complexity of 
O(L), L is the FIR filter length. The other class of 
adaptive algorithm is the Recursive Least-Squares 
(RLS) algorithm which minimizes a deterministic sum 
of squared errors[4]. The RLS algorithm solves this 
problem, but at the expense of increased computational 
complexity of O(L2). A large number of Fast RLS 
(FRLS) algorithms have been developed over the years, 
but, unfortunately, it seems that the better a FRLS 
algorithm is in terms of computational efficiency, the 

more severe is its problems related to numerical 
stability[4]. Fast versions of these algorithms, namely, 
the fast Kalman[5], the Fast A Posteriori Error 
Sequential Technique (FAEST)[6] and Fast Transversal 
Filter (FTF)[7] algorithms, are derived from the RLS by 
the introduction of forward and backward predictors. 
The FRLS algorithm shows a complexity of O(L). 
Several numerical solutions of stabilization, with 
stationary signals, are proposed in the literature[8-12]. 
Another way of reducing the complexity of the FRLS 
algorithm has been proposed in[13,14]: When the input 
signal can be accurately modelled by a predictor of 
order P, the fast Newton Transversal Filter (FNTF) 
avoids running forward and backward predictors of 
order L, which would be required by a FRLS 
algorithm. The required quantities are extrapolated 
from the predictors of order P (P<<L). Thus, the 
complexity of the FNTF falls down to (2L+12P) 
multiplications instead of 8L. Recently, the simplified 
FTF-type algorithm[15] developed for use in acoustic 
echo cancellers. This algorithm derived from the FTF 
algorithm where the adaptation gain is obtained only 
from the forward prediction variables. The 
computational complexity of this algorithm is 7L 
when used with a full size predictor which is less 
complex than the original numerically stable 8L FTF 
algorithm.  
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Fig.1: Main block diagram of an adaptive filter 
 
 In this study, we propose more complexity 
reduction of the simplified FTF-type algorithm by using 
a new recursive method to compute the likelihood 
variable. The computational complexity of the proposed 
algorithm is 6L and this computational complexity can 
be significantly reduced to (2L+4P) when used with a 
reduced P-size forward predictor. The M-SMFTF of the 
proposed algorithm outperforms the classical adaptive 
algorithms because of its convergence speed which 
approaches that of the RLS algorithm and its 
computational complexity which is slightly greater than 
the one of the NLMS algorithm. We describe the 
NLMS and numerically stable FRLS (NS-FRLS) 
algorithms. More complexity reduction for simplified 
FTF-type (M-SMFTF) algorithm is proposed. At the 
end, we present some simulation results of the proposed 
algorithms. 
 
Adaptive algorithms: The main identification block 
diagram of a linear system with Finite Impulse 
Response (FIR) is represented in Fig. 1. The output a 
priori error L,nε  of this system at time n is: 

 

L,n n nˆd yε = −   (1) 

 
where, T

n L,n 1 L ,nŷ w x−=  is the model filter output, 

[ ]T

L,n n n 1 n L 1x x ,x , ...,x− − +=  is a vector containing the last 

L samples of the input signal xn, 
T

L,n 1 1,n 1 2,n 1 L,n 1w w ,w , ...,w− − − − =    is the coefficient vector 

of the adaptive filter and L is the filter length. The 
desired signal from the model is: 
 

T
n n opt,L L,nd v w x= +  (2) 

 

where, 
T

opt ,L opt,1 opt,2 opt,Lw w ,w , ...,w =    represents the 

unknown system impulse response vector and vn is a 
stationary, zero-mean and independent noise sequence 
that is uncorrelated with any other signal. The 

superscript T describes transposition. The filter is 
updated at each instant by feedback of the estimation 
error proportional to the adaptation gain, denoted as gL,n 
and according to: 
 

L,n L,n 1 L,n L,nw w g−= + ε  (3) 

 
 The different algorithms are distinguished by the 
gain calculation.  
 
The NLMS algorithm: Algorithms derived from the 
gradient[3], for which the optimization criterion 
corresponds to a minimization of the mean-square error. 
For the Normalized LMS (NLMS) algorithm, the 
adaptation gain is given by: 
 

L,n L,n
x,n 0

g x
L c

µ=
π +

 (4)  

 
Where: 
µ = Referred to as the adaptation step 
c0 = A small positive constant used to avoid division by 

zero in absence of the input signal 
 
 The stability condition of this algorithm is 0<µ<2 
and the fastest convergence is obtained for µ = 1[16]. 
The power πx,n of input signal can alternatively be 
estimated using the following recursive equation[17]: 
 

2
x,n x,n 1 n(1 ) x−π = − γ π + γ  (5) 

 
where, γ is a forgetting factor ( 1/ Lγ ≈ ). The 
computational complexity of the NLMS algorithm is 2L 
multiplications per sample.  
 
The NS-FRLS algorithm: The filter wL,n is calculated 
by minimizing the weighted least squares criterion 
according to[1]: 
 

( )
n 2n i T

n i L,n L,i
i 1

J (w) d w x−

=

= λ −∑  (6) 

 
where, λ denotes the exponential forgetting factor 
(0<λ≤1). The adaptation gain is given by: 
 

1
L,n L,n L,n L,n L,n

RLS FRLS

g R x k−= = γ ɶ
����� �����

 (7) 

 
where, RL,n is an estimate of the correlation matrix of 
the input signal vector. The variables γL,n and L,nkɶ  

respectively indicate the likelihood variable and 
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normalized Kalman gain vector. This latter is 
calculated, independently of the filtering part wL,n, by a 
FRLS algorithm using forward/backward linear 
prediction analysis over the signal xn

[1]. The calculation 
complexity of a FRLS algorithm is of order L. This 
reduction of complexity, compared to that of RLS 
algorithms, which have a complexity of order L2, have 
made all FRLS algorithms numerically unstable. 
 The numerical stability is achieved by using a 
control variable, called also a divergence indicator 
ξn

[11], theoretically equals to zero. Its introduction in an 
unspecified point of the algorithm modifies its 
numerical properties. This variable is given by: 
 

f
n L,n L,n

0 theory
r r

0 practical

=
ξ = −  ≠

 (9) 

 
with 0 1f ff

L,n s L,n s L,nr [(1 ) r r ]= − µ + µ  and s0 1≤ µ ≤ . It is 

obtained by using some redundant formulae of the 
FRLS algorithms. We can calculate differently the 
backward a priori prediction errors in tree ways 
( L,nr , 0f

L,nr  and 1f
L,nr ). We define three backward a priori 

prediction errors, theoretically equivalents, which will 
be used to calculate the likelihood variable γL,n, the 
backward prediction error variance βL,n and the 
backward prediction bL,n. We introduce these variables 
into the algorithm and we use suitably the scalar 
parameters b( , , )γ βµ µ µ  and µs, in order to obtain the 

numerical stability. It can be shown that the variance of 
the numerical errors in the backward predictor, with the 
assumption of a white Gaussian input signal, is stable 
under the following condition[11]: 
 

1 1/ 2Lλ = −  (10) 
 
 The resulting stabilized FRLS (NS-FRLS) 
algorithms have a complexity of 8L; it is shown in 
Algorithm 1. Note that numerical stabilization of the 
algorithm limits the range of the forgetting factor λ (10) 
and consequently their convergence speed and tracking 
ability. 
 
Proposed algorithms: 
The M-SMFTF algorithm: We propose more 
complexity reduction of the simplified FTF-type (M-
SMFTF) algorithm by using a new recursive method to 
compute the likelihood variable. The Simplified FTF-
type algorithm[15] derived from the FTF algorithm where 
the adaptation gain is obtained only from the forward 
prediction variables. The backward prediction variables, 
which are the main source of the numerical instability 
in  the  FRLS  algorithms,  are  completely   discarded. 

Algorithm 1: NS-FRLS algorithm (8L) 

Initialization: 2
0 xE L /100≥σ ; L,0 1γ = ; L

L,0 0Eα = λ ; L,0 0Eβ = ; 

L,0 L,0 L,0 L,0 Lw a b k 0 .= = = =ɶ  

Variables available at the discrete-time index n: 

L,n 1 L,n 1 L,n 1 L,n 1 L,n 1 L,n 1 L,n 1a ;b ;k ; ; ; ; w− − − − − − −γ α βɶ  

New information: xn, dn. 
Prediction part: 
Modeling of xn, xn-L 

T
L,n n L,n 1 L,n 1e x a x− −= − ; 

L,n L,n
L 1,n

L,n 1L,n 1L,n 1L 1,n

0k 1e
k

akk

+
+

+ +
−−−+

     
 = = +   −λα       

ɶ
ɶ

ɶɶ
; 

L,n L,n 1 L,n L,n 1 L,n 1a a e k− − −= + γ ɶ ; 2
L,n L,n 1 L,n 1 L,ne− −α = λα + γ ; 

T
L,n n L L,n 1 L,nr x b x− −= − ;  

0f
L,n L,n 1 L 1,nr k+

− += λβ ɶ ; 1f L 1
L,n L,n 1 L,n 1 L 1,nr k− + +

− − += λ γ α ɶ  

0 1f f
n L,n s L,n s L,nr [(1 ) r r ]ξ = − − µ + µ ; 

b b
L,n L,n n L,n L,n n L,n L,n nr r ; r r ; r rγ γ β β= + µ ξ = + µ ξ = + µ ξ ; 

L,n 1
L,n L,n L 1,n L,n 1 L,n L,n 1L 2

L,n L,n

k k k b ;
( r )
−+ +

+ − −γ

λα
= + γ = γ

α − λ
ɶ ɶ ɶ ; 

b 2
L,n L,n 1 L,n L,n L,n L,n L,n 1 L,n L,nb b r k ; ( r )β

− −= + γ β = λβ + γɶ ; 

Filtering part: 
T

L,n n L,n 1 L,nd w x−ε = − ; L,n L,n 1 L,n L,n L,nw w k−= + ε γ ɶ  

 
By using only forward prediction variables and adding 
a small regularization constant ca and a leakage factor 
η, we obtain a robust numerically stable adaptive 
algorithm that shows the same performances as FRLS 
algorithms. 
 By taking the expression of normalized Kalman 
gain: 
 

L,n 1L,n L,nL,n

L,n 1L,n 1 L,n 1 L,n 1

0 1 be rk

a 1k0
−

−− − −

    −   
= + −       −λα λβ       

ɶ

ɶ
 (11) 

 
and if we discard all backward prediction variables 
from (11) and use only the forward variables to 
compute the normalized Kalman gain: 
 

L,nL,n

L,n 1L,n 1 L,n 1

0 1ek

ak* −− −

     
= +     −λα      

ɶ

ɶ
 (12) 

 
 This algorithm is not very robust with 
nonstationarity input signal like speech signals. The 
first difficulty comes from L,n L,n 1 0−α = λα → . This 

convergence to zero puts FTF algorithms and their 
numerically stable versions in very difficult situations. 
Instability may occur since we are trying to perform 
numerical divisions by very small values. To guard 
against this possibility, like it is often done with the 
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NLMS algorithm, we append a small positive constant 
ca to the denominator: 
 

L,n L,n

L,n 1 L,n 1 a

e e

c− −

→
λα λα +

 (13) 

 
 The second difficulty is that the forward predictor 
is locked over its last values. It is known that the FRLS 
algorithms were developed in the prewindowing case 
and all vectors are initialised by zero so that the 
algorithm starts adapting. In these conditions, when the 
input signal vanishes and reappears after a long period 
of time, the algorithm may diverge because of these 
nonzero values of the predictor. In other words, the 
algorithm is not well initialised when the signal 
reappears. In such conditions, it might be preferable to 
have the forward predictor aL,n return back to zero by 
doing the following operation: 
 
aL,n → L,naη  (14) 

 
where, η is a close to one constant often called the 
leakage factor[12]. The likelihood variable is given by 
using the definition directly: 
 

n T
n n

1

1 k x
γ =

+ ɶ
 (15) 

 
 Let us replace the quantity (*), that has not been 
used in L,nkɶ  of (12), by the variable cL,n, we obtain:  

 

L,n L,n

L,n 1L,n 1 L,n 1 aL,n

0 1k e

ak cc −− −

     
= +     −λα +      

ɶ

ɶ
 (16) 

 
 By exploiting certain invariance properties by 
shifting the vector input signal extended to the order 
(L+1), we obtain two writing manners of input vector: 
 

TT
L 1,n L,n n Lx x x , x+ − =    (17a) 

 
TT

L 1,n n L,n 1x x , x+ − =    (17b) 

 
 By multiplying on the left, the members of left and 
right of the expression (16) by Eq. 17a and b 
respectively, the following equality is obtained: 
 

2
L,nT T

L,n L,n L,n n L L,n 1 L,n 1
L,n 1 a

e
x k c x x k

c− − −
−

+ = +
λα +

ɶ ɶ  (18) 

Algorithm 2: M-SMFTF algorithm (6L) 
Initialization: 

L,0 L,0 L,0 La a k 0= = =ɶ ; L
L,0 L,0 01; E ;γ = α = λ ; 2

0 xE L /100≥σ  

Variables available at the discrete-time index n: 

L,n 1 L,n 1 L,n 1 L,n 1 L,n 1a ;k ; ; ;w− − − − −γ αɶ  

New information: xn, dn. 
Prediction part: 

T
L,n n L,n 1 L,n 1e x a x− −= − ; 

L,n L,n

L,n 1L,n 1 aL,n 1L,n

0 1k e

ackc −−−

     
= +     −λα +      

ɶ

ɶ
; 

{ } 2
L,n L,n 1 L,n L,n 1 L,n 1 L,n L,n 1 L,n 1 L,na a e k ; e− − − − −= η + γ α = λα + γɶ ; 

2
L,n L,n 1

L,n L,n n L L,n
L,n 1 a L,n L,n 1

e
c x ;

c 1
−

−
− −

γ
δ = − γ =

λα + + δ γ
  

Filtering part: 
T

L,n n L,n 1 L,nd w x−ε = − ; L,n L,n 1 L,n L,n L,nw w k−= + ε γ ɶ  

 
 By manipulating the relation (18), we obtain a new 
recursive formula for calculating the likelihood variable 
as given below: 

L,n 1
L,n

L,n L,n 11
−

−

γ
γ =

+ δ γ
 (19) 

 
2
L,n

L,n L,n n L
L,n 1 a

e
c x

c −
−

δ = −
λα +

 (20) 

 
 The computational complexity of the M-SMFTF 
algorithm is 6L; it is shown in Algorithm 2. 
 
The RM-SMFTF algorithm: The Reduced size 
predictors in the FTF algorithms have been successfully 
used in the FNTF algorithms[13-15]. The proposed 
algorithm can be easily used with reduced size 
prediction part. If we denote P the order of the predictor 
and L the size of adaptive filter, the forward predictor 
and the normalized Kalman gain are given respectively 
by:  
 

P,n
L,n

L P

a
a

0 −

 
=  
 

 (21a) 

 

L,n P,n
P,n 1

L,n 1 P,n 1 aL,n
L P

1
0k e

a
k cc

0
−

− −
−

 
     −= +     λα +        

ɶ

ɶ
 (21b)  

 
where, P is much smaller than L. The first (P+1) 
components of the L,nkɶ  are updated using the reduced 

size forward variables, the last components are just a 
shifted version of the (P+1)th component of L,nkɶ . For 
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this algorithm, we need two likelihood variables: The 
first one, γP,n , is used to update the forward prediction 
error variance αP,n, where cP,n is (P+1)th component of 

L,nkɶ . The second likelihood variable, γL,n, is used to 

update the forward predictor aP,n of order P and the 
transversal filter wL,n. The computational complexity of 
this algorithm is (2L+4P); it is shown in Algorithm 3. 
 
Analysis prediction part: We study the propagation of 
errors in all recursive quantities of the prediction part of 
the M-SMFTF algorithm. Assuming that the numerical 
errors are small, the model of error propagation in the 
recursive variables can be approximated by the 
following linear model: 
 

n n 1∆ F(n)∆ e(n)−ϕ = ϕ +  (22) 

 
where, e(n) represent the round-off noise. We can write 
the state vector of the errors at the time n as follows: 
 

Ta T kT
n n n ∆ϕ = ∆ϕ ∆ϕ   (23) 

 
Where: 
 

L,na
n

L,n

a∆ 
∆ϕ =  ∆α  

 (24a) 

 
Algorithm 3: RM-SMFTF algorithm (2L+4P; P<<L) 

Initialization: 2
0 xE P /100≥σ ; 

P
P,0 P,0 01; Eγ = α = λ ; L,0 1γ = ; L,0 L,0 Lw k 0= =ɶ ; P,0 Pa 0= . 

Variables available at the discrete-time index n: 

L,n 1 L,n 1 L,n 1 L,n 1 L,n 1a ;k ; ; ;w− − − − −γ αɶ ; 

New information: xn, dn. 
Prediction part: 

T
P,n n P,n 1 P,n 1e x a x− −= − ; 

L,n P,n
P,n 1

P,n 1 aL,n 1L,n
L P

1
0k e

a
ckc

0
−

−−
−

 
     −= +     λα +        

ɶ

ɶ
; 

; P,n 1 L,n 1 P,n L,nk k (1: P);c k (P 1)− −= = +ɶ ɶ ɶ ; 

{ } 2
P,n P,n 1 P,n L,n 1 P,n 1 P,n P,n 1 P,n 1 P,na a e k ; e− − − − −= η + γ α = λα + γɶ  ; 

2
P,n P,n 1

P,n P,n n P P,n
P,n 1 a P,n P,n 1

e
c x ;

c 1
−

−
− −

γ
δ = − γ =

λα + + δ γ
; 

2
P,n L,n 1

L,n L,n n L L,n
P,n 1 a L,n L,n 1

e
c x ;

c 1
−

−
− −

γ
δ = − γ =

λα + + δ γ
; 

Filtering part: 
T

L,n n L,n 1 L,nd w x−ε = − ; L,n L,n 1 L,n L,n L,nw w k−= + ε γ ɶ  

L,nk
n

L,n

k ∆
∆ϕ =  

∆γ  

ɶ

 (24b) 

 
represent respectively the errors cumulated up until the 
time n in the forward and Kalman recursive variables. 
The (2L+2) × (2L+2) dimensional matrix F(n) given by: 
 

( ) ( ) ( )
( ) ( )

11 12

21 22

F n F n
F n

F n F n

 
=  
  

 (25) 

 
represents the transition matrix. The system (22) is said 
to be stable, in the mean sense, if the eigenvalues of 
E{F(n)}, in the steady state, are all less than one in 
magnitude[9]. The operator E{.} denotes the expected 
value. After a propagation analysis of the numerical 
errors of the 1st order and an asymptotic study of the 
equations of errors propagation, we approximate the 
errors in the forward variables (∆aL,n, ∆αL,n) and the 
Kalman variables ( L,n 1k −∆ɶ , ∆γL,n-1) by the following 

linear first order models deduced from differentiating 
(aL,n, αL,n) and ( L,nkɶ , γL,n) respectively: 

 

( )T
L,n L L,n 1 L,n 1 L,n 1 L,n 1 aa I k x a p (n)− − − −∆ = η − γ ∆ +ɶ  (26) 

 

L,n L,n 1 p (n)− α∆α = λ ∆α +  (27) 

 
k

L,n L,n 1 kk M k p (n)−∆ = ∆ +ɶ ɶ  (28) 

 

L,n L,n 1c (n) p (n)γ
− γ∆γ = ∆γ +  (29) 

 
Where: 
 

T
L 1k

L 1 L 1

0 0
M

I 0
−

− −

 
=  
  

 (30) 

 

L,n
L,n L,n

L,n 1

c (n) (1 )γ

−

γ
= − δ γ

γ
 (31) 

 
 By assuming that the perturbation terms (pa(n), 
pα(n), pk(n) and pγ(n)) remain limited.  
 In asymptotic mode, we can write: 
 

( )T
L L,n 1 L,n 1 L,n 1 LI k x I− − −η − γ → ηλɶ  (32) 

 

{ } 1

1
E c (n)

1
γ

−→
λ + λ −

 (33) 
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 We can thus say that the system is numerically 
stable, in the mean sense, for λ and η between zero and 
one. It can be shown that the variance of the numerical 
errors in the forward predictor, with the assumption of a 
white Gaussian input signal, is stable under the 
following condition: 
 

2

1
1 1 1 (L 2)

1
(L 2)

 + + − + η λ > −
+

 (34) 

 
 We note that the lower bound of this condition is 
always smaller than the lower bound of condition (10) 
of the original numerically stable FRLS algorithm, 
which means that we can choose smaller values for the 
forgetting factor for the proposed algorithm and 
consequently have faster convergence rate and better 
tracking ability. 
 

MATERIALS AND METHODS 
 
 To confirm the validity of our analysis and 
demonstrate the improved numerical performance, 
some simulations are carried out. All plots show the 
mean squared modeling versus the number of iterations. 
For the purpose of smoothing the curves, error samples 
are averaged over 256 points. The forgetting factor λ 
and the leakage factor η for the M-SMFTF algorithm 
are chosen according to (34) with the stationary input. 
 

RESULTS 
 
Comparative performances for stationary signals: 
We used a stationary correlated noise with a spectrum 
equivalent to the average spectrum of speech, called 
USASI noise in the field of acoustic echo cancellation. 
This signal, with mean zero and variance equal to 0.32, 
sampled at 16 kHz is filtered by impulse response 
which represents a real impulse response measured in a 
car and truncated to 256 samples. We compare the 
convergence speed and tracking capacity of the proposed 
algorithm with NS-FRLS and NLMS algorithms. The 
NLMS (µ = 1) and NS-FRLS (λ = 1-1/3L) algorithms 
are tuned to obtain fastest convergence. The 
nonstationarity of the system to be modeled is 
simulated by introducing a linear gain variation on the 
desired signal.  
 The filter length is L = 256, the forgetting factor is 
(λ = 1-1/L) of the M-SMFTF algorithm. And for RM-
SMFTF algorithm, the predictor order is P, the 
forgetting factor is (λ = 1-1/P). Figure 2 shows that 
better performances in convergence speed are obtained 

for the M-SMFTF algorithm. The differences in the 
final MSE(n) for the M-SMFTF and NS-FRLS 
algorithms are due to the use of different forgetting 
factors λ. It is observed that the proposed algorithm 
converges much faster and tracks better the variation of 
the system than both NS-FRLS and NLMS algorithms. 
 In this simulation, we compare the convergence 
performance of the NLMS algorithm and RM-SMFTF 
algorithm with different values for the leakage η. 
Figure 3 presents the results obtained with the 
stationary USASI noise for the filter order L = 256. We 
simulated an abrupt change in the impulse response at 
the 56320th samples. We use the following parameters: 
The  predictor order  is  P = 40, the forgetting factor is 
λ = 1-1/P. The convergence speed of RM-SMFTF is 
much faster than NLMS. We notice, for the RM-
SMFTF algorithm, that the more η approaches one and 
the better the speed. 
 

 
 
Fig. 2: Comparative performance of the algorithms for 

USASI noise, L = 256. M-SMFTF: λ = 0.9961, 
η = 0.985, ca = 0.5, E0 = 1; NS-FRLS: λ = 0.9987; 
NLMS: µ = 1 

 

 
 
Fig. 3: Comparative performance of the RM-SMFTF 

and NLMS for USASI noise, L = 256. NLMS: 
µ = 1; RM-SMFTF: P = 40, λ = 0.975, ca = 0.5, 
E0 = 0.2, with different values for η  
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Fig. 4: Comparative performance of the algorithms 

with speech input, L = 256. NLMS: µ = 1; M-
SMFTF:    λ = 0.9961,     η = 0.96,     ca = 0.1, 
E0 = 0.5; NS-FRLS: λ = 0.9996 

 

 
 
Fig. 5: Comparative performance of the RM-SMFTF 

and NLMS with speech input, L = 256. NLMS: 
µ = 1;       RM-SMFTF:     P = 20,    λ = 0.950, 
η = 0.99, ca = 0.1, E0 = 1 

 
Comparative performances for speech signals: The 
input signal used in the simulations is speech signal, 
sampled at 16 kHz. We compare the convergence speed 
of the proposed algorithm with NS-FRLS and NLMS 
algorithms. We simulated an abrupt change in the 
impulse response at the 56320th samples. The choice of 
the forgetting factor for NS-FRLS algorithm to ensure 
numerical stability is λ = 1-1/10L. The forgetting factor 
for M-SMFTF and RM-SMFTF algorithms are λ = 1-
1/L and λ = 1-1/P respectively, but the leakage η and 
the constant ca must be carefully chosen. 
 In Fig. 4, we can see that the initial convergence is 
almost the same for both M-SMFTF and NS-FRLS 
algorithms. But the M-SMFTF achieves better re-
convergence after the abrupt change in the impulse 
response. In Fig. 5, we observe that the re-convergence 
of RM-SMFTF is again faster than NLMS. 

DISCUSSION 
 
 Different simulations have been done for 
different sizes L and P and all these results show that 
there is no degradation in the final steady-state MSE(n) 
of the reduced size predictor algorithm even for P<<L. 
The convergence speed and tracking capability of the 
reduced size predictor algorithm can be adjusted by 
changing the choice of the parameters λ, η and ca. The 
proposed algorithm outperforms the classical adaptive 
algorithms because of its convergence speed which 
approaches that of the RLS algorithm and its 
computational complexity which is slightly greater than 
the one of the NLMS algorithm. 
 

CONCLUSION 
 
 We have presented a new algorithm M-SMFTF for 
adaptive filtering with fast convergence and low 
complexity. We have proposed more complexity 
reduction of simplified FTF type algorithm by using a 
new recursive method to compute the likelihood 
variable. The computational complexity of the M-
SMFTF algorithm is 6L operations per sample and this 
computational complexity can be significantly reduced 
to (2L+4P) when used with a reduced P-size (P<<L) 
forward predictor. This can be very interesting for long 
filters. The low computational complexity of the M-
SMFTF when dealing with long filters and it a 
performance capabilities render it very interesting for 
applications such as acoustic echo cancellation. The 
simulation has shown that the performances of 
proposed algorithm are better than those of the 
normalized least mean square algorithm. 
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