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Abstract: Problem statement: Rectangular steel plates are widely used in various steel structures 
and steel industries. For a proper design of steel plate structures and efficient use of material, the 
behavior, strength, buckling and post-buckling characteristics of plates should be accurately 
determined. Approach: Considering the significance of this matter, lateral vibration of thick 
rectangular plates was studied on the basis of mindlin plate theory. The exact characteristic 
equations for a plate which is single supported in two opposite edges are available in the literature. 
S-C-S-F boundary condition which covers all possible situations is selected in this study. Results: The 
plate frequencies were calculated for this boundary condition for a wide range of plate sizes and 
thicknesses. The plate mode shapes were obtained for different cases and the effect of changes in 
boundary conditions; size ratio and thickness on the vibration behavior of rectangular steel plates are 
studied. Conclusion/Recommendations: Since the results of this study is exact and without any 
approximation, the presented values can be used as a proper criteria to evaluate the error value of 
approximate methods which are used by engineers for design of steel plates. These results can provide 
a good gridline for efficient design and prevention of using high safety factors. Considering the wide 
range of steel rectangular plates, more sizes and thicknesses of plates can be studied. The behavior of 
plates with other boundary conditions can also be studied for future research. 
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INTRODUCTION 

 
 The Classic Plate Theory (CPT) provides a 
theoretical model of plate behavior which has some 
considerable advantages, which cab be employed with 
confidence over a reasonable range of applications, but 
which also has significant limitations. The popularity of 
CPT arises from the fact that the bending behavior of a 
plate is expressed in terms of a sole, fundamental 
reference quantity that is w, the lateral displacement of 
the middle surface. The Kirchhoff hypothesis is used in 
CPT that straight lines originally normal to the plate 
middle surface remain straight and normal during the 
deformation process. The consequence of using this 
hypothesis is that the effect of through-thickness shear 
deformation is ignored in CPT and thus the classical 
theory overestimates the stiffness of the plate. Such 
overestimation is of little consequence for truly thin 
plates but can be of very considerable significance for 
other plates, particularly in vibration and buckling 
problems when the ratio of plate thickness to typical 
wavelength increases. A number of plate theories exist 
in which the Kirchhoff hypothesis is relaxed o take 
account of shear deformation and related effects and 

amongst these theories, those of Mindlin and Reissner 
are closely related and are well known.  
 The basic assumption of Mindlin plate theory is that 
a straight line originally normal to the plate middle 
surface is constrained to remain straight but not generally 
normal to the middle surface after deformations. 
 The inclusion of shear deformation effects in 
Mindlin plate theory means that the two cross-sectional 
rotations ψx and ψy have to be considered as 
independent, fundamental reference quantities, in 
addition to w. Thus, three fundamental quantities are 
involved in Mindlin plate theory, against the one of 
CPT[1]. 
 The assumption of Mindlin plate theory implies 
that shear strain distribution through the plate thickness 
are uniform, but this cannot be so. To correct for this, 
one shear coefficient factor is introduced into the 
analysis and selection of these factors is of some 
significance[2]. 
 The present study is to determine the exact 
characteristics equations for the case of S-C-S-F. 
Considering the transverse shear deformation, Mindlin 
plate theory is used to derive the integrated equations of 
motion in terms of the stress resultant. 
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 The frequency parameters which are calculated 
using the exact characteristic equations are obtained for 
this case, which can cover a wide range of plate aspect 
ratios η and relative thickness ratio δ. For the 
mentioned boundary condition S-C-S-F, Three 
dimensional  mode  shapes  and their contour plots for 
η = 2 and δ = 0.1 are shown.  
 

MATERIALS AND MATHODS 
 
 All the formulations provide here is for a 
rectangular plate of length a, width b and uniform 
thickness of h. Such a plate is shown in Fig. 1. 
 The displacements along the x1 and x2 axes are 
respectively marked as U1 and U2 and the displacement 
in the direction perpendicular to plane of x1 and x2 is 
marked as U3. According to Mindlin plate theory, the 
value of displacement components in these directions 
can be calculated by formulas 1: 
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2 3 2 1 2

3 3 1 2
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= − ψ
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 (1) 

 
 Where ψ1 and ψ2 are the slope due to bending 
alone in the respective planes, ψ3 is the transverse 
displacement and t is the time. The strains in the form 
of tensor components can be derived from equation 1 
and can be written as Eq. 2: 
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 If M 11 and M22 and M12 are the bending and 
twisting moments per unit length and Q1 and Q2 are the 
shear forces per unit length, then the plate linear 
constitutive relationships can be expressed as Eq. 3: 
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Fig. 1: A Mindlin plate with coordinate convention[3] 
 
 Where 3 2D Eh /12(1 )= − υ , ν as Poisson’s ratio and 
E and G as the modulus of elasticity and rigidity. The 
constant k2 is the shear correction factor introduce to 
account for the non-uniformity of shear strain through 
the plate thickness.  
 The equations of motion can be derived from three 
dimensional equations of motion in the form of Eq. 4: 
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 where ρ is mass density per unit volume. Since 
there is no shear force in the faces of the plate, the 
integration through the thickness of plate for equations 
4 gives Eq. 5: 
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 If the coordinates are normalized to the plate planar 
dimensions, non-dimensional parameters can be 
calculated by Eq. 6: 
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 where β is frequency parameter. Equation 3 can 
now be written in dimensionless form as Eq. 7: 
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 In these equations, partial differentiation with 
respect to the normalized coordinates is represented by 
comma subscript. The parameters 1ψ% , 2ψ%  and 3ψ%  can 

be given by Eq. 8: 
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 If the dimensionless stress resultants of Eq. 7 are 
substituted in Eq. 5, 9 can be derived: 
 

2
1,11 1,22 1,11 2,12

2 2 2

1 3,1 12

2
2,11 2,22 1,12 2,22

2 2 2

2 3,2 22

2
3,11 3,22 1,1 2,2

2 2

3

1
( )

1

12K
( )

6(1 )

1
( )

1

12K
( )

6(1 )

( )

6(1 )

− υψ + η ψ + η ψ + ηψ −
+ υ

β δψ − ηψ = − ψ
δ − υ

− υψ + η ψ + η ψ + ηψ −
+ υ

β δψ − ηψ = − ψ
δ − υ

ψ + η ψ − ψ + ηψ =

β δ− ψ
− υ

% % % %

% % %

% % % %

% % %

% % % %

%

   (9) 

 
 These equations can be solved if the functions 1ψ% , 

2ψ%  and 3ψ%  are written in the form of three 

dimensionless potentials W1, W2 and W3 as Eq. 10: 
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 The parameters2
1α , 2

2α  and 2
3α can be calculated by 

Eq. 11: 
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 The governing equations of motion can be writing 
as Eq. 12: 
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 One set of the solutions for Eq. 12 can be Eq. 13: 
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 In these equations, A and B are constants. λ and µ 
can be found by Eq. 14: 
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 It is obvious that for a simply supported edge, free 
edge and clamed edge Eq. 15-17 can be respectively 
written as: 
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1 2 3 0ψ = ψ = ψ =% % %  (17) 

 
S-C-S-F boundary condition: This boundary 
condition is the most complicated case and covers all 
possible boundary conditions. For this case, equation 18 
can be written: 
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RESULTS 

 
 In this part, numerical calculations of the above 
equations are given to clarify the method. Poisson’s 
ratio is assumed to be equal to 0.3.  
 The results have high accuracy and can be used for 
determining the accuracy of approximate methods. To 
illustrate the results, a typical 3D deformed mode 
shapes together with their corresponding deflection 
counter plots for plate with aspect ratio  η = 2 and 
thickness ratio 0.1δ = are given in Fig 2. 
 For different thickness to length ratios of 

0.01,0.05,0.1,0.115,0.2δ =  and aspect ratios of 
0.4,0.5,2 / 3,1,1.5,2,2.5η = , the results are tabulated in 

Table 1. In Table 1, for every δ and η, the nine lowest 
values of frequency are displayed in ascending order. 

 
Table 1: First nine frequencies for rectangular thick plates with boundary condition S-C-S-F 
η δ 1 2 3 4 5 6 7 8 9 
0.4 0.01 10.1848 13.5947 20.0776 29.5868 39.6021 42.1851 42.9565 49.5127 57.9108 
  0.05 10.1319 13.4887 19.8437 29.1124 38.9107 41.2893 42.1449 48.4091 56.3209 
  0.10 9.9871 13.2121 19.2456 27.8944 37.0765 38.9971 39.9820 45.5522 52.3237 
  0.15 9.7676 12.8087 18.4063 26.2480 34.6080 36.0362 37.1334 41.9122 47.4327 
  0.20 9.4910 12.3200 17.4363 24.4379 31.9525 32.9523 34.1210 38.1799 42.6163 
0.5 0.01 10.4206 15.7393 25.7574 39.7874 40.5324 45.0551 55.2982 60.1784 70.3559 
  0.05 10.3618 15.5842 25.3653 39.0904 39.6621 44.1381 53.8756 58.4177 68.0502 
  0.10 10.2054 15.1956 24.3830 37.2242 37.4665 41.7409 50.3101 54.0543 62.5113 
  0.15 9.9712 14.6443 23.0502 34.6374 34.7311 38.6310 45.9063 48.7890 56.0469 
  0.20 9.6782 13.9934 21.5678 31.6896 32.0545 35.3839 41.5112 43.6674 49.9152 
2/3  0.01 10.9682 20.3073 37.8901 40.2293 49.6579 64.0609 67.7516 89.1850 94.2461 
  0.05 10.8951 20.0257 37.0603 39.5018 48.4841 61.9924 65.5195 85.8902 90.0643 
  0.10 10.7099 19.3498 35.0192 37.5793 46.5302 56.9754 60.2293 77.9793 80.6773 
  0.15 10.4390 18.4298 32.4007 35.0275 41.8180 51.0561 54.0632 69.0335 70.5727 
  0.20 10.1060 17.3888 29.6707 32.3003 38.0442 45.4110 48.2070 61.6093 63.2764 
1 0.01 12.6728 32.9925 41.6472 62.8595 72.2171 90.4194 102.7904 111.5689 130.9964 
  0.05 12.5482 32.2370 40.8218 60.7824 69.4393 86.9701 97.5322 106.1105 123.0672 
  0.10 12.2606 30.4743 38.7128 55.9736 62.9527 78.8120 86.2713 94.0906 106.1656 
  0.15 11.8620 28.2362 35.9677 50.3782 55.6218 69.6629 74.6338 81.5621 89.6189 
  0.20 11.3931 25.8975 33.0747 45.0445 48.8911 61.3014 64.6148 70.7202 76.0573 
1.5 0.01 16.7875 45.2148 60.8312 91.9180 93.5911 141.1267 149.0012 161.6466 180.1544 
  0.05 16.5179 44.1176 58.4647 87.1780 89.7406 131.7987 138.3211 151.2366 164.9217 
  0.10 15.9404 41.4965 53.0869 77.3057 80.9273 113.3509 116.7400 129.8348 136.6792 
  0.15 15.1913 38.2377 46.9606 67.0994 71.2484 95.8630 96.8123 109.4262 112.0940 
  0.20 14.3646 34.9199 41.2635 58.2641 62.5203 81.1835 81.6739 92.9209 93.3381 
2 0.01 22.7512 50.6057 98.4649 99.3823 131.4853 166.1173 181.7921 250.1932 253.2971 
  0.05 22.2469 49.0424 93.5256 93.9506 121.8970 154.8514 165.8679 223.8942 227.2697 
  0.10 21.1870 45.5725 81.0357 84.0786 103.5900 132.2990 137.5355 178.6892 180.1780 
  0.15 19.8705 41.5047 68.4310 73.5755 86.6229 111.1472 113.1589 141.1201 145.1981 
  0.20 18.4903 37.5487 57.8767 64.2947 73.0862 94.1986 94.5611 114.5430 119.7053 
2.5 0.01 30.5270 57.8545 105.1242 148.7010 172.2784 181.4601 232.9375 259.0458 302.2416 
  0.05 29.6813 55.5986 99.6242 136.3896 159.7670 163.9473 206.9864 233.6515 263.6216 
  0.10 27.8981 50.9077 88.2403 112.4394 133.2557 135.5890 165.0990 189.4319 205.4196 
  0.15 25.7584 45.7332 76.6139 91.0054 107.5361 113.4230 132.1264 153.2002 162.1838 
  0.20 23.6105 40.9415 66.6065 74.5669 88.3290 95.8842 108.2063 126.5933 131.8118 
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Fig. 2: First nine mode shapes of S-C-S-F rectangular 

plate (η = 2, δ = 0.1) 
 

DISCUSSION 
 
 As it was mentioned before, the method which is 
used in this study is accurate and is based on the exact 
characteristic  equations  and  no estimation is involved. 

Table 2: Comparison study of frequency parameters for square 
mindlin plates with S-C-S-F boundaries 

   Mode sequences 
  ------------------------------------------------------- 
δ Method 1 2 3 4 

0.1  Liew et al.
[4]

  12.2492 30.4083 38.6346 55.8018 
  Present  12.2492 30.4086 38.6342 55.8017 
0.2  Liew et al.

[4]
 11.3619 25.7547 32.8934 44.7241 

  Present  11.3619 25.7545 32.8937 44.7244 

*K
2 

= 5/6 

 
To assure the performance of this method, the results 
are compared to those of an approximate method which 
has acceptable accuracy Liew et al.[4] in the case of a 
rectangular plate with 0.001δ = . This comparison is 
tabulated in Table 2 for the first four frequencies. As it 
can be seen, the results are close which confirm the 
performance of the exact method. The minor 
differences is because of the approximations exist in the 
Liew non-exact method. 
 

CONCLUSION 
 
 In this study, Mindlin plate Theory is used to 
investigate the free vibration of thick rectangular plates. 
The general characteristic equations and transversal 
deformations, frequencies and different mode shapes 
are presented for S-C-S-F boundary condition which 
covers all other boundary conditions. Considering the 
high applicability of rectangular steel thick plates and 
the exact results of this method, the method can be used 
by engineers who need the exact results for optimize 
plate design.  
 

REFERENCES 
 
1. Dawe, D.J. et al., 1985. Aspects of the Analysis of 

Plate Structures. 2nd Edn., Clardendon Press, 
Oxford, ISBN: 0198561687, pp: 33.  

2. Gorman, D.J., 1997. Free vibration analysis of 
Mindlin plates with uniform elastic edge support 
by the  superposition method. J. Sound Vibrat., 
207: 335-350. DOI: 10.1006/jsvi.1997.1107  

3. Hashemi, S.H. and M. Arsanjani, 2004. Exact 
characteristic equations for some of classical 
boundary conditions of vibrating moderately thick 
rectangular plates. Int. J. Solids Struct., 42: 819-853. 
DOI: 10.1016/j.ijsolstr.2004.06.063  

4. Liew, K.M. and T.M. Teo, 1999. Three-
dimensional vibration analysis of rectangular plates 
based on differential quadrature method. J. Sound 
Vibrat., 20: 577-599. DOI: 10.1006/jsvi.1998.1927  


