
Journal of Computer Science 5 (11): 778-782, 2009 
ISSN 1549-3636 
© 2009 Science Publications 

Corresponding Author: Chapram Sudhakar, Department of Computer Science and Engineering, NIT, Warangal-506004, India, 
Tel: 091-870-2462731, 2468731 

778 

 
An Improved Lazy Release Consistency Model 

 
Chapram Sudhakar and T. Ramesh 

Department of Computer Science and Engineering, 
National Institute of Technology, Warangal-506004, India 

 
Abstract: Problem statement: A network of workstations, viewed as a distributed shared memory 
system can be used to develop and test parallel algorithms. Approach: For implementing parallel 
algorithms on such DSMs shared memory consistency model plays a vital role. Results: However on a 
LAN, strict consistency models like Sequential Consistency model (SC) are not useful since the 
communication is slow. In such environments relaxed models like Entry Consistency (EC), Release 
Consistency (RC) or their variations such as Lazy Release Consistency (LRC) are generally used. 
Conclusion/Recommendations: In this study an Improved Lazy Release Consistency (ILRC) model 
is proposed. This model is studied with standard parallel algorithms. In many cases the ILRC model is 
proved to work better than the LRC model.  
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INTRODUCTION 
 
 Usage of network of workstations for parallel 
processing is very common. Such an environment can 
be viewed by the programmer as a message passing 
environment or Distributed Shared Memory (DSM)[7] 
environment. The shared memory view makes parallel 
programming easier by using threads concept, where as 
the message passing view makes development of 
efficient parallel programs containing explicit 
messaging calls for remote data items. 
 Providing specific memory consistency models for 
a distributed shared memory system is necessary for 
developing parallel programs. Several models in the 
literature are proposed which are categorized in to two 
categories[11] based on the data being accessed. First 
category is uniform models which will treat all kinds of 
data accesses uniformly. Strict[5], Sequential, PRAM, 
Processor and Causal consistency models[6,9,10,13] are 
some examples for uniform memory consistency 
models. The second category is synchronization models 
that differentiate the memory accesses as 
synchronization related accesses and normal data 
accesses. Weak, Release[2] and Entry consistency[3] 
models[6,9,10,13] are some examples for synchronization 
models. Synchronization based models are more 
relaxed than the uniform consistency models. There is a 
variation of Release Consistency model known as Lazy 
Release Consistency (LRC) model which is used in 

TreadMarks[4] system. This model works better for 
parallel algorithms which manipulate small set of data 
items in a brief critical section that results in very little 
modifications in the page of those data items. As the 
data set size and the number of processes increases the 
total differences for an interval of time also increases 
and hence this LRC model cannot perform efficiently. 
ILRC overcomes these problems by some modifications 
to LRC model. 
 In the next part original LRC model, its drawbacks 
and proposed improvements are described. 
Implementation details of proposed modifications and 
test results with standard parallel algorithms are 
presented in subsequent parts of this paper. 
 
Background: Lazy Release Consistency Model ensures 
that all programs without data races behave as if they 
were executing on a conventional Sequentially 
Consistent (SC) memory. Most parallel programs 
satisfy this condition and behave identically when 
executed on a multiprocessor system and DSM system 
with LRC model. But compared to Sequential 
Consistency model LRC has the advantage that it can 
be implemented more efficiently. The TreadMarks 
implementation of LRC[4] is described below.  
 LRC divides the execution of each process into 
logical intervals that begin at each synchronization 
access. Synchronization accesses are classified as 
release or acquire accesses. Acquiring a lock is an 
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example of an acquire access and releasing a lock is an 
example of a release access. Waiting on a barrier can be 
modeled as a release followed by an acquire. LRC 
defines the relation corresponds on synchronization 
accesses as follows: A release access on a lock 
corresponds to the next acquire on the lock to complete 
and a release access on a barrier wait corresponds to the 
acquire accesses executed by all the processes on the 
same barrier wait. 
 Intervals are partially ordered according to the 
following two relations: (i) Intervals on a single process 
are totally ordered by program order and (ii) An 
interval x precedes an interval y, if the release that ends 
x corresponds to the acquire that starts y[1]. The partial 
order between intervals is represented by assigning a 
vector timestamp to each interval. TreadMarks 
implements LRC model by ensuring that if interval x 
precedes interval y (according to this partial order), all 
shared memory updates performed during x are visible 
at the beginning of y. 
 
LRC data structures: Each process maintains the 
following data structures in its local memory: 
 
PageArray: Array with one entry per shared page 
ProcArray: Array with one list of interval records per 

process 
DirtyList: Identifiers of pages that were modified 

during the current interval 
VC: Local vector clock 
Pid: local process identifier 
 
 Each shared page entry has fields for twin page, 
write notices, page manager, copy set and current status 
of the page. The twin page of a shared page is used for 
storing old contents of the corresponding page before 
attempting any modifications and is used later at the 
release time (or delayed till the next page difference 
request) to compute the page differences. The write 
notices field in the page entry describes modifications 
to the page. The entry for process i in the write notices 
array contains a list with all the write notices created by 
i for the page, that are known to the local process. Each 
of these write notice records describes the updates 
performed by i to the page in a given interval. The write 
notice record contains a pointer to the interval record 
describing that interval and a pointer to the differences 
containing the words of the page that were updated in 
the interval. The interval records contain a back pointer 
to a list with one write notice for each page that was 
modified during the interval. Whenever an interval 
record is created, it is tagged with the vector time and 
the identity of its creator. The page manager is the 

process which has the ownership of the page and acts 
like a home machine for that page. Page ownership 
might be changed dynamically depending on which 
process has recently modified the page. The copy set 
indicates the list of processes that are having copy of 
the shared page and used to recall the page from other 
processes when exclusive access to the page is required. 
The status field of a page entry is the operating system 
protection status for the page, i.e., if the status is no-
access then any access to the page triggers a page fault 
and if the status is read-only a write access to the page 
triggers a page fault. 
 The procArray has an entry for each process. The 
entry for process i contains a list of interval records 
describing the intervals created by i that the local 
process knows about. This list is ordered by decreasing 
order of interval logical times. We refer to the value of 
VCi as i's vector time and to the value of VCi[i] as i's 
logical time. Similarly, the vector time of an interval 
created by i is the value of VCi when the interval is 
created and the logical time of the interval is the value 
of VCi[i]. 
 The storage for the differences, the write notice 
records and the interval records is not freed until garbage 
collection is performed, i.e., a process effectively 
maintains a log of all shared memory accesses since the 
last garbage collection. This is necessary because any 
other process that requires a page which was referenced 
long back, may ask for entire history of differences for 
that page. In that case all the differences for that page 
from the oldest interval must be given in the reply for the 
page difference request. 
 

MATERIALS AND METHODS 
 
Weaknesses of LRC model: There are several 
drawbacks for the original Lazy Release Consistency 
implementation, when applied to real parallel 
applications. If the data of the application is very large 
and is modified frequently, then the difference 
representation for one interval can exceed the size of 
original page itself. Even if smaller differences are 
there, collectively for a number of processes, which 
might acquire the lock in sequence before the current 
process, the total size of differences together may 
exceed the size of original page itself. The original LRC 
implementation is useful if one or few scalar variables 
are present in a page that is modified in critical section, 
where the resultant differences are smaller. It is not 
suitable for large data arrays that are modified 
frequently by large number of processes. The amount of 
space utilized by twin pages, which may be maintained 
for longer periods, if differences are not requested, is 
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additional overhead in addition to the write notice 
records, interval records and page differences. 
 Computing page differences, when requested by 
other processes, is time consuming and requests get 
delayed. If in advance page differences are computed, 
then it may become wastage of time if those differences 
are not requested in the future. The improved 
implementation of LRC, overcomes these memory 
space and CPU time problems. 
 
Improved LRC implementation: Improved LRC 
implementation takes annotated input source program. 
All the variables of the source program are divided into 
two categories, small data items and larger data items. 
Synchronization wise related set of small data items are 
kept together in one page. Different such sets are placed 
in to separate pages. The compiler includes the size 
element for each related data item set. This indicates 
used amount of memory for the variables in that page. 
Even though most of the page is wasted, for any 
parallel application usually very few such type of 
smaller data items exist. So the overall wastage is very 
less. For larger data items that may span multiple pages, 
any additional information is not required. Those pages 
are treated normally with write-invalidation protocol. 
 When a lock is acquired the process gets the list of 
current managers of the recently modified pages. The 
acquired process modifies its data structures to indicate 
the managers for each such modified page. For the 
pages which have not been modified since they are 
requested for the last time, those are still up to date. If 
an older page is referenced, then a page fault occurs. 
The page fault handler determines whether the page is 
small data item set page or normal page. It sends a 
partial page request or full page request to the manager 
of that page depending on page type. It can also request 
for ownership if the faulted instruction is write 
operation. 
 This method eliminates the need for computing 
page differences and maintaining write notice records, 
page differences and interval records. But for each page 
it maintains type of the page, page manager, last 
acquired interval and state information which occupies 
very little space. This is really advantageous to real 
parallel applications that require huge amounts of 
memory. As the related small variables are maintained 
in one page those can be requested at once with a single 
partial page request and thus communication can be 
reduced. Implementation details of this method with the 
data structures are given below. 
 
ILRC data structures: Each process maintains the 
following data structures: 

Array of NormalSharedPages : {manager, last 
interval, state} 

Array of SmallDataItemSet : {Page number, size, 
manager, last interval, 
state} 

IntervalRecord : Interval record 
holding write notices 
for small data item set 
pages  

VectorClock : To order the intervals 
 
 A NormalSharedPage entry contains information 
about the page such as which process is the current 
manager, interval when the page is last requested and 
its state indicating read-only, writable and dirty. A 
SmallDataItem set entry contains the page number of 
the data items allocated to and their size in addition to 
the NormalSharedPage information. IntervalRecord 
contains for a given interval of vector time, the write 
notices for small data item set pages that are modified. 
The vector clock is used for partial ordering of the 
intervals in all processes. 
 The prototype system is designed to support any 
type of memory consistency model. It includes a 
generic memory consistency manager that supports any 
model with a common interface. The common interface 
contains set of operations for all memory consistency 
related events. Some of the operations of the memory 
consistency model interface are given below: 
 
Interface of memory consistency model: 
InitConsistencyData: This function initializes the 
memory consistency model specific data structures. It is 
called automatically when the process is being created 
or if the process explicitly calls set_mctype(…) to set 
the memory consistency model to a specific model.  
 
PageFault: This performs memory consistency model 
specific operations such as invalidation, updation, or 
request a page copy, when a page fault occurs. 
 
LockAcquire: This is called when a lock/semaphore is 
locked by the current process. 
 
LockRelease: This is called when a lock/semaphore is 
released by the current process. In the case of a barrier 
when joining, LockRelease is called and when leaving 
LockAcquire is called. 
 
InvalidatePage: This is called when invalidation 
request for a page is received from other processes. 
 
UpdatePage: This is called when update request is 
received. 
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EnlargeConsistencyData: This is called for 
expansion/shrinking of memory consistency specific 
data structures in the case of process address space size 
is changed. 
 
ProcessMCRequest: This is called when any other 
type of memory consistency request is received from 
another process. This is provided for extending the 
support for any other type of memory consistency 
model specific events. 
 
ProcessMCReply: This is also provided for extending 
the support for handling any consistency model specific 
reply message. 
 
ProcessExit: This is called when a process is 
terminating, to upload the locally made changes to the 
data items to their respective home locations. 
 
Environment and software: The prototype system is 
currently running with a set of X86 based 32-
workstations connected with high-speed Ethernet LAN. 
All workstations execute the same copy of the operating 
system. The application can be developed using 
standard pthread library. Any pthread based parallel 
application can be executed without any modifications. 
But for using improved features of LRC and Entry 
consistency models source program must be annotated 
with the required information, which is a minor change. 
An application can be started from any workstation. 
When it creates threads, correspondingly processes are 
spawned on other workstations, which can run in 
parallel. All those processes use same selected memory 
consistency model or a default consistency model 
assigned by the system. 
 

RESULTS AND DISCUSSION 
 
 The developed memory consistency model has 
been tested with well known parallel algorithms such as 
reduction, sieve (finding prime numbers), matrix 
multiplication, merge sort, quick sort[8] , bucket sort and 
a branch and bound algorithm for travelling salesperson 
problem[12] and SPLASH-2 Benchmark programs. All of 
the programs are tested using 8-workstations. The data 
set sizes for each one of the algorithms and the 
comparative execution times using old LRC 
implementation and improved LRC implementation are 
shown in Table 1.  
 Merge sort algorithm changes most of the contents 
of the data frequently. So, as expected, ILRC is 
showing considerable performance improvement in this 
case. In Sieve algorithm, actually marking is reduced    
as    the   current   prime   number   increases, 

Table 1: Performance ILRC and LRC compared 
Application Data set size LRC ILRC Percentage 
 of the App (m.sec) (m.sec) of Impr. 
Reduction 8388608 234.26 183.08 21.8 
Sieve 4194304 301.19 238.81 20.7 
Matmult 512×512 878.45 652.74 25.7 
Merge 5242880 516.86 350.25 32.2 
Quiksort 5242880 831.59 813.93 2.1 
TSP 20 236.01 225.02 4.6 
Bucketsort 4194304 10566.47 8278.61 21.7 
LU 512×512 1955.85 1633.67 16.5 
Radixsort 2097152 1800.39 1545.95 14.1 
Barnes 16384 1631.40 1600.00 1.9 
FMM 16384 2484.75 2276.62 8.4 
Ocean-cont 258×258 301.19 246.77 18.1 
Ocean-non 258×258 343.01 270.65 21.1 
Water-nsquared 512 418.31 294.53 29.6 
Water-spatial 512 368.11 262.69 28.6 
FFT 65536 41.83 35.82 14.4 

 
which effectively reduces the amount of change in the 
flag array. But even then ILRC is showing slight 
improvement over the original LRC model. This is 
due to high amount of change in the flags array, in the 
initial stages. The reduction algorithm is very simple in 
which contention for lock (Global sum) occurs only at 
the end. But twin page creation for very short period 
usage, which is done sequentially one after the other 
processor, makes comparatively much difference. 
Hence some difference in execution times can be 
observed in this case also. Matrix multiplication 
problem is actually not affected by any particular 
model, because all computations are independent 
computations. Propagation of changes in the data arrays 
does not happen in this case. So there should not be any 
difference in execution time. But in ILRC improved 
communication primitives are used for propagation of 
matrix rows and hence the difference is shown in the 
table. In the case of travelling sales person problem, as 
the algorithm follows lexicographic search order, almost 
all processors search independently. The only data item 
shared both for reading and writing, is current known 
bound value. As it is simple small data item, there is no 
considerable difference between the two consistency 
models. In other SPLASH-2 applications and kernels 
also similar improvements can be observed. 
 

CONCLUSION 
 
 The Improved Lazy Release Consistency model 
has been implemented and tested with standard parallel 
algorithms. For many cases ILRC model has shown 
better performance compared to the original LRC 
model. The only drawback is program needs to be 
annotated, to indicate small data item sets and large 
data item sets. It can be improved to identify 
dynamically small data item sets and large data item 
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sets by prediction. Another possible improvement that 
can be done is adaptively using either whole page 
approach or incremental modification approach 
dynamically depending on the amount of changes. 
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