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Abstract: Problem statement: Improper understanding of material behavior prevents the efficient 
and correct usage of available materials and consequently, increases the construction and maintenance 
costs and even unsuitable construction. Considering the necessity of exact investigation about material 
behavior, several researches have been carried out in this field but the majority of these researches did 
not propose a general method for prediction of granular material behavior. Furthermore, many of the 
methods proposed by researchers are not able to present the properties such as the orientation of failure 
mechanism of propagating plasticity in materials. Approach: In this study, a general method was 
proposed for multi-laminate simulation to predict the behavior of materials. The general applicability 
of this method for prediction of granular material is one of its significant advantages. The study was 
carried out in the framework of multi-plane pattern which is able to predict anisotropic behavior, 
consider the effect of stress and strain axis rotations in plasticity, consider the semi-micro 
mechanical history and finally predict the orientation of failure mechanism. The method was 
presented in a matter that there is no limitation for different shapes of stress-strain curves. Results: It was 
concluded that using this method, fundamental properties of material such as material fracture, 
orientation of failure, anisotropic behavior of material, separation of behavior in several planes and 
rotation of principle axis of stress and strain during nonlinear behavior can be determined. 
Conclusion/Recommendations: This method can be used for complicated material behavior 
simulation under seismic loading, cyclic loading or fatigue effects. For future works, the method can 
be extended by increasing the number of planes. Higher-order equations can also be used to have a 
more accurate approximation of stress-strain curve. 
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INTRODUCTION 

 
 Misunderstanding of material behavior and 
occasional predictions with limited accuracy has caused 
several problems in analysis and construction in 
different engineering branches. The use of superfluous 
safety factors to compensate the lack of knowledge will 
cause great costs in industry. Therefore, using the 
methods which are able to predict material behavior 
will enable the users to recognize all of the affecting 
factors and properly consider the effect of each factor. 
Semi-linear or multi-linear analysis is one of the simple 
methods presented for modeling the material 
behavior[1]. Koushi and Green elastic models, Hypo 
elastic models, variable-parameter models are some 
instances of such model. The notable point in these 
modeling methods is that in some cases, for better 
understanding of material behavior, it is necessary to 
change the parameters in a natural and specific manner 
and the determination of the parameters may be 

difficult and even impossible. Besides, the limited 
ability of these models is in the case of simple stress 
paths. This fact forced researchers to consider more 
complicated mathematics with various different 
components in the new models. But the main problem, 
which is the dependency of material behavior to stress 
path and stress history[2] still exist. Because of the 
mentioned reasons, in this study it was tried to propose 
a process based on a multi-line method in the form of 
multi-plane pattern which do not have the mentioned 
problems. In addition, the significant advances in 
computer sciences have enabled researchers to entrust 
the computation of different components to computers 
in an organized system shape. In this manner, more 
complicated behavioral parameters can be introduced to 
models. A significant characteristic in multi-plane 
pattern is the ability of behavior analysis in specific 
directions. Existence of seems in stones or position of 
aggregate positioning in sand and alluvium 
sedimentation and similar cases is caused the material 
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to have different behavior in different directions[3-6]. 
Multi-plane pattern makes it possible to determine the 
material behavior in different directions.  
 
Multi-plane pattern: The basis of multi-plane method 
is to determine the numerical relationships between 
inter-particle behavior (micro behavior) and 
engineering mechanical characteristics (macro 
behavior) in the form of an essential equation which is 
obtained by solution of numerical integration[1,6]. In 
other words, in this case, behavioral properties of 
material behavioral properties and stress-strain behavior 
of soil can be determined by investigation of inter-
particle behavior. Granular materials are composed of 
indefinite number of solid particles which are in contact 
to each other and the reaction between particles is due 
to the force which exists in contact surface. The 
analysis of particle behavior and their contact surface 
depends on number, size, shape, roughness and the 
strength of particles in these surfaces. Consequently, 
investigation about these materials under mentioned 
condition is more complicated than the case which has 
continuous circumstance. Besides, in a simple view, 
behavior of granular material can be assumed as the 
combination of particle elastic behavior and plastic 
slippage in contact surfaces. In this manner, in artificial 
case, the three dimensional behavior of granular 
materials can be determined by considering indefinite 
sample planes in which slippage is possible. These 
planes divide the material block into a collection of 
multilateral parts which are next to each other. When a 
little shear is applied to a multilateral part, elastic shear 
deformation occurs. If the shear be increased and 
achieve a specific limit, multilateral parts move along a 
boundary surface called slippage plane. With increasing 
the deformations, necessary shear stress for occurrence 
of more deformation is increased. The total shear stress 
at any time is equal to the summation of elastic shear 
deformation in multilateral parts and shear deformation 
due to the slippage of adjoining parts. When the stress 
is decreased, the elastic deformation disappears. When 
the stress is more decreased and achieved to a specific 
limit, multilateral parts begin to slip in opposite 
direction. The required shear stress for slippage 
depends on normal stress and the slippage only occurs 
when the stress condition passes the yield stress. 
Moreover, slippage just occurs in slippage planes with 
directions shown in Fig. 1.  
 
Numerical concept of multi-plane theory: In this 
theory, the initial basis is calculation of numerical 
integration from a specific mathematical function on a 
sphere of unity radius. This mathematical function can 

present the changes of physical properties on the surface 
of sphere. The surface of a sphere can be estimated by 
indefinite number of flat planes which are tangent on 
different points of the sphere. In this manner, any of 
mentioned planes have one contact point with the sphere. 
 By limiting the number of these planes, the number 
of contact points or basis points can be adjusted and the 
calculation of numerical integration gives the amount of 
the function in the mentioned points. Numerical 
integration of continuous function f (x, y,z)  on the 
surface of sphere can be calculated as the summation of 
function value F at different points which are multiplied 
to corresponding weight coefficients. To decrease the 
error values, the number of these points should be 
increased. It can be confirmed that the application of 26 
sample points will decrease the error to the sixth order. 
 

 
(a) 

 

 
(b) 

 
Fig. 1: Representation of granules assembly in real and 

artificial cases: (a) real tissue of granules in the 
internal structure of material (b) representation 
of artificial polyhedron parts assemblage 
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Fig. 2: 26 sample points for numerical integration on 

the surface of a sphere with radius of unity 
 
The below equation shows the relationship between 
numerical and normal integration: 
 

n

i i i i i
i 1

f (x, y,z)d 4 w f (x , y , z )
=

Ω = π∑∫ ∫  (1)  

 
Where: 

i

i i i i i i i

Sphere area

n Number of points

w Nodal weight coefficient

f (x ,y ,z ) The value of F functionat the point (x ,y ,z )

Ω =
=
=
=

 

 
 The position of the 26 points on sphere is shown in 
Fig. 2. For any point, a plane is defined so that the 
direction cosines are the same as normal vectors of the 
plane at contact points. 
 In this manner, any change on the i plane is 
concentrically related to it. Since for any of desired 
points a specific plane is specified, and considering the 
point symmetry, the 26 points are reduced to 13 points 
and the surface of half sphere is approximated by 13 
planes:  
 

n

i i i i i
i 1

f (x, y, z)d 8 w f (x , y , z )
=

Ω = π∑∫ ∫  (2)  

 
 The orientations of the 13 planes are shown in the 
center of cube in Fig. 3. On this basis, if the quality of 
slippage and opening and closing of each plane is 
organized, the summation of these slippages, openings 
and closings compose the method of material 
movement for a point and by integral summation, total 
movement or deformation effects can be achieved for a 
specific point. In this manner, it is required to assume a 
rule for the value of function i i i, if (x , y z )  which 

determines the movements of each plane. 

 
 
Fig. 3: representation of the 13 mentioned planes 
 
Behavior determination in the form of multi-line 
method in global coordinates: Independent on the 
shape of stress-strain curve, each curve can be 
simulated using some straight lines. For determination 
of lateral and normal strain relationship a similar 
method is used. 
 
Behavior determination of the 13 planes: To 
determine the behavior condition of each plane and 
relations between plane behavior and total behavior, the 
behavior tensor is transferred from global coordinates 
to each of the 13 planes. Strain vector in global 
coordinates can be transferred to a three-component 
vector on each plane consists of normal strain and two 
shear strains placed on the plane by using 
transformation matrix.  
 

j jl .ε = ε   (3) 

 
where, jl  is the transformation matrix of jth plane: 

 
2 2 2

' ' ' ' ' ' ' ' '

" " " " " " " " "

l m n 2lm 2mn 2nl

l ll mm nn lm l m mn m n nl n l

ll mm nn lm l m mn m n nl n l

 
 = + + + 
 + + + 

 

 
 The parameters n,m,l , n,m,l and n,m,l are 
respectively the direction cosines of normal to plane 
direction and two perpendicular direction on the plane. 
In the Eq. 3, ε is strain vector of six components in 
general coordinates which is defined as following 
equation: 
 

C.ε = σ   (4) 
 
 In Eq. 4, σ  is six-component stress vector in 
general coordinates and c is behavior tensor in general 
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coordinates. Substituting the Eq. 4 in Eq. 3 the 
following equation is obtained: 
 

j jl .C.ε = σ   (5)  

  
 By this equation, strain vector of planes are 
obtained. By knowing strain vector of each plane and 
using basic relation of multi-plane, strain vector in 
general coordinates which is calculated by summation 
of planes effect is determined by following equation: 
 

13
'

j j j
j 1

8. w .l .
=

ε = π ε∑   (6)  

 
where, '

jl  is transformation matrix from plane to general 

coordinates: 
 

2 ' "

2 ' "

2 ' "
'

' ' " "

' ' " "

' ' " "

l 2ll 2ll

m 2mm 2mm

n 2nn 2nn
l

lm l m lm l m lm

nm n m nm n m nm

l.n l n l.n l n l.n

 
 
 
 

=  
+ + 

 + +
 
 + + 

 

 
 Substituting Eq. 5 in Eq. 6, following equation is 
obtained: 
 

13
'

j j j
j 1

(8. w .l .l .C)
=

ε = π σ∑   (7) 

 
 In other words, the proportion of each plane in 
general behavior of plane is as following: 
 The proportion of jth plane in general behavior: 
 

'
j j j8 .w .l .l .Cπ   (8) 

 
 In the proposed method, by transferring the 
behavior tensor into the 13 planes, behavior of granular 
material is initially determined in each specific 
direction. In other words, deformations in different 
directions are ruled. Then by having the rule of 
deformation in each direction and by numerical 
integration of multi-plane pattern (based on strain 
transfer from planes to general coordinates), collective 
effect of plane behavior on general behavior is 
obtained. Knowing experimental specimen curves from 
underground behavior of material and using this 
method, the model components can be obtained. In 
other words, due to traffic of strains from general 

coordinates to planes and vice versa, the components of 
proposed method are obtained.  
 A notable point in transferring three-axial 
experimental curves to the 13 planes is the method of 
creating stress and deformation on them. As it can be 
seen in Fig. 3, carried out studies have shown that the 
effect of the planes 1-4 is to create stress- deformation 
in the directions normal to plane and both shear 
directions on the plane. In the planes 5-7, the second 
shear direction will not become activated. In the plane 
8, the shear direction one is inactive. In the planes 9-13, 
just the plane normal direction is activated and no shear 
will produced in these planes. 
 In the above equations, the proportion of each 13 
planes in general behavior is determined. If it be 
necessary, relationships between stress and strain 
vectors in each plane can be determined: 
 

j JC .ε = σ  (9) 

 
 Stress vector of plane can be achieved by 
transferring the general stress vector:  
 

j jl .σ = σ   (10) 

 
 By substituting in the Eq. 9: 
 

j j jC .l .ε = σ   (11) 

 
 On this basis and using numerical integration of 
multi-plane pattern, general strain vector is calculated: 
 

13
'

j j j j
j 1

8 w .l .C .l .
=

ε = π σ∑   (12) 

 
 In this manner, as it was showed in the equation, 
the proportion of ith plane behavior effect on general 
behavior is as followings: 
 The proportion of ith plane behavior effect on 
general behavior: 
 

'
j j J j8 .w .l .C .l= π   (13)  

 
 By equalizing the Eq. 8 and 13, following 
equations are obtained: 
 

j j jC .l l .C=   (14) 

 
 Thus the parametric relation of general behavior 
tensor and behavior tensor of each plane will be 
determined. 
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MATERIALS AND MATHODS 
 
 In the following, for a general behavior of material, 
simulation is carried out using this method to illustrate 
the usage of the method. Stress-strain carves of this 
general case in shown in Fig. 4. 
 Firstly, stiffness and compliance matrices are 
calculated in each step by equations obtained by 
presented curves. To prevent the ambiguity of 
compliance matrix, a very small value is assumed for 
the steep of lines where the steeps were equal to zero. 
The aim of writing stiffness matrix was to enable the 
simple summation of equations based on stress and 
determination of final compliance matrix in each step. 
It should be noted that during the solution of problem, 
the effect of shear stress in producing some proportion 
of normal stress is considered. In addition normal stress 
equations are considered both in compression and 
tension ranges.  
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 4: Stress-strain curve of material in a general 

case: (a) shear stress-shear strain; (b) Normal 
strain-shear strain; (c) normal stress-normal 
strain 

 In the following, the corresponding equations of 
each step of carve are presented:  
 
Part 1: 
 

1

1
t t1

1

1

0 C
1

0

 β
 γ α ≤ ε ≤ ε ⇒ =
 
 

α 

 

 

1

1 1
1 1

1

D
1

0

 β
 α α = α γ
 
 

γ 

 

 
n n 1 1 tσ = γε γ β ε  

 

n n 1
1 t n 1 t

1

t

1

1n n

t

1

1

1

1
0

σ σ βτ = α ε ⇒ ε = + β ε = + τγ γ α 

ε = τ
γ 

 β
    γ αε σ    ⇒ =    ε τ       

α 

 

 
Part 2: 
 

1

1
t1 t t2

1

1

C
1

0

 β
 γ α ε ≤ ε ≤ ε ⇒ =
 
 

α 

 

 
2

2 2
2 1

1

D
1

0

 β
 α α = α γ
 
 

γ 

 

 
n n 1 t 2 t t1( )σ = γε − γβ ε − γβ ε − ε  

 

1 t 2 t t1

n 2 1
n 2 1 2 2 t1

2 2

1
t t1

2 2

2
t1 1 2

2n n

1
t t1

2
2

( )

( ) 1

1
1

1
( )

11
0




τ = α ε + α ε − ε 


 σ β α 
⇒ ε = + ε β − β + τ + β ε −  γ α α 

 α ε = τ + ε −  α α  

 β  ε β − β    γ αε σ      ⇒ = +       α ε ε −τ          α  α 
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Part 3: 
 

3

3
t2 t t3

3

1

C
1

0

 β
 γ α ε ≤ ε ≤ ε ⇒ =
 
 

α 

 

 

3

3 3
3 1

1

D
1

0

 β
 α α = α γ
 
 

γ 

 

 
( )n n 1 t1 2 t2 t1 3 t t2( )σ = γε − γβ ε − γβ ε − ε − γβ ε − ε  

 

1 t 3 t t1

n 2 1
n t1 1 2 2 t1 2 t1

3 3

1
t t1 t2

3 3

2 12
t1 1 2 t1

33n n

t 1
t1 t2

3 3

( )

( )

1

1
( )

1
0


τ = α ε + α ε − ε 
σ β α 

⇒ ε = + ε β − β + τ − β ε + β ε γ α α 
α
ε = τ − ε + ε

α α 

 β α β ε β − β − ε   α   γ αε σ      ⇒ = +      ε τ α       − ε + ε   α α   

 

 
Part 4: 
 

t3 t

4

1
0

C
1

0

 
 γ
 ε ≤ ε ⇒ =
 
 α 

 

 

4
4 1

1
0

D
1

0

 
 α
 = α γ
 
 γ 

 

 
( )n n 1 t1 2 t2 t1 3 t3 t2( )σ = γε − γβ ε − γβ ε − ε − γβ ε − ε  

 

1 t1 3 t3 t2 4 t t3

n
n t1 2 t2 t1 1 t3 t2

1 3
t t1 t3 t2 t2

4 4 4

1 t1 2 t2 t1 1 t3 t2
n n

1 3
t1t

4
4

( ) ( )

( ) ( )

1
( )

1
0 ( ) ( )

1
0


τ = α ε + α ε − ε + α ε − ε 
σ 

⇒ ε = + βε + β ε − ε + β ε − ε γ 
α α
ε = τ − ε − ε − ε + ε

α α α 

  β ε + β ε − ε − β ε − ε   γ  ε σ    ⇒ = + α α   
  − ε −ε τ      α α α 

t3 t2 t2
4

( )

 
 
 ε − ε + ε 
 

 

 As it can be seen, all of the above equations are in 
the form of following equation, where the vector { }0ε  

is the strain without stress vector.  
 

{ }
n 11 n

t 22 1 0

t 33 2

C 0 0

0 C 0

' 0 0 C

ε σ     
    ε = τ + ε    
    ε τ     

 

 
 Having determined stress-strain equations for the 
26 planes, the compliance matrix is transferred to 
general coordinates using transfer vectors. It is obvious 
that for calculation of transfer matrices, direction 
cosines should be calculated in normal and shear 
directions. The values of these cosines are tabulated in 
Table 1.  
 It should be noted that for the mentioned problem, 
since the resultant shear stress is given, direction 
cosines in one shear direction is just used. Using 
direction cosines and mentioned equations, transfer 
matrices of the 13 planes are determined and indicated 
in Table 2. 
 Using below equations, general compliance matrix 
is calculated: 
 

^
T

i i i
___

11 12 13

21 22 23
11

31 32 33
22

41 42 43
33

51 52 53

61 62 63

11 21 31 41 51 61

12 22 32 42 52 62

13 23 33 43 53 63

C  T  . C  . T  =

T T T

T T T
C 0 0

T T T
0 C 0

T T T
0 0 C

T T T

T T T

T T T T T T

T T T T T T

T T T T T T

=

 
 
   
   
   
     
 
  

 
 
 
  

 

 

11 11 12 22 13 33

21 11 22 22 23 33
11 21 31 41 51 61

31 11 32 22 33 33
12 22 32 42 52 62

41 11 42 22 43 33
13 23 33 43 53 63

51 11 52 22 53 33

61 11 62 22 63 33

T C T C T C

T C T C T C
T T T T T T

T C T C T C
T T T T T T

T C T C T C
T T T T T T

T C T C T C

T C T C T C

 
 
   
   =    
     
 
  

  

 

^

i

. . . . . .

. . . . .

. . . .
C

. . .

SYM . .

.

 
 
 
 

= = 
 
 
 
  
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Table 1: Direction cosines of integration points 
Direction cosines of integration points  
---------------------------------------------------------------------------------------------------------------------------------------------------------- Weights 

l i mi ni 
*
il  *

im  *
in  **

il  **
im  **

in  (Wi) 

1
3

+  
1
3

+  
1
3

+  
1
2

+  0 
1
2

−  
1
6

+  
1

2
6

−  
1
6

+  
27

480
 

1
3

+  
1
3

−  
1
3

+  
1
2

+  0 
1
2

−  
1
6

+  
1

2
6

+  
1
6

+  
27

480
 

1
3

−  1
3

+  
1
3

+  
1
2

+  0 
1
2

+  
1
6

+  
1

2
6

+  
1
6

−  
27

480
 

1
3

−  
1
3

−  
1
3

+  
1
2

+  0 
1
2

+  
1
6

+  
1

2
6

−  
1
6

−  
27

480
 

1
2

+  
1
2

+  0 0 0 1 
1
2

+  
1
2

−  0 
32

480
 

1
2

−  
1
2

+  0 0 0 1 
1
2

+  
1
2

+  0 
32

480
 

1
2

+  0 
1
2

+  0 1 0 
1
2

+  0 
1
2

−  
32

480
 

1
2

−  0 
1
2

+  
1
2

+  0 
1
2

+  0 1 0 
32

480
 

0 
1
2

−  
1
2

+  1 0 0 0 
1
2

+  
1
2

+  
32

480
 

0 
1
2

+  
1
2

+  1 0 0 0 
1
2

+  
1
2

−  
32

480
 

1 0 0 0 1 0 0 0 1 
40

480
 

0 1 0 1 0 0 0 0 1 
40

480
 

0 0 1 1 0 0 0 1 0 
40

480
 

 
Table 2: transfer matrices of the 13 planes 
   Transfer matrices 
T1 0.3333 0.3333 0.3333 0.6667 0.6667 0.6667 
 0.4082 0 -0.4080 0.4082 -0.4080 0 
T2 0.3333 0.3333 0.3333 -0.6670 -0.6670 0.6667 
 -0.4082 0 -0.4080 -0.4080  0.4082 0 
T3 0.3333 0.3333 0.3333 -0.6670 0.6667 -0.667 
 -0.4080 0 0.4082 0.4082 0.4082 0 
T4 0.3333 0.3333 0.3333 0.6667 -0.6670 -0.667 
 -0.4080 0 0.4082 -0.408 -0.4080 0 
T5 0.5 0.5 0 1 0 0 
 0 0 0 0 0.7071 0.7071 
T6 0.5 0.5 0 -1 0 0 
 0 0 0 0 0.7071 -0.707 
T7 0.5 0 0.5 0 0 1 
 0 0 0 0.7071 0.7071 0 
T8 0.5 0 0.5 0 0 -1 
 -0.5 0 0.5 0 0 0 
T9 0 0.5 0.5 0 -1 0 
 0 0 0 -0.707 0 0.7071 
T10 0 0.5 0.5 0 -1 0 
 0 0 0 -0.707 0 0.7071 
T11 1 0 0 0 0 0 
 0 0 0 1 0 0 
T12 0 1 0 0 0 0 
 0 0 0 1 0 0 
T13 0 0 1 0 0 1 
 0 0 0 0 0 0 

^

ii

. . . . . .

. . . . .

. . . .
C 8 w .C

. . .

SYM . .

.

 
 
 
 

= π =  
 
 
 
  

∑  

 
 As it can be seen, above equation are very long and 
the calculation is very time consuming. Thus for 
simplicity, a program is developed in Excel software 
which calculates the components of general compliance 
matrix that are constant for all of the 4 material 
conditions. Using this program, general compliance 
matrix for all of the 4 parts of the given problem as 
discussed above. 
 To compare the results of the proposed model with 
real results, the results of an experimental test on a 
stone specimen in 6 different initial pressures is 
selected. These results were published in London 
Geotechnical journal. Considering the 3 carves given 
for this problem, the curve which is corresponding to 
initial pressure 100 kPa is the most suitable carve. In 
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the Fig. 5, the results of the test are compared to the 
result of proposed model. 
 

RESULTS 
 
 If the method be properly used and the assumptions 
be correct, the method can accurately simulate the 
behavior of complicated materials. The following cases 
are the advantages of the method: simulation of any 
material behavior with any stress-strain curve, analysis 
of fracture, determination of failure orientation, 
Possibility of application of any failure criteria such as 
Mohr-Coulomb or Drucker-Prager, possibility of 
increasing the number of under study planes in multi-
plane pattern and considering the effects of material 
behavior in the planes perpendicular to principle planes, 
 

 
 

 
 

 
 
Fig. 5: Comparison between the results of the proposed 

model and experimental test 

prediction of anisotropic behavior of materials and 
separation of the behavior into different planes, 
prediction of softening and hardening and so on, 
possibility of accurate investigation of geometrical 
nonlinearity, possibility of investigation about the 
rotation of principal axis, prediction of anisotropic 
behavior and plasticity propagation history in material. 
 

DISCUSSION 
 
 The reason of observable differences between the 
results of the model and the results of experimental test 
is shown in Fig. 6. 
 As it can be seen from Fig. 6, to predict the 
behavior, the line 2 is used instead of curve 1. So in the 
ith iteration, the values of strain are different by the 
value i∆ε . Also in the calculation of bulk strains, since 

the differences exist in all the three axial strains, the 
value of error will be accumulated. To prevent 
unacceptable error value, the number of model lines 
should be increased. This is shown in Fig. 7. 
 

 
 
Fig. 6: The error value in strain prediction 
 

 
 
Fig. 7: Increasing the number of lines to decrease the 

error value 
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 In Fig. 7, the curve 1 is simulated by the three lines 
as it can be seen and the value of error is significantly 
decreased. 
 

CONCLUSION 
 
 In this study, it is tried to propose a method by 
which the behavior of granular material can be 
predicted in a simple and direct form. Using multi-
plane pattern make it possible to study the behavior of 
material in different directions. Moreover, the kind of 
failure can be determined by investigating the stresses 
in the 13 planes. Furthermore, there will be no 
limitation for different stress-strain curves using the 
presented multi-line method and this model has no 
restriction, since general case is studied and so any 
complicated and different behavior can be simulated. 
This method can also be used for study the effect of 
earthquake and cyclic loading on specimens. 
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