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Abstract: Problem statement: Recently, 3D objects have been used in several applications like 
internet games, virtual reality and scientific visualization. These applications require real time 
rendering and fast transmission of large objects through internet. However, due to limitation of 
bandwidth, the compression and streaming of 3D object is still an open research problem. 
Approach: Novel procedure for compression and coding of 3-Dimensional (3-D) semi-regular meshes 
using wavelet transform had been introduced. This procedure was based on Space Frequency 
Quantization (SFQ) which was used to minimize distortion error of reconstructed mesh for a different 
bit-rate constraint. Results: Experimental results had been carried out over five datasets with different 
mesh intense and irregularity. Results were evaluated by using the peak signal to noise ratio as an error 
measurement. Experiments showed that 3D SFQ code over performs Progressive Geometry Coder 
(PGC) in terms of quality of compressed meshes. Conclusion: A pure 3D geometry coding algorithm 
based on wavelet had been introduced. Proposed procedure showed its superiority over the state of art 
coding techniques. Moreover, bit-stream can be truncated at any point and still decode reasonable 
visual quality meshes. 
 
Key words: Compression, 3D geometry coding, wavelet, 3D space frequency quantization, rate-
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INTRODUCTION 
 
 An extensive range of applications from different 
research areas require highly detailed complex 3D 
models that support these applications to achieve a 
convincing level of realism. The most efficient way to 
obtain these models is by scanning real objects with one 
of the 3D scanning technology tools that have been 
improved lately. There are many ways to represent 
these 3D models but the most popular way is the 
triangular meshes because of their flexibility to 
represent arbitrary shapes and being supported by all 
rendering systems. While the scanned 3D objects 
contain millions or even billions of points[1], they can 
be triangulated by numerous methods like[2,3]. Due to 
the huge size and complexity of the scanned meshes, 
they consume large storage space and bandwidth of any 
transmission processes over the internet or a network. 
Therefore, several compression techniques have been 
proposed to overcome the problem of processing, 
transmitting and saving these huge amounts of data. 
 A three dimension mesh has two main components 
of data which are geometry, i.e., vertex coordinates and 
connectivity, which describe the connection between 

vertices, so any 3D triangular mesh coding scheme 
should be composed of two coding algorithms one for 
the connectivity and the other for the geometry. The 
connectivity data has an essential role in mesh coding 
due to the fact that a typical triangular mesh has twice 
triangles as vertices. Therefore, most of 3D triangular 
mesh compression techniques have the geometry 
coding algorithms driven by their connectivity coding 
algorithms.  
 The 3D triangular mesh coding schemes are either 
the single-rate settings which concerning about saving 
the bandwidth between the CPU and the graphics card, 
or progressive settings that is used for transferring and 
browsing 3D objects over the internet and networks. 
Many schemes have been proposed for the single-rate 
approach by many researches as in[4-8]. Chow[5] is 
optimized for the real time compression, while Touma 
and Gotsman's algorithm (TG)[7] is near optimality and 
considered as the state-of-art technique. While the 
recent efforts of the 3D triangular mesh compression 
are focused on the progressive coding. This approach 
uses the mesh simplification techniques to allow the 
transmission and rendering of a mesh with different 
levels of details. The first progressive 3D mesh 
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compression technique was presented by Hoppe[9], 
which is based on a successive simplification method. 
Followed this idea, many algorithms were developed 
for example[10-13]. However, less efforts has been 
devoted to the geometry coding since most of the 
compression techniques have the geometry coding 
driven by the connectivity coding. 
 In the last few years, the pure geometry coding has 
emerged as a promising direction, where the connectivity 
coding algorithm driven by geometry compression 
method. A few schemes have been proposed in[14-18] with 
very efficient coding performance tend to the optimality. 
Inspired by this promising direction in coding, we 
introduce a new pure geometry compression technique 
that is space frequency quantization for 3D meshes has 
been presented in details and it is based on semi-regular 
meshes, wavelet transform and appropriate rate-
distortion optimization quantizer. This quantizer is an 
optimal combination between two modes of quantization 
which are the spatial zerotree quantization and uniform 
scalar quantization. Finally, the quantized symbols are 
encoded using an arithmetic coder. 
 
Geometry coding: The main ideas of the recent pure 
geometry coders are originally modified from that 
developed for the 2D image compression. Gandoin and 
Devillers[14] introduced the KD-tree decomposition 
technique based on the cell subdivisions. First, it 
compresses the geometry data progressively without 
any connectivity constrains and then it compresses the 
connectivity changes between two successive Levels Of 
Details (LODs). The compression performance for this 
scheme costs 3.5 bit per vertex (bpv) for connectivity 
data and 15.7 bpv for geometry data. Peng and Kuo[15] 
proposed a lossless 3D triangle mesh compression 
scheme based on the octree decomposition algorithm. 
This scheme starts with the geometry data, quantizes 
3D vertices and partitioned them into an octree 
structure and then the tree is traversed in top-down 
manner, where each cell in the tree is subdivided into 
eight child-cells, finally the geometry and connectivity 
changes are compressed for each cell subdivision. The 
compression performance for this scheme outperforms 
the KD-Tree[14] in both connectivity and geometry 
coding performance. Karni and Gotsman[16] proposed 
spectral compression techniques based on the spectral 
theory on meshes. It uses of Fourier transform for 3D 
meshes to represent the source samples into transform 
coefficients and then encodes the low frequency 
coefficients and discards the higher frequency 
coefficients. The performance of this compression 
approach costs around 1/2~1/3 of TG bit-rate[7] and it is 
applicable only for regular meshes. Gu et al.[17] 

introduced a geometry image coding scheme based on a 
2D regular array of re-sampled vertices that generates a 
geometry image. Every pixel quantity in the geometry 
image represents a 3D coordinate vector (x, y, z). Then 
the generated geometry image is compressed using a 
standard 2D image compression schemes. Praun and 
Hoppe[19,20] modified the geometry image coding 
technique using the approach of parameterization of a 
3D mesh. Its compression performance achieves better 
performance than[17] for only regular meshes. 
Khodakovsky et al.[18] introduced the Progressive 
Geometry Compression algorithm (PGC) based on the 
wavelets for any arbitrary meshes and especially for 
meshes generated from 3D laser scanner. First, it 
remeshes the original meshes into a semi-regular mesh 
using the MAPS algorithm[22] and Loop wavelet 
transform algorithm in[18]. Then, they modified the Set 
Partitioning In Hierarchical Trees (SPHIT) algorithm[21] 
that is one of the successful 2D image coders to encode 
the loop wavelet coefficients. Thus the compression 
performance for[18] provides a better performance than 
TG[7]. Thus the wavelet coding[18] provides the best 
compression performance for semi-regular and irregular 
meshes. 
 
Wavelets: In order to apply the wavelet transformation 
to the irregular meshes, a remeshing process must be 
used to convert these meshes into semi-regular. Since 
the offered wavelet transforms for 3D meshes are only 
for semi-regular meshes. Besides the complexity of the 
3D scanned meshes lies in its mesh structure which is 
always irregular. The semi-regular has the flexibility in 
processing their data, while the irregular meshes do not 
own this feature. The MAPS[22] remeshing will be 
applied in this framework.  
 The 3D semi-regular meshes have geometry of 
curved surfaces which is a correlated data that affected 
the coding performance, so a decorrelation tool has to 
be used to address this problem. In order to deal with 
irregular multilevel curved surface, the wavelet is used 
to decorrelate this type of data. Thus, the lifting 
scheme[23] is used to define wavelet transforms for 
semi-regular meshes and produces a hierarchical 
decomposition of mesh. The benefit of the hierarchical 
data structure representation of the coefficients is to 
construct spatial quad trees that will be more efficient 
in encoded these coefficients. The local frame[24] has to 
be used after wavelet transformation to set the wavelets 
coefficient more independent. 
 

MATERIALS AND METHODS 
 
Problem statement: Usually the 3D mesh compression 
problem can be formulated as a tradeoff between rate 
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(i.e., bit rate) and distortion. This tradeoff is the subject 
of classical rate-distortion theory. Recently the rate-
distortion curves are used in geometry compression 
after their success in the image compression literature. 
However the wavelet-based compression algorithm 
(PGC)[19] use rate-distortion quantizer that is a 
combination of achieve high coding gain, this quantizer 
used in this algorithm is suffering from optimization at 
the truncation point which means that there is no 
guarantee for optimized rate-distortion performance. 
Thus, the problem can be stated as how to compress the 
3D complex mesh models with optimized rate-
distortion performance. 
 The main idea of this research is to improve the 
coding performance for a multi-resolution meshes by 
achieving optimality using jointly two quantization 
modes which are the scalar frequency and zerotree 
quantization types. In other words, the rate-distortion 
performance will be optimized using the best 
hierarchical wavelet trees and the best quantizer step 
size are found using Lagrange optimization method. 
Where, the best chosen step size is applied to all 
survivor wavelet coefficients in the trees.  
 
Proposed approach: The proposed algorithm is to 
optimize the trade-off between the bit rate R and the 
distortion D of the reconstructed mesh either by 
minimizing the losses due to the geometry coding, or by 
reducing the bit budget. Thus the problem formulation 
stated as follows: 
 

b
{q Q;S }

D(q,S) subject to R(q,S) Rmin
∈ ⊆≤ Τ

≤  (1) 

 
Where: 
Rb = Bit budget 
q  = The quantizer choice that is called step size  
Q = {q1, q2,…,qm} indicate the finite set of all 

admissible step size choices for the quantizer 
regardless its mode 

S = The best pruned sub-tree  
T = The original full spatial tree built from wavelet 

coefficients thus 
S = Less than or equal T 
 
 Equation 1 is a constrained optimization problem 
and to solve this problem, Eq. 1 has to be converted 
into unconstrained equation. By using the Lagrange 
RD-Function, the equivalent unconstrained problem has 
been obtained for the special case of R (q) = Rb as 
follow: 
 

d d
{q Q,S } d {x,y,z}

[J(q,S) D (q,S) R (q,S)]min
∈ ⊆Τ ∈

= +λ∑   (2) 

Where: 
J = The Lagrangian cost 
d = Index for the coordinate component that are x, y 

and z  
λ = The Lagrange multiplier belongs to real numbers 
 
 Thus, the solution of Eq. 4 is q* and S*, where R 
(q*, S*) = Rb. Since λ balances the rate and distortion, 
it should be set higher to increase the compression ratio 
at the given rate. Thus, the solution of Eq. 1 is also to 
find these values q* and S*. Now the problem can be 
formulated as: 
 

* *

q Q S

J(S ,q ) [D(q,S) R(q,s)]minmin
∈ ≤Τ

= +λ  (3) 

 
 The most important task for Eq. 3 is the 
minimization of S that includes the optimal tree-
pruning to find the best subtree S for a given q and λ. 
Therefore: 
 

*

{S }

J(S ) [D(q,S) R (q,S)]min
⊆ Τ

= + λ  (4) 

 
 Then, to obtain the best scalar frequency quantizer 
step size q, identify the best subtree S for any fixed 
values q and λ chosen corresponding to a single point 
on the rate-distortion curve. So, the optimal spatial 
subtree (q, S) for fixed λ. At last, search for the best 
value of λ that match the constraint Rb by using the 
convex search bisection algorithm the same used in[25]. 
The next subsection will describe the coding of this 
algorithm. 
 
The coding algorithm: The spatial tree is constructed 
from the wavelet coefficients and a binary zerotree map 
is used to indicate the presence or absence of the nodes. 
First, the proposed coder applies the spatial 
quantization to obtain the best spatial regions of the 
wavelet coefficients in the spatial tree. Then, it 
quantizes these spatial regions by a standard scalar 
quantization. Thus, the data that will be sent to the 
decoder is the quantized data stream corresponding to 
the survivor nodes of the spatial tree and the zerotree 
map bits. In other words, there is a strong coupling 
between the data and map information can be 
observed. The zerotree map is overhead information 
for the data stream that will be sent to the decoder. To 
handle this overhead information a prediction scheme 
is used to improve the compressing efficiency. So the 
data and map information together have to be encoded 
by using two phases, the tree pruning phase and 
prediction phase.  
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The tree-pruning algorithm: The objective of this 
phase is to search for the optimal spatial subtree 

*
dataS ≤Τ  for fixed quantizer q and λ assuming that the 

zerotree map Rmap (q, S) is constant. Therefore the 
spatial tree will be pruned depending on a pruning rule 
applied to all nodes in the tree. That is to decide 
whether or not to send any of descendents of a node in 
the tree. However, the spatial quad tree based on the 3D 
triangular mesh is constructed for vertices from the 
edges quad tree based on the fact that each edge is 
associated with a vertex like in[18]. Thus the pruning 
rule matches the vector case in the 3D meshes, i.e., x, y 
and z coefficients for each node, where this rule deal 
with the sum of that vector components. 
 Consistent with[25] the proposed algorithm shall use 
the following notations. For an original full tree T, let 
Ui be the residue tree at node i ∈T, that is a set of all 
descendants of node i. Besides K will refer to the 
iteration count and (k )

in  represents the binary zerotree-

map at Kth iteration of the algorithm which will take 
value zero if all descendents of node are set to zero i 
else it takes value one. And let (k)

jJ  is the Lagrangian 

cost of quantizing node j at Kth iteration of the 
algorithm, with (k)

jD and (k)
jR representing its distortion 

and rate components respectively. While Let 
j

*

U
J  

represents the minimum Lagrangian cost associated 
with residue tree Uj of node j. Let (k )

jΡ  be the 

probability of the surviving nodes in the spatial subtree 
at the kth iteration of the algorithm. Moreover, Let l be 
an index to the number of levels in the spatial subtree, 
where l = 0 refer to the corset level. And dim denotes 
the index of the three dimensions.  
 The wavelet coefficients ωi will be quantized to iω̂  

in the tree using the scalar frequency quantizer at step 
size q. The tree-pruning algorithm consists of two 
nested loops: The outer loop and the inner loop. The 
outer loop iterates the pruning process to obtain the best 
pruned tree by using a convergence condition that takes 
the decision for stop or iterate again. The convergence 
condition is to check if the tree got some pruned nodes 
or not. When the tree doesn't have any pruned nodes 
(i.e., S(k+1) = S(k)), it means that the algorithm can't 
prune more nodes, so it has to stop the loop and declare 

* (k 1)
dataS S +←  is the best spatial tree with scalar quantizer 

step size q and rate-distortion slop λ. But when the tree 
changed by pruning some nodes, it means that it has to 
iterate again looking for a new pruned nodes in the 
subtree S(k+1). 
 The inner loop, apply the pruning rule for all nodes 
in the tree that is a comparison between the cost of all 

descendants of a node i and the cost of zeroing out 
these node's descendants to prune them or not. To know 
the best residue tree costs at the time, the algorithm 
apply this process from bottom to up. If some nodes got 
pruned, the Probability Density Function (PDF) of the 
residue tree will be changed dynamically. So it has to 
update the PDF for all nodes in the tree because it affects 
the histogram of the surviving nodes. Thus, recalculates 
the PDF after entering the outer loop and before the inner 
loop. Therefore the coding algorithm will be: 
 
Initialization: set: 
 

i

(0) *

U
S T,K 0, j 0= = =   

 
∀ j∈leaf nodes of T 
 
Update the probability: Update the probability for all 
nodes in S(K): 
 

( )
(K)
dim , i

dim,i

(k)

(k)

p

No.of coefficientsquantized tobin no. q 0.5
,No.of coefficientsinS

i S

=

 ω +
  

∀ ∈

 

 
Zerotree pruning: Set l equal to the maximum depth 
of S(k)-1. Then apply the following test for each node i 
at the current tree depth of S (k): 
 
1 = maximum depths of S(k)-1 
 
∀i∈depth l of S(k)  
 
If: 
 

( )
j

i i

3
k2 *

d im , 1 j U
d im 1 j U j C

J J
= ε ε

 ω ≤ +  ∑ ∑ ∑  (5) 

 
Then:  
 

i

3
2(k) *

Ui j
j Ud 1

n 0; J
ε=

  = = ω 
  

∑∑  

 
Thus:  
 

( )
j

i

k *(k) *
jUi Uj

j C

n 1; J J J
ε

   = = +     
∑  (6) 

 
Where:  
 

( ) ( ){ }
23 3

K K(k) (k) (k)
j j j dim, j dim, j 2 dim, j

dim 1 dim 1

ˆJ D R log p
= =

   = +λ = ω ω +λ −   ∑ ∑  
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Inner loop: Loop bottom-up through all levels by 
decreasing the depth l by one 
If: 
 l≥0 
Then:  
 l = l -1 and go to step 3 
 
Outer loop: Check for convergence else iterate 
If S(k+1) ≠ S(k)  
Then K = K+1 and go to step 1 
Else * (K 1)

dataS S +=  

 
The prediction algorithm: In this phase, the prediction 
scheme is based on the idea of deducing much of the 
map tree information by sending only unpredictable 
nodes form the map tree and removes all the predictable 
nodes because it will be predicted by the decoder. This 
predictive spatial tree quantization scheme will be 
applied in the sense of the rate-distortion optimality. 
 The main idea of the predictive spatial tree 
quantization algorithm is to predict the significance or 
insignificance nodes in the residue tree from the energy 
of its parent. Where the energy of a parent is calculated 
as the variance of the neighbors centered at this parent. 
Thus, calculate the variance for all nodes per each level 
in the residue tree then order the variances per each 
level and put them in a list to find the threshold used in 
prediction. The residue tree predictability depends on 
two thresholds computed per level for all the spatial 
tree quantizer levels. Hence, the second main 
modification exists in finding the mesh vertex 
neighbors. In the image case the energy of a parent was 
calculated as the variance of neighbors centered at this 
parent. Where the neighbors are 3×3 block centered at 
parent node as shown in Fig. 1. 
 In[26], the mesh vertices have another vertex 
neighbors  rule for the vertex neighbors as shown in 
Fig. 2. This rule provides enough information for 
prediction algorithm especially for the semi-regular 
meshes that are used in this research. After applying the 
prediction algorithm, the optimal pruned tree will be 
found in the global data and map rate-distortion sense.  
 

 
 
Fig. 1: The 3×3 block neighborhood in an image 

 However, this phase will use the following 
notations. Let Th and TL be the high threshold and low 
threshold respectively and let Zh represent the index of 
the node with the variance equal to Th. While h be the 
number of 0 nodes down ton nSh in the variance-order 
list. 
 Besides bk denotes the position difference between 
nzh and nzh+1. And ∆Jdata i be the absolute value of the 
difference between the two sides of inequality (5) for 
each i∈T. The prediction scheme will starts with 
calculating the energies of all nodes by computing the 
variance of the neighbors surround this parent. Then 
apply the following algorithm for each level, starting 
from the finest level to the coarser level: 
 
• Build two lists where one of them contains the 

parent nodes variances and the other list contains 
the zerotree map bits corresponding to these nodes 
ni 

• Sort the two lists in a decreasing order according to 
the magnitude of the parent nodes variances which 
exist in the variance list 

• From the variance list find Tk and Tl, the optimal 
design for these thresholds will be discussed after 
the last step 

• The decoder will receive Tk, Tl and zerotree map 
bits corresponding for nodes whose parent variance 
come in between the two thresholds 

• Nodes have parents variances above Tk will be 
assumed as significant 

• Nodes have parents variances bellow Tl, will be 
assumed as insignificant 

 
 Now the optimal design of the two thresholds Tk 
and Tl, has to be stated to find them. Start with the 
design that optimize Tk. Since Tk is reduced at all to be 
at  least  as  small  as  the  variance  of  next  node nSh+1, 
 

 
 
Fig. 2: Neighborhood of a vertex for parent edge 

connected with regular and irregular vertices 
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it produces that h>1. Moving the index of Tk from Zk to 

Zh+1 saves 
h

ii 1
b

=∑ bits. Consider that the binary maps 

symbols have entropy of one bit per symbol, so this 
number of the saved bits equal to the number of 
positions that Tk moved down in the variance list. 
Therefore  reversing  ns  from  zero to one for all i from 
i = 1 to h, reduce the map rate by: 
 

h

map,h ii 1
R b

=
∆ =∑   (7) 

 
 But this reversing operation for ns nodes increase 
the data cost as calculated in the tree-pruning algorithm 
in phase I. Therefore, the algorithm performs this 
reversing operation globally for the data only 
depending on the zerotree result outputted from phase I. 
It is obvious that it should use the Lagrangian cost in 
the reversing operation to optimize the reversing rule in 
the rate-distortion sense that used in the whole 
algorithm. From tree-pruning algorithm, the winning 
and losing Lagrangian costs could be saved 
corresponding to each node. Where the gaining cost is 

i

*

U
J  which is the cost associated with the optimal map 

tree decision ni. And the losing cost is the cost 
associated with the losing decision in  that is larger side 
of inequality (5). Thus the reversing rule for ns nodes 
for all nodes zi from i = 1 to h is: 
If: 
 

h h

map,h i data,zi 1 i 1 i
R b J

= =
λ∆ =λ ∆∑ ∑≻   (8) 

 
Then: 
 Reverse tree-pruning algorithm decision nzi ←1. 
 
 If inequality (8) is false then h is incremented until 
this inequality satisfied for larger h then reverse nzh 
nodes to 1 for all i from i = 1-h. After that reset h-1 and 
repeat this operation until the variances list being 
exhausted. 
 
The coding algorithm implementation: The 
Implementation of proposed mesh compression system 
consists of several steps that are: 
 
• The lifting scheme is applied to the Semi-regular 

meshes and then uses the local frame to obtain 
more independent wavelet coefficients. The output 
of this step is geometry data as scaling and wavelet 
coefficients 

• To obtain better performance for the compression 
system, the TG coder has been used to encode the 

base level connectivity mesh since TG coder[16] has 
the best performance to encode the connectivity 
data 

• The scaling coefficients that are correspond to the 
base mesh geometry data are encoded using 
uniform quantization mode  

• The wavelet coefficients are encoded by using the 
3D SFQ coder for semi-regular meshes  

• Finally, the quantized coefficients resulted from 
any quantizer still can be encoded using entropy 
coding such as the arithmetic coder[27]. The 
arithmetic coder allows coding for mostly one bit 
per symbol and improves the compression 
performance. Thus the output bit stream from the 
arithmetic coder is saved in a file to represent the 
compressed 3D scanned model. 

 
RESULTS 

 
 The experiments have been conducted for testing 
the performance of the proposed algorithm using five 
datasets that are Venus head, Feline, Horse, Bunny and 
Rabbit. All of these datasets are semi-regular MAPS 
meshes but they vary in their dense and irregularity. 
The datasets were downloaded from the Caltech multi-
resolution modeling group[28] and stored in Caltech 
DAT file format[28]. The performance of the SFQ semi-
regular meshes coder was compared with the PGC 
coder[18] which is the state of art compression coder for 
semi-regular meshes and the results are shown in Fig. 3. 
The results for these experiments were evaluated using 
the Peak Signal to Noise Ratio (PSNR) scale as the 
error metric where PSNR = 20 log10 peak/ERMS, peak 
is the bounding diagonal box and ERMS is root mean 
square error between two surface area. 
 

DISCUSSION 
 
 The relationship between the distortion that 
represented by in decibel (dB) and the rate in bit per 
vertex is shown in Fig. 3. As we can notice the 
performance of 3D SFQ coder is significantly better 
than PGC coder at all rates except at low rates, it has 
the worst performance for all used datasets. 
 This can be explained by the fact that the PGC 
coder based on embedded coding that provides very 
good Rate-Distortion (R-D) performance and good 
visual quality at very low rates. While this coder has a 
desirable property  that the bit-stream can be truncated 
at any point and still decode reasonable visual quality 
meshes which called rate control. However, there is no 
guarantee that the rate-distortion performance was 
optimized  at   the   truncation   point.  In  other   words, 
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 (a) (b) (c) 

 

  
  (d) (e) 

 
Fig. 3: The comparison between PGC and SFQ for meshes using PSNR scale for (a): Horse, (b): Venus head, (c): 

Feline, (d): Rabbit and (e): Bunny MAPS meshes datasets 
 
PGC coder does not minimize the distortion for all 
strategies that satisfy a given rate constraint. It is well 
known that the coding achieves optimality if the rate-
distortion slopes for all coded coefficients are constant. 
The 3D SFQ coder quantizes the coefficients with fixed 
the rate-distortion slope. Thus the proposed coder 
solves the problem of rate control but has low visual 
quality very low rates. 
 

CONCLUSION 
 
 In this research, a pure geometry compression 
algorithm for 3D semi-regular meshes has been 
introduced. The developed algorithm is based on 
wavelet transform and space frequency quantization for 
3D meshes. The local frame was applied to wavelet 
coefficients to be more independent. Then, the 3D SFQ 
was used to quantize the coefficients. At last, an 
arithmetic coder encodes these quantized symbols. The 
proposed algorithm was compared with the zerotree 
coder for MAPS meshes. The rate-distortion curves 
results are significantly better than the zerotree coder in 
the high rates but have low visual quality than it at very 
low rates. 
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