
Journal of Computer Science 5 (11): 783-787, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Authors: Idawaty Ahmad, Department of Communication Technology and Network,
 Faculty of Computer Science and Information Technology, University Putra Malaysia, UPM 43400,

Serdang, Selangor DE, Malaysia
783

Enhanced Utility Accrual Scheduling Algorithms for Adaptive Real Time System

1Idawaty Ahmad and 2Muhammad Fauzan Othman

1Department of Communication Technology and Network,
Faculty of Computer Science and Information Technology, University Putra Malaysia,

43400 UPM, Serdang, Selangor DE, Malaysia
2Motorola Multimedia Sdn Bhd 3507 Prima Avenue, Jalan Teknokrat 5, 63000 Cyberjaya Malaysia

Abstract: Problem statement: This study proposed two utility accrual real time scheduling algorithms
named as Preemptive Utility Accrual Scheduling (PUAS) and Non-preemptive Utility Accrual
Scheduling (NUAS) algorithms. These algorithms addressed the unnecessary abortion problem that was
identified in the existing algorithm known as General Utility Scheduling (GUS). It is observed that GUS
is inefficient for independent task model because it simply aborts any task that currently executing a
resource with lower utility when a new task with higher utility requests the resource. The scheduling
optimality criteria are based on maximizing accrued utility accumulated from execution of all tasks in the
system. These criteria are named as Utility Accrual (UA). The UA scheduling algorithms are design for
adaptive real time system environment where deadline misses are tolerable and do not have great
consequences to the system. Approach: We eliminated the scheduling decision to abort a task in GUS
and proposed to preempt a task instead of being aborted if the task is preemptive able. We compared the
performances of these algorithms by using discrete event simulation. Results: The proposed PUAS
algorithm achieved the highest accrued utility for the entire load range. This is followed by the NUAS
and GUS algorithms. Conclusion: Simulation results revealed that the proposed algorithms were more
efficient than the existing algorithm, producing with higher accrued utility ratio and less abortion ratio
making it more suitable and efficient for real time application domain.

Key words: Adaptive real-time system, utility accrual scheduling, accrued utility ratio, discrete event

simulation

INTRODUCTION

 A real time system is a system where the time at
which event occurs is important. Real-time scheduling
is fundamentally concerned with satisfying application
time constraints. In adaptive real time system an
acceptable deadline misses and delays are tolerable and
do not have great consequences to the system.
 One of the scheduling paradigms in adaptive real
time system environment is known as Time/Utility
Function (TUF)[1]. A TUF specifies the utility of
completing a task as an application function of when
the task completes as shown in Fig. 1. The urgency of a
task is captured as a deadline on X-axis and the
importance of a task is measured by utility in Y-axis.
 As illustrated in Fig. 1, completion of a task within
the deadline (i.e., within the StartTime and
TerminateTime) will accrue some positive utility (i.e.,
MaxAU) or zero utility otherwise.

Fig. 1: The step TUF[1,2]

Objective: The scheduling objective of this research is
to maximize the accrued utility from all executed tasks
in the system. These criteria are named as Utility
Accrual (UA) criteria[2]. A UA scheduling algorithm
that maximizes the sum of tasks’ attained utilities will
seek to meet all task deadlines and naturally tend to
favor task that are more important (from whom higher
utility can be accrued) when the system is overloaded.
 As suggested in the recent overview of the UA
scheduling domain[3], one of the existing algorithms

J. Computer Sci., 5 (11): 783-787, 2009

784

that provide general assurance on timeliness behavior is
General Utility Scheduling (GUS) algorithm[4].

Problem statement: It is observed that GUS algorithm
is inefficient for independent task model because every
time a new task with higher utility requests a resource,
the GUS simply aborts any task that is currently using
the resource if the task produces lower utility. Figure 2
illustrates this inefficiency scenario. There is two tasks
currently involved in the scenario i.e., task Towner and
Treq. Table 1 summarizes the characteristics of these
tasks. Task Towner request for a resource at time 1.0.
After executing the resource for 0.10 sec, a new request
from task Treq for the same resource arrived into the
system. The Potential Utility Density (PUD) of both
tasks is calculated. The PUD of a task measures the
amount of utility that can be gained per unit time by
executing the task[2]. Task Treq produced larger PUD
(i.e., 36) than Towner (i.e., 25). GUS then decides to
abort Towner for 0.075 sec before it releases the
resource. GUS then allows Treq to execute the
available resource. Execution of aborted task will
accrue zero PUD and zero utility to the system. Clearly,
sequencing tasks using the GUS algorithm accrued 9
utility (i.e., zero for Towner that has been aborted plus
9 for Treq).
 We identified that the decision to immediately
abort the lower PUD task is not necessary. Naturally for
tasks that are independent each other, the decision to
execute one task should not result from the abortion of
another task. Task that has been aborted will not
contribute any positive utility to the system. Therefore,

Fig. 2: Inefficiency scenario in GUS algorithm

Table 1: Task characteristics
Task Characteristic Towner (white) Treq (black)
Initial Holdtime 0.300 0.25
Remaining Holdtime 0.200 0.25
Aborttime 0.075 0.10
Maximum Utility (MaxAU) 5.000 9.00
PUD 5/0.20 = 25 9/0.25 = 36

we speculate that more unnecessary abortions occurred
in GUS which could possibly reduce the tasks’ attained
utility. It is important to observe that by reducing the
number of aborted tasks, it is very likely that we would
gain higher utility.

Approach: To rectify the inefficiency identified in
GUS, we proposed two solutions according to the
preemptive nature of the task as stated below:

Preemptive Utility Accrual Scheduling (PUAS)
algorithm: In this model, the owner task is preempted
(i.e., suspended) temporarily instead of being aborted
when a new request with higher PUD task arrived in the
system. In PUAS, task with highest PUD is given the
highest priority to hold the resource.

Non-Preemptive Utility Accrual Scheduling (NUAS)
algorithm: In this model, the owner task continues to
hold a resource without being aborted although it
produces lower PUD when a new request with higher
PUD task arrived in the system.
 Figure 3 illustrates the scheduling decision made
by the proposed algorithms after the arrival of a request
from a task into the system. After the scheduler accepts
a request from task Treq, it will first check the
availability of the requested resource. If the resource is
idle, task Treq can be scheduled immediately to use the
resource. For the case when the resource is busy and

Fig. 3: Flow charts of the UA scheduling algorithms

J. Computer Sci., 5 (11): 783-787, 2009

785

currently being used by the owner task Towner, the
PUD for both tasks is compared. If requesting task Treq
produced higher PUD:

• In GUS, Towner is aborted and immediately

change its state from Normal to Abort mode
• In NUAS, Towner is continuously executed

without being aborted, although it produced a
lower PUD than Treq

• In PUAS, Towner is preempted instead of being
aborted and Treq is granted to use the resource
because it produced higher PUD than Towner

MATERIALS AND METHODS

 We developed a Discrete Event Simulator (DES) to
verify the performance of our proposed algorithms. The
rationale of using DES lies in the fact that the previous
research (i.e., GUS) was based on the discrete event
simulation tools[2,4]. Therefore, in order to precisely
remodel and further enhance the GUS algorithm, DES
written in C language is the best method to achieve this
objective. We used experiment settings that are similar
to those proposed in[4].
 Figure 4 shows the entities involve in our
simulation study. It consists of a stream of 1000 tasks, a
queue of an unordered task list, the scheduler and a set
of resources.
 The task model is shown in Fig. 5. The average
execution time for a task is 0.50 sec. Each task has an
initial time and a termination time. Initial time is the
earliest time for which the utility of a task is defined
and termination time is the latest time for which the
utility is defined. That is, utility is defined in the time
interval of [StartTime, TerminateTime] for each task.
Beyond that, the utility is undefined.
 During the lifetime of a task, it may request one or
more resources. In general, the requested time intervals
of holding resource maybe overlapped. A task specifies
the duration to hold the requested resource in Holdtime
parameter. The duration to hold a resource is randomly
generated following the normal distribution as depicted
in Table 2. The scheduler uses the Holdtime
information at run time to make scheduling decisions.
 Table 2 summarized the details task settings
configured for the simulation model. The arrival times
of tasks into the system (i.e., IAT) are random which
follows exponential distribution. Each task has its
maximum utility that could possibly accrued by the
system from the task if it is completed within its
deadline. We refer this value as MaxAU.
 If task has not completed its execution, it will then
be aborted. However, some tasks cannot be aborted.

Fig. 4: Simulation model

Fig. 5: Task model

Table 2: Simulation parameters
Parameter Range Description
iat Exponential (C_AVG/load) Task inter-arrival time
Holdtime Normal (0.25,0.25) Duration for holding a
 resource
MaxAU Normal (10,10) Task maximum utility
Aborttime Any random number that Duration for cleanup
 is less than Holdtime time of a task
Abortability 95% Percentage of abortable
 tasks in the system

We refer to this aspect of a task as its Abortability. It is
assumed that 95% (i.e., Abortability) of the executed
tasks are abortable in the system. For those tasks that
can be aborted, aborting a task usually involves
necessary cleanup operating by both the system
software and the exception handlers in the application.
We refer to the time consumed by this cleanup as
Aborttime.

RESULTS

 The performances of UA scheduling algorithms are
measured by the metrics that relies on the application
specifications. For UA scheduling domain, the Accrued
Utility Ratio (or AUR) metric defined in[3] has been
used in many algorithms[1,3,4] and can be considered as a
standard metric in this domain. AUR is defined as the
ratio of accrued aggregate utility to the maximum
possibly attained utility.

J. Computer Sci., 5 (11): 783-787, 2009

786

Fig. 6: AUR Vs average loads

 In addition, we consider two other metrics to
precisely examine the effectiveness of our proposed
algorithms. The Success Ratio (or SR) is the ratio of
task successfully attained positive utility to the total
task executed in the system. The SR supports the result
of AUR because it measures the exact number of tasks
that contributed to AUR. The Abortion Ratio (or AR) is
defined as the ratio of aborted tasks to the total of
executed tasks. The results presented are intended to
illustrate the characteristics of the proposed algorithms
towards variation of the load in the system.
 Figure 6 depicts the AUR result under an
increasing load. The proposed PUAS algorithm
achieved the highest accrued utility for the entire load
range. This is followed by the NUAS and GUS
algorithms. In lower loads, all algorithms performed
better i.e., more than 90% of the tasks, accrued utility to
the system. The gaps between these algorithms are
relatively small and insignificant (i.e., 0.94-3%).
However, as the load increases, the AUR gap widen
significantly. In highest load, almost 81% of utility
accrued in PUAS, 67.8% in NUAS and 59% in GUS.
These gaps exist because GUS in nature has more
aborted tasks compared to NUAS and PUAS. Since the
aborted tasks produced zero utility to the system,
consequently GUS produced more zero utility tasks that
ultimately contributed to lowest accrued utility.
 Figure 7 plots the task success ratio experienced as
a function of the increasing loads. Figure 7 supports the
AUR results in Fig. 6 because it measures the exact
number of tasks that has successfully contributed to
AUR.
 In Fig. 8, we can see the abortion ratio results in the
system. As mentioned in the first section, we speculate

Fig. 7: SR Vs average load

Fig. 8: AR Vs average load

that the existing algorithm GUS produced high number
of aborted task that we believed can be resurrected in
our proposed algorithms. Figure 8 verified the
speculation. It can be observed that the proposed PUAS
and NUAS algorithms are able to reduce the number of
abortion compared to GUS algorithm. This justifies
why higher utility can be accrued in the proposed
PUAS and NUAS algorithm compared to GUS.

DISCUSSION

 The proposed PUAS algorithm achieved the best
performances with highest accrued utility, highest
success ratio and lowest abortion ratio. In general, our
proposed algorithms PUAS and NUAS have

J. Computer Sci., 5 (11): 783-787, 2009

787

successfully reduced the number of aborted tasks in
GUS that ultimately contributed to higher accrued
utility to the system.

CONCLUSION

 In this study we proposed an efficient UA real time
scheduling algorithms called PUAS and NUAS that
considers task subjected to deadline expressed using
step TUFs. The proposed algorithms are compared with
the existing UA algorithm known as GUS[4]. Simulation
results reveal that PUAS outperform the NUAS and
GUS with highest accrued utility and lowest abortion
ratio making it more suitable and efficient in real time
application domain.
 A number of extensions to this research can be
carried out and are given as follows:

• The algorithms can be deployed in network and

distributed environment. Flow control and routing
algorithms should be integrated into the research.
Thus, increasing the feasibility in actual
implementation of the algorithms

• The real implementation of PUAS and NUAS on
real-time POSIX-compliant operating system using
the meta-scheduling framework can also
demonstrates the effectiveness of these algorithms

REFERENCES

1. Wu, H., B. Ravindran, E.D. Jensen and P. Li, 2004.

CPU scheduling for statistically-assured real-time
performance and improved energy efficiency.
Proceeding of the 2nd IEEE/ACM/IFIP
International Conference on Hardware/Software
Codesign and System Synthesis, Sept. 8-10, IEEE
Xplore Press, USA., pp: 110-115.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arn
umber=1360490

2. Jensen, E.D., C.D. Locke and H. Tokuda, 1985. A
time driven scheduling model for real time
operating systems. Proceeding of the IEEE
Symposium on Real-Time System, Dec. 1985,
IEEE Xplore Press, USA., pp: 112-122.
http://www.real-time.org/docs/rtss85.pdf

3. Ravindran, B., E.D. Jensen and P. Li, 2005. On
recent advances in time/utility function real-time
scheduling and resource management. Proceeding
of the 8th IEEE International Symposium on
Object-Oriented Real-Time Distributed
Computing, May 18-20, IEEE Xplore Press, USA.,
pp: 55-60.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumbe
r=01420952

4. Li, P., H. Wu, B. Ravindran and E.D. Jensen, 2006.
A utility accrual scheduling algorithm for real-time
activities with mutual exclusion resource
constraints. IEEE Trans. Comput., 55: 454-469.
DOI: 10.1109/TC.2006.47

