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Abstract: Problem statement: In this study, we proposed a new algorithm M-SMHA®F adaptive
filtering with fast convergence and low complexi®ypproach: It was the result of a simplified FTF
type algorithm, where the adaptation gain was abthionly from the forward prediction variables and
using a new recursive method to compute the likelth variable.Results: The computational
complexity was reduced from 7L-6L, where L is thmité impulse response filter length.
Furthermore, this computational complexity can igmiicantly reduced to (2L+4P) when used with
a reduced P-size forward predict@onclusion: This algorithm presented a certain interest, far t
adaptation of very long filters, like those usedha problems of echo acoustic cancellation, duesto
reduced complexity, its numerical stability anddtsvergence in the presence of the speech signal.
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INTRODUCTION more severe is its problems related to numerical
stability. Fast versions of these algorithms, namely,
In general the problem of system identificationthe fast Kalma, the Fast A Posteriori Error
involves constructing an estimate of an unknownSequential Technique (FAES¥)and Fast Transversal
system given only two signals, the input signal and Filter (FTF}"! algorithms, are derived from the RLS by
reference signal. Typically the unknown system isthe introduction of forward and backward predictors
modelled linearly with a Finite Impulse ResponsiRjF The FRLS algorithm shows a complexity of O(L).
and adaptive filtering algorithms are employed toSeveral numerical solutions of stabilization, with
iteratively converge upon an estimate of the respolf  stationary signals, are proposed in the liter&tdte
the system is time-varying, then the problem expand Another way of reducing the complexity of the FRLS
include tracking the unknown system as it changes o algorithm has been proposed™it*: When the input
time™=. There are two major classes of adaptivesignal can be accurately modelled by a predictor of
algorithms. One is the Least Mean Square (LMS)rder P, the fast Newton Transversal Filter (FNTF)
algorithm, which is based on a stochastic gradienavoids running forward and backward predictors of
method. The LMS algorithm has been extensivelyorder L, which would be required by a FRLS
studied and many theoretical results on its tramisied  algorithm. The required quantities are extrapolated
steady state performances have been obtdingdhe from the predictors of order P (P<<L). Thus, the
LMS algorithm has a computational complexity of complexity of the FNTF falls down to (2L+12P)
O(L), L is the FIR filter length. The other clas§ o multiplications instead of 8L. Recently, the sinfigld
adaptive algorithm is the Recursive Least-Square§TF-type algorithf® developed for use in acoustic
(RLS) algorithm which minimizes a deterministic sum echo cancellers. This algorithm derived from the=FT
of squared errof$. The RLS algorithm solves this algorithm where the adaptation gain is obtainedyonl
problem, but at the expense of increased computdtio from the forward prediction variables. The
complexity of O(). A large number of Fast RLS computational complexity of this algorithm is 7L
(FRLS) algorithms have been developed over thesyearwhen used with a full size predictor which is less
but, unfortunately, it seems that the better a FRLSomplex than the original numerically stable 8L FTF
algorithm is in terms of computational efficiendpe  algorithm.
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superscript T describes transposition. The filter is
updated at each instant by feedback of the estimati
error proportional to the adaptation gain, denated ,
and according to:

“fopt.L

P Unknown system

Win /
» Ada?'/e filter

/

Fig.1: Main block diagram of an adaptive filter
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The different algorithms are distinguished by the
gain calculation.

The NLMS algorithm: Algorithms derived from the
gradient!, for which the optimization criterion

reduction of the simplified FTF-type algorithm bsing corresponds to a minimization of the mean-squan.er
a new recursive method to compute the likelihood™ " the_ Norma}hze_d LMS_ (NLMS) algorithm, the
variable. The computational complexity of the pregd adaptation gain is given by:

algorithm is 6L and this computational complexignc

be significantly reduced to (2L+4P) when used vith ¢ =_—H @)
reduced P-size forward predictor. The M-SMFTF @fth ~  LT.a*Co
proposed algorithm outperforms the classical agapti

algorithms because of its convergence speed whicWhere:
approaches that of the RLS algorithm and itsp = Referred to as the adaptation step
computational complexity which is slightly greatean ¢, = A small positive constant used to avoid divisipn
the one of the NLMS algorithm. We describe the zero in absence of the input signal

NLMS and numerically stable FRLS (NS-FRLS)

algorithms. More complexity reduction for simplifie The stability condition of this algorithm is O<p<2
FTF-type (M-SMFTF) algorithm is proposed. At the and the fastest convergence is obtained for *% 1
end, we present some simulation results of theqeeg The powerT,, of input signal can alternatively be
algorithms. estimated using the following recursive equdtiéin

In this study, we propose more complexity

Adaptive algorithms: The main identification block M, =1-y)m, ,+yx3 (5)
diagram of a linear system with Finite Impulse '
Response (FIR) is represented in Fig. 1. The oudput

priori error g_, of this system at time n is: where, y is a forgetting factor {=1/L). The

computational complexity of the NLMS algorithm ik 2
_ R multiplications per sample.
€,=d,-9, 1)
The NS-FRLS algorithm: The filter w ,, is calculated
where, 7 =w' x, . is the model filter output, by minimizing the weighted least squares criterion
e N according t8!:
X, p =[Xp:Xp Xy 1] IS @ vector containing the last

A B
L samples of the input signal ,,x e 2
P o eut sIgnal e X g )= (d - W, %) (6)
Wy oy =[Wyp g W,y W, | IS the coefficient vector i1

of the adaptive filter and L is the filter lengtiihe

desired signal from the model is: where, A denotes the exponential forgetting factor

(O<A<l). The adaptation gain is given by:
d, =V, +Wl X, 2 ) -
i Oin = RL,ln X = YinKin (7
— —

T RLS FRLS

where, W, =[Wg, W, ..W,, | represents the _ _ _ _
unknown system impulse response vector ands\a Wher-e, Rn |§ an estimate of the gorrelatmn ma}trlx of
stationary, zero-mean and independent noise sequent€ input signal vector. The variablgs, and k,,

that is uncorrelated with any other signal. Therespectively indicate the likelihood variable and
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normalized Kalman gain vector. This latter is Algorithm 1: NS-FRLS algorithm (8L)
calculated, independently of the filtering pagtwby a Initialization: E,202L/100; vy _,=1;0a,,=A"Ey; B ,=Ey;
FRLS algorithm using forward/backward linear ,, _, =b,=k,=0Q
rediction analysis over the signal*k The calculation 0 7 "o *° ™
P . . . . Variables available at the discrete-time index n:
complexity of a FRLS algorithm is of order L. This T
H H L,n-1? ~L,n-1? a w
reduction of complexity, compared to that of RLS * '

. . - New information:,, .
algorithms, which have a complexity of ordet bave  py giction part: &

LYo ® L 1:[3 Lrr WVie:

made all FRLS algorithms numerically unstable. Modeling of %, Xa.

The numerical stability is achieved by using ag, =x-8, Xios
control variable, called also a divergence indicato i 0 _ 1
.M theoretically equals to zero. Its introductionaim &/, {j“ }{ } S { };
unspecified point of the algorithm modifies its klan] Lkir] Aima[ "8
numerical properties. This variable is given by: A, =8 00t 8 Vit Kas Oy SAA o+ i

- — T

- . [=0 theory Lo =X E)L’"‘IXL‘” ’ )

En = rL,n - rL,n {;t 0 practical (9) Tj(r)\ :)‘BL,n—lk:ﬂ,n; TLf; :)‘iﬂyL,n—la L,n—1kT_+1,n

En = L.n _[(1_H5)Tl.f?n + Hsrlilr] ;
with T =[@-p)Te +pr] and Osp <1, It is T =T, +W & T =T+ ET0, =T +1° & s

,n =
- ~ Aa
0+ + L,n-1
- |(L,n +k

obtained by using some redundant formulae of the; by Y, = Voo
L+41,n™~L,n-1 ¥ Ln L /= 2 L1
T aL,n_)\ (rL‘,/n)

FRLS algorithms. We can calculate differently the
backward a priori predl_ctlon errors in tree vyay_s bn =B * YK B = AB LY (T
(T,,7° and 1" ). We define three backward a priori Filtering part:

L,n

T

prediction errors, theoretically equivalents, whigfil B T m W X0 Wi W YEY K,

be used to calculate the likelihood variahig, the

backward prediction error varianc@_, and the By using only forward prediction variables and addi
backward prediction . We introduce these variables a small regularization constant and a leakage factor
into the algorithm and we use suitably the scalam, we obtain a robust numerically stable adaptive
parameters(u’,u®,u®) and 14, in order to obtain the algorithm that shows the same performances as FRLS
numerical stability. It can be shown that the vacmof  algorithms. _

the numerical errors in the backward predictorhvifite ~ By taking the expression of normalized Kalman
assumption of a white Gaussian input signal, iblsta 9ain:

under the following conditidh:

RL 0 é. 1 T _bL -1
_1_ = n _ n .n 11
A=1-1/2L (10) {o} {kmj+van_i_aLan w1 (11)

The resulting stabilized FRLS (NS-FRLS)
algorithms have a complexity of 8L; it is shown in and if we discard all backward prediction variables
Algorithm 1. Note that numerical stabilization dfet from (11) and use only the forward variables to
algorithm limits the range of the forgetting facdo(10) ~ compute the normalized Kalman gain:
and consequently their convergence speed and tigacki

ability. kol [0 L { 1 } (12)
. * RL,n—l A g TR
Proposed algorithms:

The M-SMFTF algorithm: We propose more ) ) ) )
complexity reduction of the simplified FTF-type (M- This algorithm is not very robust with
SMFTF) algorithm by using a new recursive method tgonstationarity input signal like speech signalsie T
compute the likelihood variable. The Simplified FTF first difficulty comes from o, =Aa,,, -~ 0. This
type algorithrft® derived from the FTF algorithm where convergence to zero puts FTF algorithms and their
the adaptation gain is obtained only from the fodva numerically stable versions in very difficult sitigms.
prediction variables. The backward prediction JMaldga, Instability may occur since we are trying to penfor
which are the main source of the numerical insiigbil numerical divisions by very small values. To guard
in the FRLS algorithms, are completely didesl. against this possibility, like it is often done kithe
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NLMS algorithm, we append a small positive constantAlgorithm 2: M-SMFTF algorithm (6L)

c, to the denominator: Initialization:
a,0=8,=Ko=Q; Vio=La,=A"Ey;; E;205L/100
El ® Variables available at the discrete-time index n:
n N (13) T . ] i
Aa A +C aL,n—l' LYo L s Wi

L,n-1 L,n-1 a

New information: ¥, .
. . . Prediction part:
The second difficulty is that the forward predicto

. . . qn:Xn_aLTnleerl;

is locked over its last values. It is known that #RLS N L

algorithms were developed in the prewindowing cas{ktvn}:ﬂo } & [ 1 };
and all vectors are initialised by zero so that the[C..] [k Aag o +C, | R

algonthm starts _adaptlng. In these cond|t|ons,rw_tm3 a, :ﬂ{é\,n-l’f*%nvhﬂk.m } B =AY e B
input signal vanishes and reappears after a lonigge -,
of time, the algorithm may diverge because of thesq;Ln - & —C XY, = Yina
nonzero values of the predictor. In other words th —~ Adia*Co L0 Yim
algorithm is not well initialised when the signal Filtering part:

reappears. In such conditions, it might be preferad &, =d, - W[ X, .; W, =W, +E V. K,
have the forward predictor @ return back to zero by

L,n-1 L,n-1

doing the following operation: By manipulating the relation (18), we obtain a new
recursive formula for calculating the likelihoodrizble
an— na., (14)  as given below:
y — yL,n—l (19)
where,n is a close to one constant often called the™" 1+8 .y .,
leakage factdt?. The likelihood variable is given by
using the definition directly: —2
6LHZL_CLan—L (20)
1 P PP Y R

Ya (15)

1k,
The computational complexity of the M-SMFTF

Let us replace the quantity (*), that has not beerf!g0rithm is 6L; itis shown in Algorithm 2.

used ink, , of (12), by the variable,g, we obtain: The RM-SMFTF algorithm: The Reduced size

predictors in the FTF algorithms have been sucabgsf
K., 0 . 1 used in the FNTF algorithti&™. The proposed
' =|: :|+'c{—aL } (16)  algorithm can be easily used with reduced size
ab e prediction part. If we denote P the order of theditor
and L the size of adaptive filter, the forward poéal

_ By exploiting certain invariance properties by gng the normalized Kalman gain are given respdytive
shifting the vector input signal extended to thdeor by:

(L+1), we obtain two writing manners of input vecto

CL,n kL,n—l )\G L,n—1+

—_ aP,n
Xean =X[ XD X0 | (17a) a“"_{oL¢} (212)
T
XL+1,n :|:xn‘ XT_,n—l:| (17b) R 0 a 1
el et e (21b)
CL,n kL,n—1 )\GP,n—1+Ca 0
By multiplying on the left, the members of leftdan L-p
right of the expression (16) by Eq. 17a and b
respectively, the following equality is obtained: where, P is much smaller than L. The first (P+1)
components of thek_, are updated using the reduced
T Y €, size forward variables, the last components art gus
X(nKin +C|_,n Xn—L_XL,n—lkL,n—l 3~ 4~ ( ) . . ~
Ao, tc, shifted version of the (P+)component ofk, ,. For
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first one,yen , is used to update the forward prediction ¢, = (24b)
error varianceop, where ¢, is (P+1)h component of

RL,n' The second likelihood variablg, », is used to

this algorithm, we need two likelihood variablesel { K, }
A

L,n

_ represent respectively the errors cumulated ug thi
update the forward predictor,@of order P and the time n in the forward and Kalman recursive variable

transversal filter w,. The computational complexity of The (2L+2)x (2L+2) dimensional matrix F(n) given by:
this algorithm is (2L+4P); it is shown in Algorith&

o . Fa(n)  Fa(n)
Analysis prediction part: We study the propagation of F(n) =|: } (25)
errors in all recursive quantities of the predictjmart of Fa(n)  Ro(n)

the M-SMFTF algorithm. Assuming that the numerical

errors are small, the model of error propagatioths  represents the transition matrix. The system (22pid
recursive variables can be approximated by thdo be stable, in the mean sense, if the eigenvadies

following linear model: E{F(n)}, in the steady state, are all less than dme
magnitud€’. The operator E{.} denotes the expected
A =F(M)AD. ,+e(n) (22) value. After a propagation analysis of the numérica

errors of the T order and an asymptotic study of the
equations of errors propagation, we approximate the

where, e(n) represent the round-off noise. We catew errors in the forward variables\d ,, Aa.,) and the
the state vector of the errors at the time n dev!: Kalman variables ARL,n—li Dyna) by the following

linear first order models deduced from differertigt

a T -
29, =[ 207" A9} ] (23)  (a, o) and &, ,, Y. respectively:
Where: Aa = n( L - yL,n—lRL,n—lX-[,n—l)AaL,n— 1+ Pa(n) (26)
AY? = [AaL'" } (24a) Do, =AAa, ., +p.(n) (27)
Ao,
Bk, =ME DK, +py(n) (28)

Algorithm 3: RM-SMFTF algorithm (2L+4P; P<<L)
Initialization: E, >0’ P/100;

b - AyL,n = Cv(n)AyL,n—1+ R/ (n) (29)
Voo =L 0po=AEq Vi o=1;W =K =0 ;8,= 0p.

Variables available at the discrete-time index N \Where:

aL,n—l ' I(L.n—l'yL,n—l’a L1 w L 17

New information: ¥, d,. or 0
Prediction part: MK :|: L1 } (30)
éF’,n = Xn_ aL,w ?( Pa J; IL—Zl OL—l

- 1

kLn 0 é:

B | =8 | ; Yin
|:CL,n :| |:kL,n1:| }\ap‘n—l+ca ag ' Cv(n):# (1_ 6L,nyL,n ) (31)
L-P L,n-1

; RP‘n—lzk‘L,n-l(l:P);CP‘nz ~kL,n(P"' 1 - -
By assuming that the perturbation terms(r(p

F’n: Pﬁ’1+7 LﬂIkPﬂl Pnz)\ Pn P: l; H H H
%. n{a‘ L } B pFAT ek oo Pa(n), pn) and p(n)) remain limited.

&2 ] .
n . - y = . :
5, :AL —Cp Xy Y pE In asymptotic mode, we can write
qF’.n—l"—ca 1+6P‘ry Pa 1
2 -
= S EVES (V.S S I’](l Lo yL,n—lkL.n—leL,n—l) - NAl, (32)
6Ln CLnxnfLYyLn !
' )\GP,W1+CB ' ' 1+6L,nyL,rf1
Filtering part: 1
_ _ ~ Y
8L,n =dn _W.ll:.n—le,n; WL,n =WL.n—1+€L,nyL,nk L.n E{C (n} - )\‘1+)\ _l (33)
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We can thus say that the system is numericallfor the M-SMFTF algorithm. The differences in the
stable, in the mean sense, foandn between zero and final MSE(n) for the M-SMFTF and NS-FRLS
one. It can be shown that the variance of the nigaler algorithms are due to the use of different forgetti
errors in the forward predictor, with the assumptid a  factors A. It is observed that the proposed algorithm
white Gaussian input signal, is stable under theconverges much faster and tracks better the vamiat

following condition: the system than both NS-FRLS and NLMS algorithms.
In this simulation, we compare the convergence
1 performance of the NLMS algorithm and RM-SMFTF
1+,[1+[nz‘1j (L+2) algorithm with different values for the leakagp
A>1 (34) Figure 3 presents the results obtained with the

(L+2) stationary USASI noise for the filter order L = 258e

) ~ simulated an abrupt change in the impulse respahse

We note that the lower bound of this condition isthe 56320th samples. We use the following pararseter
always smaller than the lower bound of conditio8)(1 The predictor order is P = 40, the forgettingtda is
of the original numerically stable FRLS algorithm, y» - 1_.1/p. The convergence speed of RM-SMFTF is
which means that we can choose smaller valuedor t iy ,ch faster than NLMS. We notice, for the RM-
forgetting factor for the proposed algorithm and q\eTE algorithm, that the morg approaches one and
consequently have faster convergence rate andrbettﬁ,]e better the speéd.
tracking ability.

20 T T T T T T
MATERIALSAND METHODS ; A N
To confirm the validity of our analysis and o 0
demonstrate the improved numerical performance, =
some simulations are carried out. All plots show th
mean squared modeling versus the number of itesmtio &0l
For the purpose of smoothing the curves, error &snp
are averaged over 256 points. The forgetting faitor

and the leakage factar for the M-SMFTF algorithm -100
are chosen according to (34) with the stationapyin n, lterations w10
RESULTS

Fig. 2: Comparative performance of the algorithims f
USASI noise, L = 256. M-SMFTR = 0.9961,
n=0.985,£=0.5 K= 1; NS-FRLSA = 0.9987;
NLMS: u =1

Comparative performances for stationary signals:
We used a stationary correlated noise with a spectr
equivalent to the average spectrum of speech,dcalle
USASI noise in the field of acoustic echo canciltat
This signal, with mean zero and variance equal.3@,0 ‘ ;
sampled at 16 kHz is filtered by impulse response vy UM O
which represents a real impulse response measurgd i '
car and truncated to 256 samples. We compare the
convergence speed and tracking capacity of theogeap
algorithm with NS-FRLS and NLMS algorithms. The
NLMS (u = 1) and NS-FRLSA(= 1-1/3L) algorithms o *""\, ; 1
are tuned to obtain fastest convergence. The R 7 *1 """ e
nonstationarity of the system to be modeled is f ; : ) i :
simulated by introducing a linear gain variation tbe e 2 4 8 8 10 1z s
desired signal. n; lterations x10°

The filter length is L = 256, the forgetting facie
(A = 1-1/L) of the M-SMFTF algorithm. And for RM- Fig. 3: Comparative performance of the RM-SMFTF

MSE(n), dB

SMFTF algorithm, the predictor order is P, the and NLMS for USASI noise, L = 256. NLMS:
forgetting factor is X = 1-1/P). Figure 2 shows that M =1, RM-SMFTF: P = 40\ = 0.975, ¢= 0.5,
better performances in convergence speed are ebtain Eo = 0.2, with different values foy
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2D T T T T T
H H i Degited Power

MSE(n), dB

-100

i 4
n, lterations w10

DISCUSSION

Different simulations have been done for
different sizes L and P and all these results sttt
there is no degradation in the final steady-sta&Ek)
of the reduced size predictor algorithm even forkP<
The convergence speed and tracking capability ef th
reduced size predictor algorithm can be adjusted by
changing the choice of the parameters and ¢. The
proposed algorithm outperforms the classical adapti
algorithms because of its convergence speed which
approaches that of the RLS algorithm and its
computational complexity which is slightly greathan

Fig. 4: Comparative performance of the algorithmsy o one of the NLMS algorithm.

with speech input, L = 256. NLMS: p = 1; M-
SMFTF: A =0.9961, n=0.96, g=0.1,
Eo, = 0.5; NS-FRLSA = 0.9996

2D T T T T T
: | Diesired Power

N £ ==

o0 e LR L by g F R L TR LR AR ]

_an L

MSE(n), dB

&0 f---

B0 F----

-100
u]

i 4
n, lterations w10

CONCLUSION

We have presented a new algorithm M-SMFTF for
adaptive filtering with fast convergence and low
complexity. We have proposed more complexity
reduction of simplified FTF type algorithm by usiag
new recursive method to compute the likelihood
variable. The computational complexity of the M-
SMFTF algorithm is 6L operations per sample and thi
computational complexity can be significantly reedc
to (2L+4P) when used with a reduced P-size (P<<L)
forward predictor. This can be very interesting Ifong
filters. The low computational complexity of the M-
SMFTF when dealing with long filters and it a
performance capabilities render it very interestfag
applications such as acoustic echo cancellatiore Th

Fig. 5: Comparative performance of the RM-SMFTFsimulation has shown that the performances of

and NLMS with speech input, L = 256. NLMS:

n=1; RM-SMFTF:
n=099=01KkK=1

P =20,A = 0.950,

Comparative performances for speech signals: The
input signal used in the simulations is speechadjgn

proposed algorithm are better than those of the
normalized least mean square algorithm.
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