
Journal of Computer Science 5 (11): 778-782, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Chapram Sudhakar, Department of Computer Science and Engineering, NIT, Warangal-506004, India,
Tel: 091-870-2462731, 2468731

778

An Improved Lazy Release Consistency Model

Chapram Sudhakar and T. Ramesh

Department of Computer Science and Engineering,
National Institute of Technology, Warangal-506004, India

Abstract: Problem statement: A network of workstations, viewed as a distributed shared memory
system can be used to develop and test parallel algorithms. Approach: For implementing parallel
algorithms on such DSMs shared memory consistency model plays a vital role. Results: However on a
LAN, strict consistency models like Sequential Consistency model (SC) are not useful since the
communication is slow. In such environments relaxed models like Entry Consistency (EC), Release
Consistency (RC) or their variations such as Lazy Release Consistency (LRC) are generally used.
Conclusion/Recommendations: In this study an Improved Lazy Release Consistency (ILRC) model
is proposed. This model is studied with standard parallel algorithms. In many cases the ILRC model is
proved to work better than the LRC model.

Key words: Distributed shared memory system, lazy release consistency model, memory consistency

model, threads

INTRODUCTION

 Usage of network of workstations for parallel
processing is very common. Such an environment can
be viewed by the programmer as a message passing
environment or Distributed Shared Memory (DSM)[7]
environment. The shared memory view makes parallel
programming easier by using threads concept, where as
the message passing view makes development of
efficient parallel programs containing explicit
messaging calls for remote data items.
 Providing specific memory consistency models for
a distributed shared memory system is necessary for
developing parallel programs. Several models in the
literature are proposed which are categorized in to two
categories[11] based on the data being accessed. First
category is uniform models which will treat all kinds of
data accesses uniformly. Strict[5], Sequential, PRAM,
Processor and Causal consistency models[6,9,10,13] are
some examples for uniform memory consistency
models. The second category is synchronization models
that differentiate the memory accesses as
synchronization related accesses and normal data
accesses. Weak, Release[2] and Entry consistency[3]
models[6,9,10,13] are some examples for synchronization
models. Synchronization based models are more
relaxed than the uniform consistency models. There is a
variation of Release Consistency model known as Lazy
Release Consistency (LRC) model which is used in

TreadMarks[4] system. This model works better for
parallel algorithms which manipulate small set of data
items in a brief critical section that results in very little
modifications in the page of those data items. As the
data set size and the number of processes increases the
total differences for an interval of time also increases
and hence this LRC model cannot perform efficiently.
ILRC overcomes these problems by some modifications
to LRC model.
 In the next part original LRC model, its drawbacks
and proposed improvements are described.
Implementation details of proposed modifications and
test results with standard parallel algorithms are
presented in subsequent parts of this paper.

Background: Lazy Release Consistency Model ensures
that all programs without data races behave as if they
were executing on a conventional Sequentially
Consistent (SC) memory. Most parallel programs
satisfy this condition and behave identically when
executed on a multiprocessor system and DSM system
with LRC model. But compared to Sequential
Consistency model LRC has the advantage that it can
be implemented more efficiently. The TreadMarks
implementation of LRC[4] is described below.
 LRC divides the execution of each process into
logical intervals that begin at each synchronization
access. Synchronization accesses are classified as
release or acquire accesses. Acquiring a lock is an

J. Computer Sci., 5 (11): 778-782, 2009

779

example of an acquire access and releasing a lock is an
example of a release access. Waiting on a barrier can be
modeled as a release followed by an acquire. LRC
defines the relation corresponds on synchronization
accesses as follows: A release access on a lock
corresponds to the next acquire on the lock to complete
and a release access on a barrier wait corresponds to the
acquire accesses executed by all the processes on the
same barrier wait.
 Intervals are partially ordered according to the
following two relations: (i) Intervals on a single process
are totally ordered by program order and (ii) An
interval x precedes an interval y, if the release that ends
x corresponds to the acquire that starts y[1]. The partial
order between intervals is represented by assigning a
vector timestamp to each interval. TreadMarks
implements LRC model by ensuring that if interval x
precedes interval y (according to this partial order), all
shared memory updates performed during x are visible
at the beginning of y.

LRC data structures: Each process maintains the
following data structures in its local memory:

PageArray: Array with one entry per shared page
ProcArray: Array with one list of interval records per

process
DirtyList: Identifiers of pages that were modified

during the current interval
VC: Local vector clock
Pid: local process identifier

 Each shared page entry has fields for twin page,
write notices, page manager, copy set and current status
of the page. The twin page of a shared page is used for
storing old contents of the corresponding page before
attempting any modifications and is used later at the
release time (or delayed till the next page difference
request) to compute the page differences. The write
notices field in the page entry describes modifications
to the page. The entry for process i in the write notices
array contains a list with all the write notices created by
i for the page, that are known to the local process. Each
of these write notice records describes the updates
performed by i to the page in a given interval. The write
notice record contains a pointer to the interval record
describing that interval and a pointer to the differences
containing the words of the page that were updated in
the interval. The interval records contain a back pointer
to a list with one write notice for each page that was
modified during the interval. Whenever an interval
record is created, it is tagged with the vector time and
the identity of its creator. The page manager is the

process which has the ownership of the page and acts
like a home machine for that page. Page ownership
might be changed dynamically depending on which
process has recently modified the page. The copy set
indicates the list of processes that are having copy of
the shared page and used to recall the page from other
processes when exclusive access to the page is required.
The status field of a page entry is the operating system
protection status for the page, i.e., if the status is no-
access then any access to the page triggers a page fault
and if the status is read-only a write access to the page
triggers a page fault.
 The procArray has an entry for each process. The
entry for process i contains a list of interval records
describing the intervals created by i that the local
process knows about. This list is ordered by decreasing
order of interval logical times. We refer to the value of
VCi as i's vector time and to the value of VCi[i] as i's
logical time. Similarly, the vector time of an interval
created by i is the value of VCi when the interval is
created and the logical time of the interval is the value
of VCi[i].
 The storage for the differences, the write notice
records and the interval records is not freed until garbage
collection is performed, i.e., a process effectively
maintains a log of all shared memory accesses since the
last garbage collection. This is necessary because any
other process that requires a page which was referenced
long back, may ask for entire history of differences for
that page. In that case all the differences for that page
from the oldest interval must be given in the reply for the
page difference request.

MATERIALS AND METHODS

Weaknesses of LRC model: There are several
drawbacks for the original Lazy Release Consistency
implementation, when applied to real parallel
applications. If the data of the application is very large
and is modified frequently, then the difference
representation for one interval can exceed the size of
original page itself. Even if smaller differences are
there, collectively for a number of processes, which
might acquire the lock in sequence before the current
process, the total size of differences together may
exceed the size of original page itself. The original LRC
implementation is useful if one or few scalar variables
are present in a page that is modified in critical section,
where the resultant differences are smaller. It is not
suitable for large data arrays that are modified
frequently by large number of processes. The amount of
space utilized by twin pages, which may be maintained
for longer periods, if differences are not requested, is

J. Computer Sci., 5 (11): 778-782, 2009

780

additional overhead in addition to the write notice
records, interval records and page differences.
 Computing page differences, when requested by
other processes, is time consuming and requests get
delayed. If in advance page differences are computed,
then it may become wastage of time if those differences
are not requested in the future. The improved
implementation of LRC, overcomes these memory
space and CPU time problems.

Improved LRC implementation: Improved LRC
implementation takes annotated input source program.
All the variables of the source program are divided into
two categories, small data items and larger data items.
Synchronization wise related set of small data items are
kept together in one page. Different such sets are placed
in to separate pages. The compiler includes the size
element for each related data item set. This indicates
used amount of memory for the variables in that page.
Even though most of the page is wasted, for any
parallel application usually very few such type of
smaller data items exist. So the overall wastage is very
less. For larger data items that may span multiple pages,
any additional information is not required. Those pages
are treated normally with write-invalidation protocol.
 When a lock is acquired the process gets the list of
current managers of the recently modified pages. The
acquired process modifies its data structures to indicate
the managers for each such modified page. For the
pages which have not been modified since they are
requested for the last time, those are still up to date. If
an older page is referenced, then a page fault occurs.
The page fault handler determines whether the page is
small data item set page or normal page. It sends a
partial page request or full page request to the manager
of that page depending on page type. It can also request
for ownership if the faulted instruction is write
operation.
 This method eliminates the need for computing
page differences and maintaining write notice records,
page differences and interval records. But for each page
it maintains type of the page, page manager, last
acquired interval and state information which occupies
very little space. This is really advantageous to real
parallel applications that require huge amounts of
memory. As the related small variables are maintained
in one page those can be requested at once with a single
partial page request and thus communication can be
reduced. Implementation details of this method with the
data structures are given below.

ILRC data structures: Each process maintains the
following data structures:

Array of NormalSharedPages : {manager, last
interval, state}

Array of SmallDataItemSet : {Page number, size,
manager, last interval,
state}

IntervalRecord : Interval record
holding write notices
for small data item set
pages

VectorClock : To order the intervals

 A NormalSharedPage entry contains information
about the page such as which process is the current
manager, interval when the page is last requested and
its state indicating read-only, writable and dirty. A
SmallDataItem set entry contains the page number of
the data items allocated to and their size in addition to
the NormalSharedPage information. IntervalRecord
contains for a given interval of vector time, the write
notices for small data item set pages that are modified.
The vector clock is used for partial ordering of the
intervals in all processes.
 The prototype system is designed to support any
type of memory consistency model. It includes a
generic memory consistency manager that supports any
model with a common interface. The common interface
contains set of operations for all memory consistency
related events. Some of the operations of the memory
consistency model interface are given below:

Interface of memory consistency model:
InitConsistencyData: This function initializes the
memory consistency model specific data structures. It is
called automatically when the process is being created
or if the process explicitly calls set_mctype(…) to set
the memory consistency model to a specific model.

PageFault: This performs memory consistency model
specific operations such as invalidation, updation, or
request a page copy, when a page fault occurs.

LockAcquire: This is called when a lock/semaphore is
locked by the current process.

LockRelease: This is called when a lock/semaphore is
released by the current process. In the case of a barrier
when joining, LockRelease is called and when leaving
LockAcquire is called.

InvalidatePage: This is called when invalidation
request for a page is received from other processes.

UpdatePage: This is called when update request is
received.

J. Computer Sci., 5 (11): 778-782, 2009

781

EnlargeConsistencyData: This is called for
expansion/shrinking of memory consistency specific
data structures in the case of process address space size
is changed.

ProcessMCRequest: This is called when any other
type of memory consistency request is received from
another process. This is provided for extending the
support for any other type of memory consistency
model specific events.

ProcessMCReply: This is also provided for extending
the support for handling any consistency model specific
reply message.

ProcessExit: This is called when a process is
terminating, to upload the locally made changes to the
data items to their respective home locations.

Environment and software: The prototype system is
currently running with a set of X86 based 32-
workstations connected with high-speed Ethernet LAN.
All workstations execute the same copy of the operating
system. The application can be developed using
standard pthread library. Any pthread based parallel
application can be executed without any modifications.
But for using improved features of LRC and Entry
consistency models source program must be annotated
with the required information, which is a minor change.
An application can be started from any workstation.
When it creates threads, correspondingly processes are
spawned on other workstations, which can run in
parallel. All those processes use same selected memory
consistency model or a default consistency model
assigned by the system.

RESULTS AND DISCUSSION

 The developed memory consistency model has
been tested with well known parallel algorithms such as
reduction, sieve (finding prime numbers), matrix
multiplication, merge sort, quick sort[8] , bucket sort and
a branch and bound algorithm for travelling salesperson
problem[12] and SPLASH-2 Benchmark programs. All of
the programs are tested using 8-workstations. The data
set sizes for each one of the algorithms and the
comparative execution times using old LRC
implementation and improved LRC implementation are
shown in Table 1.
 Merge sort algorithm changes most of the contents
of the data frequently. So, as expected, ILRC is
showing considerable performance improvement in this
case. In Sieve algorithm, actually marking is reduced
as the current prime number increases,

Table 1: Performance ILRC and LRC compared
Application Data set size LRC ILRC Percentage
 of the App (m.sec) (m.sec) of Impr.
Reduction 8388608 234.26 183.08 21.8
Sieve 4194304 301.19 238.81 20.7
Matmult 512×512 878.45 652.74 25.7
Merge 5242880 516.86 350.25 32.2
Quiksort 5242880 831.59 813.93 2.1
TSP 20 236.01 225.02 4.6
Bucketsort 4194304 10566.47 8278.61 21.7
LU 512×512 1955.85 1633.67 16.5
Radixsort 2097152 1800.39 1545.95 14.1
Barnes 16384 1631.40 1600.00 1.9
FMM 16384 2484.75 2276.62 8.4
Ocean-cont 258×258 301.19 246.77 18.1
Ocean-non 258×258 343.01 270.65 21.1
Water-nsquared 512 418.31 294.53 29.6
Water-spatial 512 368.11 262.69 28.6
FFT 65536 41.83 35.82 14.4

which effectively reduces the amount of change in the
flag array. But even then ILRC is showing slight
improvement over the original LRC model. This is
due to high amount of change in the flags array, in the
initial stages. The reduction algorithm is very simple in
which contention for lock (Global sum) occurs only at
the end. But twin page creation for very short period
usage, which is done sequentially one after the other
processor, makes comparatively much difference.
Hence some difference in execution times can be
observed in this case also. Matrix multiplication
problem is actually not affected by any particular
model, because all computations are independent
computations. Propagation of changes in the data arrays
does not happen in this case. So there should not be any
difference in execution time. But in ILRC improved
communication primitives are used for propagation of
matrix rows and hence the difference is shown in the
table. In the case of travelling sales person problem, as
the algorithm follows lexicographic search order, almost
all processors search independently. The only data item
shared both for reading and writing, is current known
bound value. As it is simple small data item, there is no
considerable difference between the two consistency
models. In other SPLASH-2 applications and kernels
also similar improvements can be observed.

CONCLUSION

 The Improved Lazy Release Consistency model
has been implemented and tested with standard parallel
algorithms. For many cases ILRC model has shown
better performance compared to the original LRC
model. The only drawback is program needs to be
annotated, to indicate small data item sets and large
data item sets. It can be improved to identify
dynamically small data item sets and large data item

J. Computer Sci., 5 (11): 778-782, 2009

782

sets by prediction. Another possible improvement that
can be done is adaptively using either whole page
approach or incremental modification approach
dynamically depending on the amount of changes.

ACKNOWLEDGEMENT

 Researchers thank MHRD for their financial
support through the research project entitled
“implementation of distributed shared memory system
using page based memory management system”.

REFERENCES

1. Tanenbaum, A.S., 1994. Distributed Operating

Systems. US Edn., Prentice Hall, ISBN: 10:
0132199084, pp: 648.

2. Bennett, J.K., J.K. Carter and W. Zwaenpoel, 1990.
Munin: Distributed shared memory based on type-
specific memory coherence. Proceeding of the 2nd
ACM Symposium on Principles and Practice of
Parallel Programming, Mar. 14-16, ACM Press,
Seattle, Washington, United States USA., pp: 168-176.
http://portal.acm.org/citation.cfm?id=99182

3. Bershad, B.N., M.J. Zekauskas and W.A. Sawdon,
1993. The midway distributed shared memory
system. Proceeding of the IEEE Conference on
COMPCON Spring, Feb. 22-26, IEEE Xplore
Press, San Francisco, CA., USA., pp: 528-537.
DOI: 10.1109/CMPCON.1993.289730

4. Amza, C., A. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu and W. Zwaenepoel, 1996.
TreadMarks: Shared memory computing on
networks of workstations. IEEE Comput., 29: 18-28.
DOI: 10.1109/2.485843

5. Fleisch, B. and G. Popek, 1989. Mirage: A
coherent distributed shared memory design.
Proceedings of the 14th ACM Symposium on
Operating System Principles, Dec. 3-6, ACM
Press, New York, USA., pp: 211-223.
http://portal.acm.org/citation.cfm?id=74851.74871

6. Protic, J., M, Tomasevic and V. Milutinovic, 1995.
A survey of distributed shared memory systems.
Proceedings of the 28th Annual Hawaii
International Conference on System Sciences, Jan.
04-07, IEEE Computer Society Washington, DC.,
USA., pp: 74-74.
http://portal.acm.org/citation.cfm?id=798090

7. Li and Hudak, 1989. Memory coherence in shared
virtual memory systems. ACM Trans. Comput.
Syst., 7: 321-359.

 http://portal.acm.org/citation.cfm?id=75105
8. Quinn, M.J., 1993. Parallel Computing Theory and

Practice. 2nd Edn., Tata McGraw-Hill Companies,
USA., ISBN: 10: 0070512949, pp: 446.

9. Ramachandran, U. and M.Y.A. Khalidi, 1989. An
implementation of distributed shared memory.
Proceeding of the 1st Workshop Experiences with
Building Distributed and Multiprocessor Systems,
(EBDMS’89), USENIX Association, pp: 21-38.

10. Steinke, R.C. and G.J. Nutt, 2004. A unified theory
of shared memory consistency. J. ACM., 51: 800-849.
http://portal.acm.org/citation.cfm?id=1017464

11. Adve, S.V. and K. Gharachorloo, 1996. Shared
memory consistency models: A tutorial. Computer,
29: 66-76. DOI: 10.1109/2.546611

12. Ramesh, T. and C. Sudhakar, 2006. A linear space,
deterministic, parallelizable, algorithm for
travelling sales person problem. Proceedings of
NCIOM, Mar. 3-4, Allied Publishers, pp: 273.

13. Zhou, S., M. Stumm and T. McInerney, 1990.
Extending distributed shared memory to
heterogeneous environments. Proceedings of the
10th International Conference on Distributed
Computing Systems, May 28-June 01, IEEE
Xplore Press, Paris, France, pp: 30-37. DOI:
10.1109/ICDCS.1990.89329

