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Abstract: Problem statement. Improper understanding of material behavior prevehe efficient
and correct usage of available materials and caesgly, increases the construction and maintenance
costs and even unsuitable construction. Considehagecessity of exact investigation about mdteria
behavior, several researches have been carrigd this field but the majority of these researctizs

not propose a general method for prediction of glemmaterial behavior. Furthermore, many of the
methods proposed by researchers are not ablegemirthe properties such as the orientation airkil
mechanism of propagating plasticity in materigi@proach: In this study, a general method was
proposed for multi-laminate simulation to predice tbehavior of materials. The general applicability
of this method for prediction of granular mateiimbne of its significant advantages. The study was
carried out in the framework of multi-plane pattevhich is able to predict anisotropic behavior,
consider the effect of stress and strain axis iarat in plasticity, consider the semi-micro
mechanical history and finally predict the oriefdat of failure mechanism. The method was
presented in a matter that there is no limitatmrdifferent shapes of stress-strain cur®ssults: It was
concluded that using this method, fundamental mtigse of material such as material fracture,
orientation of failure, anisotropic behavior of m@al, separation of behavior in several planes and
rotation of principle axis of stress and strain idgr nonlinear behavior can be determined.
Conclusion/Recommendations. This method can be used for complicated materiahakior
simulation under seismic loading, cyclic loadingfatigue effects. For future works, the method can
be extended by increasing the number of planeshdtigrder equations can also be used to have a
more accurate approximation of stress-strain curve.
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INTRODUCTION difficult and even impossible. Besides, the limited
ability of these models is in the case of simplesst
Misunderstanding of material behavior andpaths. This fact forced researchers to consideremor
occasional predictions with limited accuracy hasseal complicated mathematics with various different
several problems in analysis and construction ircomponents in the new models. But the main problem,
different engineering branches. The use of supsuiu which is the dependency of material behavior tesstr
safety factors to compensate the lack of knowlesifle ~ path and stress histdfy still exist. Because of the
cause great costs in industry. Therefore, using thenentioned reasons, in this study it was tried twppse
methods which are able to predict material behavioa process based on a multi-line method in the fofm
will enable the users to recognize all of the affeg  multi-plane pattern which do not have the mentioned
factors and properly consider the effect of eactiofa  problems. In addition, the significant advances in
Semi-linear or multi-linear analysis is one of imple  computer sciences have enabled researchers tosentru
methods presented for modeling the materiathe computation of different components to computer
behaviol”. Koushi and Green elastic models, Hypoin an organized system shape. In this manner, more
elastic models, variable-parameter models are someomplicated behavioral parameters can be introdized
instances of such model. The notable point in thesenodels. A significant characteristic in multi-plane
modeling methods is that in some cases, for bettgpattern is the ability of behavior analysis in dfiec
understanding of material behavior, it is necesgary directions. Existence of seems in stones or posibib
change the parameters in a natural and specifineran aggregate positioning in sand and alluvium
and the determination of the parameters may bsedimentation and similar cases is caused the iaater
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to have different behavior in different directibis present the changes of physical properties onutface
Multi-plane pattern makes it possible to determtime  of sphere. The surface of a sphere can be estinhgted
material behavior in different directions. indefinite number of flat planes which are tangent
different points of the sphere. In this manner, afly
M ulti-plane pattern: The basis of multi-plane method mentioned planes have one contact point with thergp
is to determine the numerical relationships between By limiting the number of these planes, the number
inter-particle  behavior (micro behavior) and of contact points or basis points can be adjustetitiae
engineering  mechanical characteristics  (macrccalculation of numerical integration gives the amioaf
behavior) in the form of an essential equation Wh&  the function in the mentioned points. Numerical
obtained by solution of numerical integraffdh In integration of continuous functiorf(x,y,z) on the
other words, in this case, behavioral properties oburface of sphere can be calculated as the sunmnattio
material behavioral properties and stress-straiaer  function value F at different points which are riplied
of soil can be determined by investigation of inter to corresponding weight coefficients. To decredse t
particle behavior. Granular materials are composed error values, the number of these points should be
indefinite number of solid particles which are ontact  increased. It can be confirmed that the applicatib®6

to each other and the reaction between particleiés  sample points will decrease the error to the sixtter.
to the force which exists in contact surface. The

analysis of particle behavior and their contactfeae
depends on number, size, shape, roughness and the
strength of particles in these surfaces. Consetyyent
investigation about these materials under mentioned
condition is more complicated than the case whigh h
continuous circumstance. Besides, in a simple view,
behavior of granular material can be assumed as the
combination of particle elastic behavior and plasti
slippage in contact surfaces. In this manner, fifical
case, the three dimensional behavior of granular
materials can be determined by considering indefini
sample planes in which slippage is possible. These
planes divide the material block into a collectioh
multilateral parts which are next to each other.ewh

little shear is applied to a multilateral part,stia shear
deformation occurs. If the shear be increased and

@)
achieve a specific limit, multilateral parts moveray a
boundary surface called slippage plane. With irsirep Vi \/
the deformations, necessary shear stress for armer (

of more deformation is increased. The total sheass
at any time is equal to the summation of elastieash
deformation in multilateral parts and shear defdroma
due to the slippage of adjoining parts. When thesst
is decreased, the elastic deformation disappeah&nW
the stress is more decreased and achieved to dispec \
limit, multilateral parts begin to slip in opposite
direction. The required shear stress for slippage Q
depends on normal stress and the slippage onlyr®ccu
when the stress condition passes the vyield stress. r——\

(b)

Moreover, slippage just occurs in slippage planégb w
directions shown in Fig. 1.

Numerical concept of multi-plane theory: In this  Fig. 1: Representation of granules assembly inagéll

theory, the initial basis is calculation of numatic artificial cases: (a) real tissue of granules ia th
integration from a specific mathematical functiom @ internal structure of material (b) representation
sphere of unity radius. This mathematical functgam of artificial polyhedron parts assemblage
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Fig. 2: 26 sample points for numerical integratiom

the surface of a sphere with radius of unity Fig. 3: representation of the 13 mentioned planes

The below equation shows the relationship betwee#ehav'or_ determination [ the form of multi-line
numerical and normal integration: method in global coordinates: Independent on the

shape of stress-strain curve, each curve can be
n simulated using some straight lines. For deterrionat

j'j'f(X,y.Z)dQ=4’TZVVifi(>§l>{l7r) (1) of lateral and normal strain relationship a similar
= method is used.

Where: ] o

o) =Sphere area Behavior determination of the 13 planes: To

N = Number of points dete_rmme the behavior cond|_t|on of each plang and
relations between plane behavior and total behather

W = Nodal weight coefficient behavior tensor is transferred from global coortisa

f.(x,,¥:,z )= The value of F functionat theipb(x;, ¥,z ) to each of the 13 planes. Strain vector in global

coordinates can be transferred to a three-component
The position of the 26 points on sphere is shawn i vector on each plane consists of normal strain teued
Fig. 2. For any point, a plane is defined so thet t shear strains placed on the plane by using
direction cosines are the same as normal vectotiseof transformation matrix.
plane at contact points.
In this manner, any change on the i plane isg =l.e 3)
concentrically related to it. Since for any of dedi
points a specific plane is specified, and considethe  \yhere | s the transformation matrix of jth plane:
point symmetry, the 26 points are reduced to 13tpoi :
and the surface of half sphere is approximated dy 1

planes: > m? n? 2lm 2mn 2nl
[={I' mm nn" Im+I'm mn+mn nl+nl
J‘J‘f(xyyyz)dg):&-[zn:v\/ifi()g,y,z) 2) 1" mm" nn ImMm+Im mn+mn nl+ nl
i=
The parameters nm,| , nm,| and nm, are

The orientations of the 13 planes are shown in the . T .
center of cube in Fig. 3. On this basis, if theliqyaf respectively the direction cosines of normal tonpla

slippage and opening and closing of each plane igirection and two perpendicular direction on thengl.

organized, the summation of these slippages, ogsnin In the Eq. 3,s_is strain \{ecto.r of si.x components _in
and closings compose the method of materia@eneral coordinates which is defined as following

movement for a point and by integral summatiorgltot €duation:
movement or deformation effects can be achieved for

specific point. In this manner, it is required gsame a =Co 4)
rule for the value of functionf(x;,y, z) which In Eq. 4, o is six-component stress vector in
determines the movements of each plane. general coordinates and c is behavior tensor irergén

824



J. Computer Sci., 5 (11): 822-830, 2009

coordinates. Substituting the Eq. 4 in Eg. 3 thecoordinates to planes and vice versa, the compsmént

following equation is obtained: proposed method are obtained.
A notable point in transferring three-axial
g =1.Co (5) experimental curves to the 13 planes is the metifod

creating stress and deformation on them. As it lman
By this equation, strain vector of planes areS€en in Fig. 3, carried out studies have shown'ghmt
obtained. By knowing strain vector of each pland an €ffect of the planes 1-4 is to create stress- deition
using basic relation of multi-plane, strain veciar " the directions normal to plane and both shear
general coordinates which is calculated by summatiodiréctions on the plane. In the planes 5-7, thermsec

of planes effect is determined by following equatio shear direction wiI_I not be.co.me a}ctivated. In thenp
8, the shear direction one is inactive. In the ta®-13,

13 just the plane normal direction is activated andihear
e=8my w,l g (6) will produced in these planes.
= In the above equations, the proportion of each 13
planes in general behavior is determined. If it be
where, |, is transformation matrix from plane to general necessary, relationships between stress and strain
coordinates: vectors in each plane can be determined:

2 2l 2" e=C,g, 9)

2mm 2mm .
Stress vector of plane can be achieved by

.| n? 2nn 2nn ; _
I = , o ) transferring the general stress vector:
Im Im+Im  I'm+Im
nm nm+nm N M nm 0,=l.0 (10)
[In In+ln I'n+ln

By substituting in the Eq. 9:
Substituting Eq. 5 in Eq. 6, following equation is

obtained: g=Clo (11)
ST On this basis and using numerical integration of
e=@B8m w.l.l.C ) . .
( 121: RERR (7) multi-plane pattern, general strain vector is claltad:
In other words, the proportion of each plane ing:8'r[123 w,.l.Clo (12)
general behavior of plane is as following: =

The proportion of jth plane in general behavior:
In this manner, as it was showed in the equation,

gnw, I, |.C (8)  the proportion of ith plane behavior effect on gahe
behavior is as followings:

] The proportion of ith plane behavior effect on
In the proposed method, by transferring thegeneral behavior:

behavior tensor into the 13 planes, behavior ofigla

material is initially determined in each specific =8nw .G | (13)
direction. In other words, deformations in differen e
directions are ruled. Then by having the rule of
deformation in each direction and by numerical
integration of multi-plane pattern (based on strain
transfer from planes to general coordinates), ctile
effect of plane behavior on general behavior isCii =1.C (14)
obtained. Knowing experimental specimen curves from

underground behavior of material and using this  Thus the parametric relation of general behavior
method, the model components can be obtained. ltensor and behavior tensor of each plane will be
other words, due to traffic of strains from generaldetermined.
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MATERIALSAND MATHODS In the following, the corresponding equations of
each step of carve are presented:

In the following, for a general behavior of maddri  part 1:
simulation is carried out using this method tosthate
the usage of the method. Stress-strain carvesisf th
general case in shown in Fig. 4. 0<s

Firstly, stiffness and compliance matrices are = '~
calculated in each step by equations obtained by a,
presented curves. To prevent the ambiguity of
compliance matrix, a very small value is assumead fo 1 B
the steep of lines where the steeps were equatrm z a o
The aim of writing stiffness matrix was to enahie t
simple summation of equations based on stress and 0
determination of final compliance matrix in eackpst
It should be noted that during the solution of peof
the effect of shear stress in producing some piampor
of normal stress is considered. In addition norstiadss _ _o, _o, . B
equations are considered both in compression and~ %:&:= & —7+[31€1 _7+71T
tension ranges.
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As it can be seen, all of the above equationsrare
the form of following equation, where the veciar}

is the strain without stress vector.

€, C, O 0||o,
g =l 0 Cp, 0|41, p+{eg}
g 0 0 CyullT,

Having determined stress-strain equations for the
26 planes, the compliance matrix is transferred to
general coordinates using transfer vectors. lbigaus
that for calculation of transfer matrices, direntio
cosines should be calculated in normal and shear
directions. The values of these cosines are tadmllizt
Table 1.

It should be noted that for the mentioned problem,
since the resultant shear stress is given, dimctio
cosines in one shear direction is just used. Using
direction cosines and mentioned equations, transfer
matrices of the 13 planes are determined and itedica
in Table 2.

Using below equations, general compliance matrix
is calculated:
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Table 1: Direction cosines of integration points

Direction cosines of integration points

Weights
l; m; n I; m; n; I m; n; (W)
1 \F 1 1 1 1 1 1 27
+. /= +. /= +[= + [= 0 - = +. /= -2.|= +,|= —
3 3 3 2 2 6 6 6 480
1 1 1 1 1 1 1 1 27
+. /= - = +[= + [= 0 - = +. /= +2.|= +,|= —
3 3 3 2 2 6 6 6 480
1 1 1 1 1 1 1 1 27
- |= +. /= +[= + [= 0 + = +.|= +2,|= - |= —
3 3 3 2 2 6 6 6 480
1 1 1 1 1 1 1 1 27
- [= - [= +, = +,|= 0 +,|= + = -2.|= == —_—
3 3 3 2 2 6 6 6 480
| e 0 0 0 1 e e 0 32
2 2 2 2 480
e e 0 0 0 1 X X 0 32
2 2 2 2 480
e 0 |2 0 1 0 e 0 —\ﬁ 32
2 2 2 2 480
By 0 |2 |2 0 |2 0 1 0 32
2 2 2 2 480
0 e e 1 0 0 0 e e 32
2 2 2 2 480
0 +\ﬁ |2 1 0 0 0 +\ﬁ -2 32
2 2 2 2 480
1 0 0 0 1 0 0 0 1 40
480
0 1 0 1 0 0 0 0 1 40
480
0 0 1 1 0 0 0 1 0 40
480
Table 2: transfer matrices of the 13 planes r 7
Transfer matrices
Tl 0.3333 0.3333 0.3333 0.6667 0.6667 0.6667
04082 0 -0.4080 04082 -0.4080 O c=g G -
T2 03333 03333 03333 -0.6670 -0.6670 0.6667 C =8 W -G =
-0.4082 0 -0.4080 -0.4080 0.4082 0
T3 03333 03333 03333 -0.6670 0.6667 -0.667 SYM
-0.4080 0 0.4082 0.4082 0.4082 0
T4 0.3333 0.3333 0.3333 0.6667 -0.6670 -0.667 - -
5 -g.goso 85 8'4082 '10'408 60'4080 00 As it can be seen, above equation are very lodg an
0 0 0 0 07071 07071 the calculation is very time consuming. Thus for
T6 05 05 0 -1 0 0 simplicity, a program is developed in Excel softevar
- 85 % %5 % %7071 -10-707 which calculates the components of general compdian
0 0 0 07071 07071 0© matrix that are constant for all of the 4 material
T8 05 0 05 0 0 1 conditions. Using this program, general compliance
0.5 0 0.5 0 0 0 matrix for all of the 4 parts of the given probleas
To 8 8-5 8-5 8707 'é 87071 discussed above.
T10 0 05 05 5 A 0 To compare the results of the proposed model with
0 0 0 -0.707 0 07071 real results, the results of an experimental testao
Ti1 1 0 0 0 0 0 stone specimen in 6 different initial pressures is
o % (i % %) % % selected. These results were published in London
0 0 0 1 0 0 Geotechnical journal. Considering the 3 carves mjive
T13 0 0 1 0 0 1 for this problem, the curve which is corresponding
0 0 0 0 0 0 initial pressure 100 kPa is the most suitable cahve
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the Fig. 5, the results of the test are comparethéo prediction of anisotropic behavior of materials and

result of proposed model. separation of the behavior into different planes,
prediction of softening and hardening and so on,
RESULTS possibility of accurate investigation of geometrica

If the method be properly used and the assumptiongonlinearity, possibility of investigation about eth
otation of principal axis, prediction of anisotiop

be correct, the method can accurately simulate th havi d olastici ion hi in mia
behavior of complicated materials. The followinges Pehavior and plasticity propagation history in male

are the advantages of the method: simulation of any

material behavior with any stress-strain curve Jysis DISCUSSION
of fracture, determination of failure orientation, .
Possibility of application of any failure critersuch as The reason of observable differences between the

Mohr-Coulomb or Drucker-Prager, possibility of results of the model and the results of experimeati
increasing the number of under study planes inimult is shown in Fig. 6.

plane pattern and considering the effects of nalteri As it can be seen from Fig. 6, to predict the
behavior in the planes perpendicular to princigémps, behavior, the line 2 is used instead of curve linSbe

ith iteration, the values of strain are different the
value Ag, . Also in the calculation of bulk strains, since
o ol i s st . the differences exist in all the three axial stsaithe
EREA A 0 O T O I value of error will be accumulated. To prevent
23 om0 e S0 Do 0 o unacceptable error value, the number of model lines
| oo OO O NS R R A ey should be increased. This is shown in Fig. 7.

1 2 3 4 5 6

cu [ ez

cm | cin 1 clszcz ci1 {CIZ 1 c: | o

ci2 [czz cu J CIEJ cm | cin {clz J cn

Deviator stress

il B ) ) . . L.
| By test Fig. 6: The error value in strain prediction
50 —— By model
0e . ‘ " ; ,
o 3 10 15 20 25
Axial strain (%4)
08
041
0.27
.8
G 5 25
% -0.2 "'*.
E 0.4 '-.\
= -
S L0.6 "
o8 N . / = By test
4 e —e—Ey model
-1.2 Axial strain (39)

Fig. 5: Comparison between the results of the ppedo Fig. 7. Increasing the number of lines to decrethse
model and experimental test error value
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In Fig. 7, the curve 1 is simulated by the thieed 3.
as it can be seen and the value of error is sagmfly
decreased.

CONCLUSION

In this study, it is tried to propose a method by
which the behavior of granular material can be™
predicted in a simple and direct form. Using multi-
plane pattern make it possible to study the behlafio
material in different directions. Moreover, the diof
failure can be determined by investigating thesstes
in the 13 planes. Furthermore, there will be no™
limitation for different stress-strain curves usitige
presented multi-line method and this model has ng
restriction, since general case is studied andrgo a ~-
complicated and different behavior can be simulated
This method can also be used for study the efféct o
earthquake and cyclic loading on specimens.
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