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Abstract:  Problem statement: Causality among events, more formally the causal ordering relation, is 
a powerful tool for analyzing and drawing inferences about distributed systems. The knowledge of the 
causal ordering relation between processes helps designers and the system itself solve a variety of 
problems in distributed systems. In distributed algorithms design, such knowledge helped ensure 
fairness and liveness in distributed algorithms, maintained consistent in distributed databases and 
helped design deadlock-detection algorithm. It also helped to build a checkpoint in failure recovery and 
detect data inconsistencies in replicated distributed databases. Approach: In this study, we implemented 
the causal ordering in Suzuki-Kasami’s token based algorithm in distributed systems. Suzuki-Kasami’s 
token based algorithm in distributed algorithm that realized mutual exclusion among n processes. Two 
files sequence numbers were used one to compute the number of requests sent and the other to compute 
the number of entering in critical section. Results: The causal ordering was guaranteed between requests. 
If a process Pi requested the critical section before a process Pj, then the process Pi will enter its critical 
section before the process Pj. Conclusion: The algorithm presented here, assumes that if a request req 
was sent before a request req’s, then the request req will be satisfied before req’s. 
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INTRODUCTION 

 
 The mutual exclusion problem states that only a 
single process can be allowed access in its Critical 
Section (CS). Hence, the mutual exclusion problem 
plays an important role in the design of computer 
systems. Several distributed algorithms are proposed to 
solve this problem in distributed systems and based on 
asynchronous messages passing and without global 
clock. Distributed mutual exclusion can be divided into 
two groups: Permission-based algorithms and token-
based algorithms. 
 In the first class Permission-Based 
Algorithms[2,8,10,16,19,20], where all involved processes 
vote to select one which receives the permission to 
access the CS. Lamport[8] was the first to design a fully 
distributed permission based mutual exclusion 
algorithm using logical timestamps. In his algorithm, 
each request se is the entire distributed system. Then, if 
n is the number of processes in the distributed system, 
the algorithm requires (n-1) request, (n-1) reply and (n-
1) releases. The algorithm requires 3(n-1) messages per 
critical section execution. Ricart and Agrawala[18] have 
reduced the number of messages in Lamport’s 
algorithm to 2(n-1). Carvalho and Roucairol’s 
algorithm[2] has further improved the number of 

messages in Ricart and Agrawala’s algorithm by 
avoiding some unnecessary request and reply messages. 
They have shown that the number of messages 
exchanged in their algorithm is between 0 and 2(n-1). 
In[10], Maekawa uses the quorum principle to solve the 
distributed mutual exclusion and reduces the number of 
messages from O(n) to O(√n). 
 In  the   second  class,   token-based 
algorithms[1,3,4,13-16,21-24], in which only one process 
holding a special message called the token, may enter 
the critical section. The dynamical spanning tree is 
presented in[22,23] to ensure the mutual exclusion. The 
reversal path permits to reduce the number of messages 
to log(n)[6,7,9,12], where n is the number of processes in 
the network. The performance metrics of the mutual 
exclusion algorithms are: The average number of 
messages necessary per critical section invocation, the 
response time, the fault tolerance. The mutual exclusion 
algorithm should be starvation-free and fairness. 
 

MATERIALS AND METHODS 
 
Definition of Causality: Causal ordering of events in a 
distributed system is based on the well-known 
“happened before” relation noted →[8]. The “happened 



J. Computer Sci., 5 (5):398-404, 2009 
 

399 

before” relation → defined by Lamport is defined by 
the following three rules: 
 
• If a and b are events in the same process and a 

comes before b, then a → b 
• If a is the sending of a message by one process and 

b is the receipt of the same message by another 
process, then a → b 

• If a → b and b → c, then a → c 
 
 Note that → is ir-reflexive, asymmetric and 
transitive, i.e., it is a strict partial order. The → relation 
is also referred to as the causality relation in[8]. 
 Lamport describes a mechanism for total ordering 
of events in a distributed system. It is based on logical 
clocks and requires each site to have at least one 
message from every other site in the system. Causal 
ordering is a weaker ordering than total ordering. 
Causal ordering of the events a and b means that every 
recipient of both a and b receive message a before 
message b. Since there is no global clock in distributed 
systems, information is added to the messages to 
indicate the knowledge of other messages in the system 
that were sent before it. A message is said to depend 
upon other messages in the system that were sent before 
it and a message cannot be delivered until all messages 
that it depends upon have been delivered. The transitive 
closure of this relation denotes the “transitive 
dependencies” or “dependency chain”. A convenient 
way to visualize distributed computations is with time 
diagram. Figure 1 shows an example for a system 
comprising three processes. A directed line symbolizes 
the progress of each process.  
 On Fig. 1, the causal ordering is not guaranteed. 
Message m1 is sent before message m2, but the process 
P3 receives the message m2 before m1: 
 
e11 → e21 → e22 → e32 → e33 

 
 From e11 → e21 → e22, we deduce that e33 → e22. 
The events e22 → e31 → e32 → e23 and e32 → e12 → e13. 
From e22 → e31 → e32, we deduce that e13 → e12. 
 

 
 
Fig. 1: The causal ordering is not guaranteed  

 On Fig. 2, a request is sent to P1 to all other at e11. 
This request is received and stored by P2 (e21) and 
received by P3 (e33). When process P2 requests the 
critical section, it sends all waiting requests stored in its 
fifo queue (the request of P1 is placed before the request 
of P2). Process P3 holds the token and receives a request 
from P2 (e31). The process P3 sends the token to process 
P1 and not to process P2. 
 
Logical time approaches: In the literature, two types 
of causal ordering protocols were found: Logical clock 
based and physical clock based. By far, the majority of 
work on causal ordering protocols has been done in the 
logical clock domain. In fact, only one protocol based 
on physical clocks was uncovered. Therefore, this study 
surveys the logical clock mechanisms. In order to 
describe the protocols, a definition for logical clock 
must be given. 
 As defined by Lamport in[8], a clock is away of 
assigning a number to an event where the number is the 
time at which the event occurred. Since the clock has 
no relation to physical time, it is called a logical clock 
Hi. Counters can implement logical clocks with no 
actual timing mechanism. A logical clock is correct if it 
observes the following clock condition: if an event a 
occurs before another event b, then a should happen at 
an earlier time than b. In other words for any event a 
and b: If a → b then H(a) < H(b). 
 To guarantee that the system of clocks satisfies the 
clock condition, the following implementation rules are 
followed: 
 
• Each process Pi increments Hi between any two 

successive events 
• if event a is the sending of a message m by 

process Pi, then the message m contains a 
timestamp Tm = Hi(a) 

• Upon receiving a message m, process Pj sets 
Hj as max(Tm, Hj) 

 
Vectors timestamps: The causal history approach can 
be improved by observing that for each processor, the 
causal history is sufficiently characterized by the 
largest index  among  its  members, i.e., its cardinality. 
 

 
 
Fig. 2: Mutual exclusion without causal ordering  



J. Computer Sci., 5 (5):398-404, 2009 
 

400 

Thus, the causal history can be uniquely represented by 
an n-dimensional vector V of integers. A definition for 
vector time is given in[11]. The vector time Vi of a 
process Pi is maintained according to the following 
rules: 
 
• V i[k] ← 0, for k = 1,…, n processes 
• On each internal event e, process Pi increments Vi 

as follows: Vi[i] ← Vi[i]+1 
• On sending message m, Pi updates Vi as in the 

second point and attaches the new vector to m 
•  On receiving a message m with attached vector 

time V, Pi increments Vi as in the second point. 
Next Pi updates its current Vi as follows: Vi[k] ← 
max (Vi, V) 

 
 Since there is a correspondence between vector 
time and causal history, we can determine causal 
relationships between events by analyzing the vector 
timestamps of the event in question. 
 
Fidge-Mattern protocol: The protocol refers two 
protocols by Fidge[5] and Mattern[11] that are similar. 
This protocol uses a vector of logical clocks to 
implement causal ordering[17]. In this algorithm, every 
process maintains a natural number to represent their 
local clocks. Each process initializes its local clock to 0 
and increments it at least once before performing each 
event. When processes send and receive messages, they 
pass on whatever local clock information they have to 
each other. Hence, each process maintains its own local 
clock information and also whatever local clock 
information of the other processes it can obtain from 
received messages. The logical time is defined by a 
vector of length n, where n is the number of sites in the 
system. The logical time vector is noted Vi, which 
represents the logical time on site process Pi and V for 
the timestamp of message m. The logical time of a site 
evolves in the following way: 
 
• When a local event occurs at process Pi, the ith entry 

to the vector Vi is incremented by one: Vi[i] ← 
V i[i]+1 

• When a site Si receives a message m, timestamp V, 
the rules states: 
• For j=i, Vi[j] ←V i[i]+1 
• For j≠i, V i[j] ← max(Vi[j], V[j]) 

 
 As stated in the discussion on vector clocks, the 
major drawback of this protocol is the size of the time 
vectors. If the number of processors is large, the 
amount of timestamp data that has to be attached to 
each message is unacceptable. 

Suzuki-Kasami’s algorithm: The algorithm is 
presented in[21]. A process holding the token is allowed 
to enter into the critical section. A single process has the 
privilege and a node requesting critical section 
broadcasts a request message to all the other nodes. A 
process sends the privilege if the toke is idle with the site. 
The site having token can continuously enter critical 
section until it sends the token to some other site. The 
request message has the format request (j, hj), which 
means site j is requesting its critical section. Each node 
maintains an array RN of size N for recording latest 
sequence number receives from each of the other nodes. 
The TOKEN message has the format TOKEN (LN), 
where LN is an array of size N where LN[j] is the latest 
critical section executed by a node j. if RN[j] = LN[j]+1, 
it means that a node j has sent a request for its new 
sequence of critical section and the node having the 
privilege adds this to the queue and if token is idle, the 
node sends the TOKEN (LN) to the node requesting 
critical section. The number of messages per critical 
section entry is (N-1) REQUEST messages plus one 
TOKEN message so N messages in all or 0 if the node 
having the token wants to enter critical section. 
 
• When done with the critical section, process Pi sets 

LN i[i] = RNi[i] 
• For every process Pj it appends Pj in waiting queue 

if RNi[j] = LN i[j]+1 
• If the waiting queue is not empty, it extracts the 

process at the head of the waiting queue and sends 
the token to that process 

 
Suzuki-Kasami’s algorithm based on causal 
ordering:  
Concurrent requests: Let Ri and Rj are two vectors of 
two processes Pi and Pj respectively. 
 
Definition: For any two time vectors Ri and Rj: 
 
Ri ≤ Rj iff R i ≤ Rj and it exists k such as Ri[k] < Rj[k] 
Ri < Rj iff R i ≤ Rj and it exists k such as Ri[k] < Rj[k] 
Ri || Rj iff ¬ (Ri < Rj) and ¬ (Rj < Ri) 
 
Principle: To implement the causal ordering, we use, 
for every process Pi the vector timestamp Ri where 
Ri[k] is the last request time sent by process Pk and 
received by Pi. The new requests received by process Pi 
are stored in a waiting local queue Qi. 
 When a process Pi holding the token, requests the 
critical section, it enters its critical section without 
sending the message. In another way, it increases Ri[i] 
by one, appends (i, Ri[i]) to Qi, sends the request “REQ 
(Qi)” to all other processes, sets Qi to empty and waits 
for the token. 
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Fig. 3: Mutual exclusion with causal ordering 
 
 When a process Pj receives a request “REQ (Q)” 
from another process, Pi removes from all queues Qi 
and Q the obsolete request and appends Q to Qi to 
obtain by merging a queue Qi. A process Pi holding the 
idle token, sends it to the head of its waiting local queue 
Qi and sets Qi to empty. 
 
Approach: 
Example: In Fig. 3 we consider a distributed system 
{P1, P2, P3, P4}, the process P3 holds the token. We 
consider the following scenario: 
 
T0: The process P3 requests the critical section and 

enters its critical section, without sending the 
request message. 

T1: Process P1 requests the critical section, it increases 
its logical time Ri[i] by one, appends (1, R1[1]) to 
its waiting queue Q1, sends “REQ (Q1)” to others 
processes, sets Q1 to empty and waits for the token. 

T2: Process P2 receives the request “REQ (Q)” from P1. 
The process P2 deletes from Q2 and Q the obsolete 
request, afterwards, it appends Q to Q2. 

T3: Process P4 receives the request “REQ (Q)” from P1. 
The process P4 deletes from Q4 and Q the obsolete 
request, afterwards, it appends Q to Q4. 

 R1=(1,0,0,0), R2=(1,1,0,0), R4=(1,0,0,1), R1< R2 
and R1< R4 but we have R2 || R4. 

T4: Process P4 requests the critical section, it increases 
its logical time R4[4] by one, appends (4, V4[4]) to 
its waiting queue Q4, sends “REQ (Q4)” to others 
processes, sets Q4 to empty and waits for the token. 

T5: Process P2 requests the critical section, it increases 
its logical time R2[2] by one, appends (2, V2[2]) to 
its waiting queue Q2, sends “REQ (Q2)” to others 
processes, sets Q2 to empty and waits for the token. 

T6: Process P3 receives the request from P2. Process P3 
holds the token, but it uses it. The process P3 

deletes from Q the obsolete requests; afterwards, it 
appends Q to Q4. Q4= {(1, 1), (2, 2)}. 

T7: Process P1 receives the request from P4. The 
process P1 deletes from Q the obsolete requests; 
afterwards, it appends Q to Q1. Q1= {(4, 2)}. 

T8: The process P3 releases the critical section, sends 
the token message “TOKEN (Q4)” to the head of 
Q4 and sets Q4 to empty.  

T9: Process P1 receives the request from P2. The 
process P1 deletes from Q the obsolete requests; 
afterwards, it appends Q to Q1. Q1= {(4, 2), (2, 2)}. 

T10: Process P1 receives the token message “TOKEN 
(Q)” from P3. The process P1 deletes from Q1 the 
obsolete requests, afterwards, it append P1 to Q.  

 Q1= {(4, 2), (2, 2)}. When the process P1 releases 
its critical section, it sends the token to the process 
P4. 

 
Definition:  A request with timestamp (i, h) is said 
obsolete if for all k, we have (h≤ Rk[i]) or (h≤ T[i]), 
where Rk[i] and T[i] are the vector timestamps of 
requesting and entering the critical section by process 
Pi. 
 
Local variable at process P: 
 
Ri: Vector of timestamps where Ri[i] denotes the 

last timestamp of requesting critical section by 
process Pi. 

T: Vector of timestamps where T[i] denotes the 
last timestamp critical section execution by 
process Pi. 

Qi: Waiting Fifo queue of (j, hj) where j is the 
process Pj and hj is the timestamp request. 

HT i: Boolean true if process Pi holds the token, false 
otherwise. Initially one process holds the token.  

InCSi: Boolean true if process Pi is in the critical 
section and false otherwise.  

Nexti: Pointer denotes the next process to which, the 
token will be sent. 

 
Messages of the algorithm: We consider two kinds of 
messages exchanged between processes: 
 
REQ (Q): This message is sent to all others process to 
obtain the token. 
 
TOKEN (Q, T):  This message to denote the 
permission to enter the critical section. 
 
Algorithm: We define the concatenation operator “*” 
as follows: the operator “*” merges the waiting 
received Q and local Qi and we denote it by “Q*Qi”. 
We consider the two following cases: 
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• When a process Pi receives waiting queue Q 
attached to token message, it deletes from Qi all 
obsolete messages. For all (k, h) є Q such than (k, 
h’) є Qi, remove (k, h) from Qi 

• When a process Pi receives waiting queue Q 
attached to request message, it deletes from Q and 
Qi all obsolete messages 

 
Rule1: Pi requests the critical section 
 
 If (HT i=False) Then 
  Ri[i] ← Ri[i] +1 
  Qi ← Qi*(i, R i[i]) 
  For all k Send REQ (Qi) To Pk 
  Qi ← [ ] 
 EndIf 
 
Rule2: Pi receives REQ (Q)  
 
 Qi ← Qi*Q 
 For all k є Qi Ri[k] ← max (Ri[k], R[k]) 
 Ri[i] ← max (Ri[k]) 
 
Rule3: Pi receives TOKEN (Q, T)  
 
 HTi ← True 
 For all k Ri[k] ← max (Ri[k], T[k]) 
 Qi ← Qi*Q 
 InCSi ← True 
 
Rule4: Pi releases the critical section 
 
 InCSi ← False 
 T[i] ← Ri[i] 
 Nexti ← Head (Qi) 
 If  (Nexti ≠ Nil) Then 
  HTi ← False 
  Qi ← Remove (Head (Qi)) 
  Send TOKEN (Qi, T) To Nexti 
  Nexti ← Nil 
  Qi ← [ ] 
 EndIf  

 
 RESULTS 

 
Correctness and proof of the algorithm: 
Theorem: The algorithm based on causal ordering 
ensures the mutual exclusion. 
 
Proof: To show that the algorithm achieves mutual 
exclusion, we have to show two or more processes can 
never be executing critical section simultaneously. 
Initially, only the process holding the token can enter in 

its critical section. When a process Pi releases its 
critical section, it sends the token to only one requesting 
process at the head in the waiting queue Qi. 
 
Lemma: For all i, j є [1... n], Ri[i] ≤ T[i] +1 is an 
invariant. 
 
Proof: Initially the property is true. We suppose the 
contrary, Ri[i] > T[i]+1→ Ri[i] - T[i] > 1, that implies 
than the process Pi has sent several requests before the 
token. This is impossible because every process cannot 
send a new request until it receives the token. 
 
Lemma: For all i є 0 ≤ |Qi| ≤ n is invariant. 
 
Proof: Initially the property is true. We suppose the 
contrary, |Qi| > n. That is the file Qi contains two 
couples at least (k, h) є Qi and (k, h’) є Qi. Therefore, 
they must have h ≤ h’ or h’ ≤ h, by examining 
algorithm, this is impossible. 
 Let Q be a waiting queue of process holding the 
token. 
 
Lemma: All requests in waiting queue Q respect the 
causal ordering.  
 
Proof: When a process Pj receives a request REQ (Q) 
message from another process Pi, it deletes from Q all 
obsolete requests and appends Q to Qj. When the 
process requests the critical section, it increases its 
vector timestamp by one, appends its request at the end 
of waiting queue Qi, sends the request REQ (Qi) to all 
other processes. 
 The processes holding the token will receive either 
the request REQ (Q) from Pj or a request “REQ (Qi)” 
from Pi. In both cases, the process Pj will receive the 
token before process Pi. 
 
Theorem: If process Pi requests the critical section 
before process Pj, then process Pi enters its critical 
section before Pj. 
 
Proof: The causal ordering between two requests is not 
guaranteed, if for any two requests req (i, hi) → req (j, 
hj), the process Pj receives the token before process Pi. 
We examine two cases: in the first case, the process Pj 
receives the request req (Q) from process Pi, this 
request is put in the waiting queue Qj. After Pj requests 
the critical section, puts its request at the end of Qj after 
the request req (i, hi) and we have hi < hj. In the second 
case, we assume that there is a process Pk such as it 
receives the requests req (Qi, hi) and req (Qj, hj) from Pi 
and Pj respectively. The process Pk concatenates the 
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two files into its local waiting queue Qk which contains 
the request of Pi before that of Pj. 
 

DISCUSSION 
 
 The new algorithm for distributed mutual exclusion 
can be used in several applications which require the 
causal ordering. Other algorithms can be transformed, 
according to the same principle. 
 

CONCLUSION 
 
 In this study, we have presented a Distributed 
Mutual Exclusion algorithm based on causal ordering. 
The causal ordering is guaranteed between requests. If a 
process Pi requests the critical section before a process 
Pj, then the process Pi will enter its critical section 
before the process Pj. The number of messages 
necessary to satisfy each request is 0 when a process 
holds the token and n in the other case.  
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