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Abstract: Problem statement: The importance of input representation has been recognized already in 
machine learning. Feature construction is one of the methods used to generate relevant features for 
learning data. This study addressed the question whether or not the descriptive accuracy of the DARA 
algorithm benefits from the feature construction process. In other words, this paper discusses the 
application of genetic algorithm to optimize the feature construction process to generate input data for 
the data summarization method called Dynamic Aggregation of Relational Attributes (DARA). 
Approach: The DARA algorithm was designed to summarize data stored in the non-target tables by 
clustering them into groups, where multiple records stored in non-target tables correspond to a single 
record stored in a target table. Here, feature construction methods are applied in order to improve the 
descriptive accuracy of the DARA algorithm. Since, the study addressed the question whether or not 
the descriptive accuracy of the DARA algorithm benefits from the feature construction process, the 
involved task includes solving the problem of constructing a relevant set of features for the DARA 
algorithm by using a genetic-based algorithm. Results:  It is shown in the experimental results that the 
quality of summarized data is directly influenced by the methods used to create patterns that represent 
records in the (n×p) TF-IDF weighted frequency matrix. The results of the evaluation of the genetic-
based feature construction algorithm showed that the data summarization results can be improved by 
constructing features by using the Cluster Entropy (CE) genetic-based feature construction algorithm. 
Conclusion: This study showed that the data summarization results can be improved by constructing 
features by using the cluster entropy genetic-based feature construction algorithm. 
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INTRODUCTION 
 
 Learning is an important aspect of research in 
Artificial Intelligence (AI). Many of the existing 
learning approaches consider the learning algorithm as 
a passive process that makes use of the information 
presented to it. This paper studies the application of 
feature construction to improve the descriptive accuracy 
of a data summarization algorithm, which is called 
Dynamic Aggregation of Relational Attributes 
(DARA) [1]. The DARA algorithm summarizes data 
stored in non-target tables that have many-to-one 
relationships with data stored in the target table. As one 
of the feature transformation methods, feature 
construction methods are mostly related to 
classification problems where the data are stored in 
target table. In this case, the predictive accuracy can 
often be significantly improved by constructing new 
features which are more relevant for predicting the class 
of an object. On the other hand, feature construction 

also has been used in descriptive induction algorithms, 
particularly those algorithms that are based on inductive 
logic programming (e.g., Warmr[2] and Relational 
Subgroup Discovery (RSD)[3]), in order to discover 
patterns described in the form of individual rules. 
 The DARA algorithm is designed to summarize 
data stored in the non-target tables by clustering them 
into groups, where multiple records exist in non-target 
tables that correspond to a single record stored in the 
target table. In this case, the performance of the DARA 
algorithm is evaluated based on the descriptive 
accuracy of the algorithm. Here, feature construction 
can also be applied in order to improve the descriptive 
accuracy of the DARA algorithm. This paper addresses 
the question whether or not the descriptive accuracy of 
the DARA algorithm benefits from the feature 
construction process. This involves solving the problem 
of constructing a relevant set of features for the DARA 
algorithm. These features are then used to generate 
patterns that represent objects, stored in the non-target 
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table, in the TF-IDF[4] weighted frequency matrix in 
order to cluster these objects. 
  
Dynamic Aggregation of Relational Attributes 
(DARA): The DARA algorithm is designed to 
summarize relational data stored in the non-target 
tables. The data summarization method employs the 
TF-IDF weighted frequency matrix (vector space 
model[4]) to represent the relational data model, where 
the representation of data stored in multiple tables will 
be analyzed and it will be transformed into data 
representation in a vector space model. The term data 
summarization is commonly used to summarize data 
stored in relational databases with one-to-many 
relations[5,6]. Here, we define the term data 
summarization in the context of summarizing data 
stored in non-target tables that correspond to the data 
stored in the target table. We first define the terms 
target and non-target tables. 
 
Definition 1:  Target table, T, is a table that consists of 
rows of object where each row represents a single 
unique object and this is the table in which patterns are 
extracted. 
 
Definition 2: A non-target table, NT, is a table that 
consists of rows of objects where a subset of these rows 
can be linked to a single object stored in the target 
table. 
 Based on the definitions defined in 1 and 2, the 
term data summarization can be defined as follows: 
 
Definition 3: Data summarization for data stored in 
multiple tables with one-to-many relations can be 
defined as follows: 
 
• A target table T 
• Records in the target table RT 
• A non-target table NT 
• Records in non-target table RNT 

 
 Where, one or more RNT can be linked to a single 
RT, a data summarization for all RNT in NT is defined as 
a process of appending to T at least one field 
characterizing the values of RNT linked to each RT in T. 
 Figure 1 shows the process of data summarization 
for a target table T that has one-to-many relationships 
with all non-target tables (NT1, NT2, NT3, NT4, 
NT41). Since NT4 has a one-to-many relationship with 
NT41, NT4 becomes the target table in order to 
summarize the non-target table NT41. 

 

 
Fig. 1: Data summarization for data stored in multiple 

tables with one-to-many relations 
 
 The summarised_NT1, summarised_NT2, 
summarised_NT3 and summarised_NT4 fields 
characterize the values of RNT linked to T, and these 
fields are appended to the list of existing attributes in 
target table T.  
 In order to classify records stored in the target table 
that have one-to-many relations with records stored in 
non-target tables, the DARA algorithm transforms the 
representation of data stored in the non-target tables 
into an (n×p) matrix in order to cluster these records 
(Fig. 2), where n is the number of records to be 
clustered and p is the number of patterns considered for 
clustering. As a result, the records stored in the non-
target tables are summarized by clustering them into 
groups that share similar characteristics. Clustering is 
considered as one of the descriptive tasks that seeks to 
identify natural groupings in the data based on the 
patterns given. Developing techniques to automatically 
discover such groupings is an important part of 
knowledge discovery and data mining research. 
 In Fig. 2, the target relation has a one-to-many 
relationship with the non-target relation. The non-
target table is then converted into bags of patterns 
associated with records stored in the target table. In 
order to generate these patterns to represent objects in 
the TF-IDF weighted frequency matrix, one can enrich 
the objects representation by constructing new 
features from the original features given in the non-
target relation. The new features are constructed by 
combining     attributes     obtained      from    the 
given   attributes   in    the non-target   table randomly.  
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Fig. 2: Feature transformation process for data stored in multiple tables with one-to-many relations into a vector 
space data representation 

 
For instance, given a non-target table with attributes 
(Fa, Fb, Fc), all possible constructed features are Fa, Fb, 
Fc, FaFb, FbFc, FaFc and FaFbFc. These newly constructed 
features will be used to produce patterns or instances to 
represent records stored in the non-target table, in the 
(n×p) TF-IDF weighted frequency matrix. After the 
records stored in the non-target relation are clustered, a 
new column, Fnew, is added to the set of original 
features in the target table. This new column contains 
the cluster identification number for all records stored 
in the non-target table. In this way, we aim to map data 
stored in the non-target table to the records stored in the 
target table.  
 

MATERIALS AND METHODS 
 
 Here, we explain the process of feature 
transformation, particularly feature construction and 
discuss some of the feature scoring methods used to 
evaluate the quality of the newly constructed features. 
 
Feature transformation in machine learning: In 
order to generate patterns for the purpose of 
summarizing data stored in the non-target tables, there 
are several benefits of applying feature transformation 
to generate new features that include: 

• The improvement of the descriptive accuracy of the 
data summarization by generating relevant patterns 
describing each object stored in the non-target table 

• Facilitating the predictive modelling task for the 
data stored in the target table, when the 
summarized data are appended to the target table 
(e.g., the newly constructed feature, Fnew, is added 
to the set of original features given in the target 
table as shown in Fig. 2) 

• Optimizing the feature space to describe objects 
stored in the non-target table 

 
 The input representation for any learning algorithm 
can be transformed to improve accuracy for a particular 
task. Feature transformation can be defined as follows: 
 
Definition 4: Given a set of features Fs and the training 
set T, generate a representation Fc derived from Fs that 
maximizes some criterion and is at least as good as Fs 
with respect to that criterion. 
 The approaches that follow this scheme can be 
categorized into three categories: 
 
Feature selection: The problem of feature selection 
can be defined as the task of selection of a subset of 
features that describes the hypothesis at least as well as 
the original set. 
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Feature weighting: The problem of feature weighting 
can be defined as the task of assigning weights to the 
features that describe the hypothesis at least as well as 
the original set without any weights. The weight 
reflects the relative importance of a feature and may be 
utilized in the process of inductive learning. This 
feature weighting method is mostly beneficial for the 
distance-based classifier[7]. 
 
Feature construction: The problem of feature 
construction can be defined as the task of constructing 
new features, based on some functional expressions that 
use the values of original features that describe the 
hypothesis at least as well as the original set. 
 In this study, we apply the feature construction 
methods to improve the descriptive accuracy of the 
DARA algorithm. 
 
Feature construction: Feature construction consists of 
constructing new features by applying some operations 
or functions to the original features, so that the new 
features make the learning task easier for a data mining 
algorithm[8,9]. This is achieved by constructing new 
features from the given feature set to abstract the 
interaction among several attributes into a new one. For 
instance, a simple example of this is when given a set of 
features {F1, F2, F3, F4, F5}, one could have (F1 ∧ F2), 
(F3 ∧ F4), (F5 ∧ F1) as the possible constructed features. 
In this work, we focus on this most general and 
promising approach in constructing features to 
summarize data in a multi-relational setting. 
 With respect to the construction strategy, feature 
construction methods can be roughly divided into two 
groups: Hypothesis-driven methods and data-driven 
methods[10]. Hypothesis-driven methods construct new 
features based on the previously-generated hypothesis 
(discovered rules). They start by constructing a new 
hypothesis and this new hypothesis is examined to 
construct new features. These new features are then 
added to the set of original features to construct another 
new hypothesis again. This process is repeated until the 
stopping condition is satisfied. This type of feature 
construction is highly dependent on the quality of the 
previously generated hypotheses. On the other hand, 
data-driven methods, such as GALA[11] and GPCI[12], 
construct new features by directly detecting 
relationships in the data. GALA constructs new features 
based on the combination of booleanised original 
features using the two logical operators, AND and OR. 
GPCI is inspired by GALA, in which GPCI used an 
evolutionary algorithm to construct features. One of the 
disadvantages of GALA and GPCI is that the 
booleanization of features can lead to a significant loss 
of relevant information[13]. 

 
 

Fig. 3: Illustration of the Filter approach to feature 
subset selection 

 

 

 

Fig. 4: Illustration of the Wrapper approach to feature 
subset selection 

 
 There are essentially two approaches to 
constructing features in relation to data mining. The 
first method is as a separate, independent pre-
processing stage, in which the new attributes are 
constructed before the classification algorithm is 
applied to build the model[14]. In other words, the 
quality of a candidate new feature is evaluated by 
directly accessing the data, without running any 
inductive learning algorithm. In this approach, the 
features constructed can be fed to different kinds of 
inductive learning methods. This method is also known 
as a Filter approach, which is showed in Fig. 3. 
 The second method is an integration of 
construction and induction (Fig. 4), in which new 
features are constructed within the induction process. 
This method is also referred to as interleaving[15,16] or 
the Wrapper approach. The quality of a candidate new 
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feature is evaluated by executing the inductive learning 
algorithm used to extract knowledge from the data, so 
that in principle the constructed features’ usefulness 
tends to be limited to that inductive learning algorithm. 
In this study, the filtering approach that uses the data-
driven strategy is applied to construct features for the 
descriptive task, since the wrapper approaches are 
computationally more expensive than the filtering 
approaches. 
 
Feature scoring: The scoring of the constructed feature 
can be performed using some of the measures used in 
machine learning, such as information gain (Eq. 1) and 
cross entropy (Eq. 6), to assign a score to the 
constructed feature. For instance, the ID3 decision-
tree[17] induction algorithm applies information gain to 
evaluate features. The information gain of a new feature 
F, denoted InfoGain(F), represents the difference of the 
class entropy in data set before the usage of feature F, 
denoted Ent(C), and after the usage of feature F for 
splitting the data set into subsets, denoted Ent(C|F), as 
shown in Eq. 1: 
 
infoGain (F) = Ent(C)-Ent(C|F) (1) 
 
Where: 
 

( )
n

j 1
2j jEnt C   Pr(C ).log Pr(C )

=

= −∑  (2) 

 
and 
 

( )
n n

j 1 j 1
2i j i j iEnt(C | F) Pr(F ).( Pr(C | F ).log Pr C | F )

= =

=− −∑ ∑  (3) 

 
where, Pr(Cj) is the estimated probability of observing 
the jth class, n is the number of classes, Pr(Fi) is the 
estimated probability of observing the ith value of 
feature F, m is the number of values of the feature F, 
and Pr(Cj |Fi) is the probability of observing the jth 
class conditional on having observed the ith value of 
the feature F. Information Gain Ratio (IGR) is 
sometimes used when considering attributes with a 
large number of distinct values. The Information Gain 
Ratio of a feature, denoted by IGR(F), is computed by 
dividing the Information Gain, InfoGain(F) shown in 
Equation 1, by the amount of information of the feature 
F, denoted Ent(F): 
 

InfoGain (F)
IGR (F)

Ent(F)
=  (4) 

Where: 

 m

i 2 i
i 1

Ent(F) Pr (F ).log Pr(F )
=

=−∑  (5) 

 
and Pr(Fi) is the estimated probability of observing the 
ith value of the feature F and m is the number of values 
of the feature F.  
 Another feature scoring used in machine learning is 
cross entropy[18]. Koller and Sahami[18] define the task 
of feature selection as the task of finding a feature 
subset Fs such that 

is
Pr(C | F )is close to

io
Pr(C | F ), where 

C is a set of classes, 
is

Pr(C | F )are the estimated 

probabilities of observing the ith value of the feature Fs 
that belongs to class C and 

io
Pr(C | F ) are the estimated 

probabilities of observing the ith value of the feature Fo 
that belongs to class C. The extent of error if one 
distribution is substituted by the other is called the cross 
entropy between two distributions. Let α be the 
distribution of the original feature set and β be the 
approximated distribution due the reduced feature set. 
Then the cross entropy can be expressed as: 
 

x

(x)
CrossEnt( , ) (x) log

(x)ε α

αα β = α
β∑  (6) 

 
in which a feature set Fs that minimizes: 
 

k

i
i 1

siPr(F ).CrossEnt (Pr(C | F ),Pr(C | F ))
=
∑  (7) 

 
is the optimal subset, where k is the number of features 
in the dataset. Next, we will describes the process of 
feature construction for data summarization and 
introduces a genetic-based (i.e., evolutionary) feature 
construction algorithm that uses a non-algebraic form to 
represent an individual solution to construct features. 
This genetic-based feature construction algorithm 
constructs features to produce patterns that characterize 
each unique object stored in the non-target table. 
 
Feature construction for data summarization: In the 
DARA algorithm[1], the patterns produced to represent 
objects in the TF-IDF weighted frequency matrix are 
based on simple algorithms. These patterns are 
produced based on the number of attributes combined 
that can be categorized into three categories. These 
categories include: 
 
• a set of patterns produced from an individual 

attribute using the PSingle algorithm 
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Fig. 5: Illustration of the Filtering approach to feature 

construction 

 
• a set of patterns produced from the combination of 

all attributes by using the PAll  algorithm 
• a set of patterns produced from variable length 

attributes that are selected and combined randomly 
from the given attributes 

 
 For example, given a set of attributes {F1, F2, F3, 
F4, F5}, one could have (F1, F2, F3, F4, F5) as the 
constructed features by using the PSingle algorithm. In 
contrast, with the same example, one will only have a 
single feature (F1F2F3F4F5) produced by using the PAll  
algorithm. As a result, data stored across multiple tables 
with high cardinality attributes can be represented as 
bags of patterns produced using these constructed 
features. An object can also be represented by patterns 
produced on the basis of randomly constructed features 
(e.g., (F1F5, F2F4, F3)), where features are combined 
based on some pre-computed feature scoring measures.  
 This work studies a filtering approach to feature 
construction for the purpose of data summarization 
using the DARA algorithm (Fig. 5). A set of 
constructed features is used to produce patterns for each 
unique record stored in the non-target table. As a result, 
these patterns can be used to represent objects stored in 
the non-target table in the form of a vector space. The 
vectors of patterns are then used to construct the TF-
IDF weighted frequency matrix. Then, the clustering 
technique can be applied to categories these objects. 
Next, the quality of each set of the constructed features 
is measured. This process is repeated for the other sets 
of constructed features. The set of constructed features 

that produces the highest measure of quality is 
maintained to produce the final clustering result.  
 
Genetic-based approach to feature construction for 
data summarization: Feature construction methods 
that are based on greedy search usually suffer from the 
local optima problem. When the constructed feature is 
complex due to the interaction among attributes, the 
search space for constructing new features has more 
variation. An exhaustive search may be feasible, if the 
number of attributes is not too large. In general, the 
problem is known to be NP-hard[19] and the search 
becomes quickly computationally intractable. As a 
result, the feature construction method requires a 
heuristic search strategy such as Genetic Algorithms to 
be able to avoid the local optima and find the global 
optima solutions[20,21]. Genetic Algorithms (GA) are a 
kind of multidirectional parallel search, and viable 
alternative to the intractable exhaustive search and 
complicated search space[22, 23]. For this reason, we also 
use a GA-based algorithm to construct features for the 
data summarization task. We will describe a GA-based 
feature construction algorithm that generates patterns 
for the purpose of summarizing data stored in the non-
target tables. With the summarized data obtained from 
the related data stored in the non-target tables, the 
DARA algorithm may facilitate the classification task 
performed on the data stored in the target table. 
 
Individual representation: There are two alternative 
representations of features: algebraic and non-
algebraic[21]. In algebraic form, the features are shown 
by means of some algebraic operators such as 
arithmetic or Boolean operators. Most genetic-based 
feature construction methods like GCI[14], GPCI[12] and 
Gabret[24] apply the algebraic form of representation 
using a parse tree[25]. GPCI uses a fix set of operators, 
AND and NOT, applicable to all Boolean domains. The 
use of operators makes the method applicable to a 
wider range of problems. In contrast, GCI[14] and 
Gabret[24] apply domain-specific operators to reduce 
complexity. In addition to the issue of defining 
operators, an algebraic form of representation can 
produce an unlimited search space since any feature can 
appear in infinitely many forms[21]. Therefore, a feature 
construction method based on an algebraic form needs a 
restriction to limit the growth of constructed functions. 
 Features can also be represented in a non-algebraic 
form, in which the representation uses no operators. For 
example, in this work, given a set of attributes 
{X 1,X2,X3,X4,X5}, a feature in an algebraic form like 
((X1 ∧ X2) ∧ (X3 ∧ X4 ∧ X5)) can be represented in a 



J. Computer Sci., 5 (11): 864-877, 2009 
 

870 

 

non-algebraic form as <X1X2X3X4X5, 2>, where the 
digit, “2”, refers to the number of attributes combined 
to generate the first constructed feature.  
 The non-algebraic representation of features has 
several advantages over the algebraic representation[21].  
These include the simplicity of the non-algebraic form 
to represent each individual in the process of 
constructing features, since there are no operators 
required.  Next, when using a genetic-based algorithm 
to find the best set of features constructed, traversal of 
the search space of a non-algebraic is much easier. For 
example, given a set of features, a parameter expressing 
the number of attributes to be combined and the point 
of reordering, one may have the following set of 
features in a non-algebraic form, <X1X2X3X4X5, 3, 2>. 
The first digit, “3”, refers to the number of attributes 
combined to construct the first feature, where the 
attributes are unordered, and the second digit, “2”, 
refers to the index of the column where the order of the 
features in the set is reordered during the reordering 
process. The second feature is constructed by 
combining the attributes remaining in the set. For 
instance, if the first constructed feature is (X2X4X5) 
from a given set of attributes (X1X2X3X4X5), the second 
constructed feature is (X1X3). After the reordering 
process, a new set of features in a non-algebraic form 
can be represented as <X3X4X5X1X2, 3, 2>. 
 Table 1 shows the algorithm to generate a series of 
constructed features. Given F as a set of l attributes and 
the number of attributes to be combined, n, where 
1≤n≤l, the algorithm starts by randomly selecting n 
number of attributes. The n selected attributes are then 
combined to form a new feature, FNi and added into the 
set of constructed features, FC. These selected attributes 
are then removed from the original set of attributes, F. 
The process of constructing new features is repeated 
until the numbers of attributes left in F is less than the 
total number of attributes combined, n. The remaining 
attributes left in F are then combined to form the last 
feature and then this new constructed feature is added 
to FC. Table 2 shows the sequence of constructing 
features using the genetic-based algorithm starting from 
the population initialization and also illustrates the 
representation of the constructed features in the 
algebraic and non-algebraic forms. During the 
population initialization, each chromosome is initialized 
with the following format, <X, A, B>, where: 
 
• X represents a list of the attribute’s indices 
• A represents the number of attributes combined 

• B represents the point of reordering the sequence 
of attribute’s indices 

 
 Thus, given a chromosome <1234567, 3, 4>, where 
the list 1234567 represents the sequence of seven 
attributes, the digit “3” represents the number of 
attributes combined and the digit “4” represents the 
point of reordering the sequence of attribute’s indices, 
the possible constructed features are (F1F3F4), (F6F7F5) 
and (F2), with the assumption that the attributes are 
selected randomly from attribute F1 through attribute F7 
to form the new features. The reordering process simply 
copies the sequence (string of attributes), (1234567), 
and rearranges it so that its tail, (567), is moved to the 
front to form the new sequence (5671234). The 
mutation process simply changes the number of 
attributes combined, A, and the point of reordering in 
the string, B. The rest of the feature representations can 
be obtained by mutating A, and B, and these values 
should be less than or equal to the number of attributes 
considered in the problem. As a result, this form of 
representation results in more variation after performing 
genetic operators and can provide more useful features. 
 
Table 1: The algorithm to generate a series of constructed features 
Algorithm: Generating list of constructed features 
INPUT: A set of original features F = (F1, F2, F3,...,Fl), n number of 
attributes 
Output: A set of constructed features FC 
01) Initialize counter i = 1 
02) Pick n attributes randomly and construct a new feature, FNi 
03) Add FNi to FC, FC ∪ FNi, and increment i 
04) l′ = l − n. 
05) IF l′ > n THEN 
06)  l = l′ 
07) GOTO 02 
08) ELSE 
09) Construct a new feature based on the remaining attributes, FNi 
10) Add FNi to FC, FC ∪ FNi, STOP 
11) END 

 
Table 2: Features in the non-algebraic and algebraic forms: 

Population Initialization, Features construction, Reordering 
and Mutation processes 

Stages Non-algebraic Algebraic 
Initialization <1234567, 3, 4> - 
Features (F1F3F4), (F6F7F5), (F2) ((F1 ∧ F3 ∧ F4) ∨ 
   (F6 ∧ F7 ∧ F5) ∨ F2) 
Reordering <5671234, 3, 4> - 
Mutation <5671234, 4, 1> - 
Features (F1F2F6F4), (F3F7F5) ((F1 ∧ F2 ∧ F6 ∧ F4)  
  ∨ (F3 ∧ F7 ∧ F5)) 
Reordering <6712345, 4, 1> - 
Mutation <6712345, 5, 2> - 
Features (F6F7F1F2F3), (F4F5) ((F6 ∧ F7 ∧ F1 ∧ F2 ∧ F3) 
   ∨ (F4 ∧ F5)) 
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Fitness functions: Information Gain (Eq. 1) is often 
used as a fitness function to evaluate the quality of the 
constructed features in order to improve the predictive 
accuracy of a supervised learner[26,13]. In contrast, if the 
objective of the feature construction is to improve the 
descriptive accuracy of an unsupervised clustering 
technique, one may use the Davies-Bouldin Index 
(DBI) [27] as the fitness function. However, if the 
objective of the feature construction is to improve the 
descriptive accuracy of a semi-supervised clustering 
technique, the total cluster entropy (Eq. 8) can be used 
as the fitness function to evaluate how well the newly 
constructed feature clusters the objects. 
 In our approach to summarizing data in a multi-
relational database, in order to improve the predictive 
accuracy of a classification task, the fitness function for 
the GA-based feature construction algorithm can be 
defined in several ways. In these experiments, we 
examine the case of semi-supervised learning to 
improve the predictive accuracy of a classification task. 
As a result, we will perform experiments that evaluate 
four types of feature-scoring measures (fitness 
functions) outlined below: 
 
• Information Gain (Eq. 1) 
• Total Cluster Entropy (Eq. 8) 
• Information Gain coupled with Cluster Entropy 

(Eq. 11) 
• Davies-Bouldin Index[27] 
 
 The information gain (Eq. 1) of a feature F 
represents the difference of the class entropy in data set 
before the usage of feature F and after the usage of 
feature F for splitting the data set into subsets. This 
information gain measure is generally used for 
classification tasks. On the other hand, if the objective 
of the data modeling task is to separate objects from 
different classes (like different protein families, types of 
wood, or species of dogs), the cluster’s diversity, for the 
kth cluster, refers to the number of classes within the 
kth cluster. If this value is large for any cluster, there 
are many classes within this cluster and there is a large 
diversity. In this genetic approach to feature 
construction for the proposed data summarization 
technique, the fitness function can also be defined as 
the diversity of the clusters produced. In other words, 
the fitness of each individual non-algebraic form of 
constructed features depends on the diversity of each 
cluster produced. 
 In these experiments, in order to cluster a given set 
of categorized records into K clusters, the fitness 

function for a given set of constructed features is 
defined as the total clusters entropy, H(K), of all 
clusters produced (Eq. 8). This is also known as the 
Shannon-Weiner diversity[28,29]: 

 
N

k kK 1
n .H

H(K)
N

==
∑

 (8) 

 
Where: 
nk = The number of objects in kth cluster  
N = The total number of objects  
Hk = The entropy of the kth cluster, which is defined 

in Eq. 9  
 
Where: 
S = The number of classes 
Psk = The probability that an 
  object randomly chosen from the kth cluster 

belongs to the sth class 
 

S

s 1
2k sk sk.H P log (P )

=

=−∑  (9) 

 
 The smaller the value of the fitness function using 
the total Cluster Entropy (CE), the better is the quality 
of clusters produced. Another metric that can be used to 
evaluate the goodness of the clustering result is called 
the purity of the cluster or this metric is better known as 
the measure of dominance, MDk, shown in Eq. 10, 
which is developed by Berger and Parker[30]: 
 

( )sk
k

k

MAX n
MD

n
=  (10) 

 
Where: 
MAX(n sk) = Just the number of objects in the most 

abundant class, s, in cluster k 
nk = The number of objects in cluster k 
 
 Next, we will also study the effect of combining 
the Information Gain (Eq. 1) and Total Cluster Entropy 
(Eq. 8) measures, denoted as CE_IG(F,K), as the fitness 
function in our genetic algorithm, as shown in equation 
11, where K is the number of clusters and F is the 
constructed feature: 
 

CE_IG (F,K) = InfoGain(F) +  1

N
k kk

.n H

N
=∑

  (11) 
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 Finally, these experiments also evaluate the 
effectiveness of the feature construction methods based 
on the quality of the cluster’s structure. The 
effectiveness is measured using the Davies-Bouldin 
Index (DBI)[27], to improve the predictive accuracy of a 
classification task. 
 

RESULTS AND DISCUSSION 
 
 In these experiments we observe the influence of 
the constructed features for the DARA algorithm on the 
final result of the classification task. Referring to Fig. 2, 
the constructed features are used to generate patterns 
representing the characteristics of records stored in the 
non-target tables. These characteristics are then 
summarised and the results appended as a new attribute 
into the target table. The classification task is then 
carried out as before. The Mutagenesis databases (B1, 
B2, B3)[31] and Hepatitis databases (H1, H2, H3) from 
PKDD 2005 are chosen for these experiments. 
 The genetic-based feature construction algorithm 
used in these experiments applies different types of 
fitness functions to construct the set of new features. 
These fitness functions include the Information Gain 
(IG) (Eq. 1), Total Cluster Entropy (CE) (Eq. 8), the 
combined measures of Information Gain and Total 
Cluster Entropy (CE-IG) (Eq. 11) and, finally, the 
Davies-Bouldin Index (DBI)[27]. For each experiment, 
the evaluation is repeated ten times independently with 
ten different numbers of clusters, k, 10 ranging from 3-
21. The J48 classifier (as implemented in WEKA[32]) is 
used to evaluate the quality of the constructed features 
based on the predictive accuracy of the classification 
task. Hence, in these experiments we compare the 
predictive accuracy of the decision trees produced by 
the J48 for the data when using PSingle and PAll  methods. 
The performance accuracy is computed using the 10-
fold cross-validation procedure. 
 In addition to the goal of evaluating the quality of 
the constructed features produced by the genetic-based 
algorithm, our experiments also have the goal of 
determining how robust the genetic-based feature 
construction approach is to variations in the setting of 
the number of clusters, k, where k = 3, 5,7,9,11, 
13,15,17,19,21. Other parameters include reordering 
probability, pc = 0.80, mutation probability, pm = 0.50, 
population size is set to 500 and the number of 
generations is set to 100. In these experiments, we made 
no attempt to optimize the parameters mentioned in this 
study. The results for the mutagenesis (B1, B2, B3) and 
hepatitis (H1, H2, H3) datasets are reported in Table 3. 
Table 3 shows the average performance accuracy of the 

J48 classifier (for all values of k), using a 10-fold cross-
validation procedure. The predictive accuracy results of 
the J48 classifier are higher when the genetic-based 
feature construction algorithms are used compared to the 
predictive accuracy results for the data with features 
constructed using the PSingle and PAll  methods. 
 Table 4 shows the results of paired t-test (p = 0.05) 
for mutagenesis and hepatitis datasets. In this table, the 
symbol ’⊕’ indicates significant improvement in 
performance by method in row over method in column 
and the symbol ’⊖’ indicates no significant 
improvement in performance by method in row over 
method in column, on the three datasets. For the 
Mutagenesis datasets, there is a significant improvement 
in predictive accuracy for the CE genetic-based feature 
construction method over the other genetic-based feature 
construction methods including IG, CE_IG and DBI 
methods, and the feature construction methods using the 
PSingle and PAll   algorithms. In addition to that, significant 
improvements in predictive accuracy for the J48 
classifier are recorded for the genetic-based feature 
construction methods with fitness functions DBI, GI, 
CE_IG and CE over the feature construction methods 
using the PSingle and PAll  algorithms, for the hepatitis 
datasets.  
  
Table 3: Predictive accuracy results based on 10-fold cross-

validation using J48 (C4.5) classifier (mean ± SD) 
 PSingle PAll  CE CE_IG IG DBI 
B1 80.9±1.4 80.0±2.0 81.8±1.3 81.3±0.7 81.3±0.7 78.6±2.9 
B2 81.1±1.4 79.2±3.0 82.4±1.5 80.3±2.1 80.2±2.3 78.8±1.3 
B3 78.8±3.3 79.2±5.7 85.3±3.9 84.4±3.9 75.5±4.7 78.9±4.6 
H1 70.3±1.6 72.3±1.7 75.1±2.5 75.2±2.4 74.9±2.5 74.0±2.0 
H2 71.8±2.9 74.7±1.3 77.1±3.3 76.9±3.0 76.3±3.8 76.1±2.1 
H3 72.3±3.0 74.8±1.3 77.1±3.3 76.4±3.8 76.5±3.9 76.3±2.6 
 
Table 4: Results of paired t-test (p = 0.05) for mutagenesis and 

hepatitis PKDD 2005 datasets 
Mutagenesis (B1, B2, B3) 
------------------------------------------------------------------------------------ 

Method PSingle PAll  DBI IG CE CE_IG 

PSingle - ⊖,⊖,⊖ ⊖,⊕,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ 
PAll  ⊖,⊖,⊖ - ⊖,⊕,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ 
DBI ⊖,⊖,⊖ ⊖,⊖,⊖ - ⊖,⊖,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ 
IG ⊖,⊖,⊖ ⊖,⊖,⊖ ⊕,⊖,⊖ - ⊖,⊖,⊖ ⊖,⊖,⊖ 
CE ⊖,⊖,⊖ ⊖,⊖,⊕ ⊕,⊕,⊕ ⊖,⊕,⊕ - ⊖,⊖,⊖ 
CE_IG ⊖,⊖,⊖ ⊖,⊖,⊕ ⊕,⊕,⊕ ⊖,⊖,⊕ ⊖,⊖,⊖ - 

Hepatitis (H1, H2, H3) 
------------------------------------------------------------------------------------ 
Method PSingle PAll  DBI IG CE CE_IG 

PSingle - ⊖,⊖,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ 
PAll  ⊕,⊖,⊖ - ⊖,⊖,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ 
DBI ⊕,⊕,⊕ ⊕,⊕,⊕ - ⊖,⊖,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ 
IG ⊕,⊕,⊕ ⊕,⊕,⊕ ⊖,⊖,⊖ - ⊖,⊖,⊖ ⊖,⊖,⊖ 
CE ⊕,⊕,⊕ ⊕,⊕,⊕ ⊕,⊖,⊖ ⊖,⊖,⊖ - ⊖,⊖,⊖ 
CE_IG ⊕,⊕,⊕ ⊕,⊕,⊕ ⊕,⊖,⊖ ⊖,⊖,⊖ ⊖,⊖,⊖ - 
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 Among the different types of genetic-based feature 
construction algorithms studied in this work, the CE 
genetic-based feature construction algorithm produces 
the highest average predictive accuracy. The 
improvement of using the CE genetic-based feature 
construction algorithm is due to the fact that the CE 
genetic-based feature construction algorithm constructs 
features that develop a better organization of the objects 
in the clusters, which contributes to the improvement of 
the predictive accuracy of the classification tasks. That 
is, objects which are truly related remain closer in the 
same cluster. 
 In our results, it is shown that the final predictive 
accuracy for the data with constructed features using 
the IG genetic-based feature construction algorithm is 
not as good as the final predictive accuracy obtained for 
the data with constructed features using the CE genetic-
based feature construction algorithm. The IG genetic-
based feature construction algorithm constructs features 
based on the class information and this method assumes 
that each row in the non-target table represents a single 
instance. However, data stored in the non-target tables 
in relational databases have a set of rows representing a 
single instance. As a result, this has effects on the 
descriptive accuracy of the proposed data 
summarization technique, DARA, when using the IG 
genetic-based feature construction algorithm to 
construct features. When we have unbalanced 
distribution of individual records stored in the non-
target table, the IG measurement will be affected. In 
Fig. 5, the data summarization process is performed to 
summarize data stored in the non-target table before the 
actual classification task is performed. As a result, the 
final predictive accuracy obtained is directly affected 
by the quality of the summarized data. 
 Figure 6 and 7 shows the average performance 
accuracy of the J48 classifier for all feature construction 
methods studied using the Mutagenesis (B1, B2, B3) 
and Hepatitis (H1, H2, H3) databases with k = 3,5,7,9, 
11,13,15,17,19,21. Generally, the number of clusters 
has no implications on the average performance 
accuracy of the classification tasks, for datasets B1 and 
B2. In contrast, the results show that for datasets B3, 
H1, H2 and H3, the average performance accuracy 
tends to increase when the number of clusters increases. 
 Figure 8 and 9 show the performance accuracies of 
the J48 classifier for different methods of features 
construction used to generate patterns for the 
Mutagenesis (B1, B2, B3) and Hepatitis (H1, H2, H3) 

datasets, with different values of k. In the Mutagenesis 
B1 and B2 datasets, the size of the cluster has no 
implications on the predictive accuracy when using the 
features constructed from the CE, CE_IG, IG and DBI 
genetic-based feature construction algorithms. As the 
number of clusters increases, the predictive accuracy 
tends to stay steady or to decrease as shown in Fig. 8. 
 For the Hepatitis (H1, H2, H3) and Mutagenesis 
(B3) datasets, the predictive accuracy results of the J48 
classifier are higher when the number of cluster k is  
relatively big (17≤k≤19) when using the constructed 
features from the CE genetic-based feature construction 
algorithm. In contrast, the predictive accuracy results of 
the J48 classifier for the datasets (Hepatitis H1, H2, H3 
and Mutagenesis B3) are higher when the number of 
clusters k is relatively small (9≤k≤11) and the features 
used   are   constructed   by  the PSingle and PAll   methods.  
 

 
 
Fig. 6: The average performance accuracy of J48 

classifier for all feature construction methods 
tested on Mutagenesis datasets B1, B2 and B3 

 

 
 
Fig. 7: The average performance accuracy of J48 

classifier for all feature construction methods 
tested on Hepatitis datasets H1, H2 and H3 
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Fig. 8: Performance accuracy of J48 classifier for Mutagenesis datasets B1, B2 and B3 

 
The arrangement of the objects within the clusters can 
be considered as a possible cause of these results. The 
feature space for the PSingle method is too large and thus 
this feature space does not provide clear differences that 
discriminates instances[33,34]. On the other hand, the 
feature space is restricted to a small number of specific 
patterns only when we apply the PAll  method to 
construct the patterns. With PAll  method, the task of 
inducing similarities for instances is difficult and thus it 
is difficult to arrange related objects close enough to 
each other[33,34]. As a result, when the number of 
clusters is too small or too large, each cluster may have 
a mixture of unrelated objects and this leads to lower 
predictive accuracy results. On the other hand, when the 
patterns are produced by using the CE or IG genetic-
based feature construction algorithms, the feature space 
is constructed in such a way that related objects can be 
arranged closely to each other. As a result, the 
performance accuracy of the J48 tends to increase when 
the number of clusters increases. It is shown in the 
experimental results that when the descriptive accuracy 
of the summarized data is improved, the predictive 

accuracy is also improved. In other words, when the 
choice of newly constructed features minimizes the 
cluster entropy, the predictive accuracy of the 
classification task also improves as a results. 
 
Features constructed: Since the patterns produced to 
describe objects in the n×p weighted frequency matrix 
(where n is the number of objects and p is the number 
of different patterns that exist in the object) depend on 
the constructed features, feature construction can be 
used as a means to characterize the summarized data. 
Since the mutagenesis datasets (B1, B2, B3) are well 
structured databases, some of the constructed features 
are presented to identify the type of features 
constructed. The following indices for the attributes of 
dataset Mutagenesis B1, B2 and B3 are  shown  in 
Table 5, the constructed features for Mutagenesis 
datasets (B1, B2, B3) (Table 6) that are used to generate 
the patterns needed to represent objects stored in the 
non-target table that correspond to the objects stored in 
the target table. 
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Fig. 9: Performance accuracy of J48 classifier for Hepatitis datasets H1, H2 and H3 
 
Table 5: Indices of Attributes in Mutagenesis datasets (B1, B2, B3) 

Indices B1 B2 B3 

1 Element1 Element1 Element1 
2 Element2 Element2 Element2 
3 Type1 Type1 Type1 
4 Type2 Type2 Type2 
5 Bond Bond Bond 
6 - Charge1 Charge1 
7 - Charge2 Charge2 
8 - - logP 
9 - - ∈LUMO 

 
Table 6: Features constructed for Mutagenesis datasets (B1, B2, B3) 

Datasets CE CE_IG 

B1 [2, 4],[1, 3, 5] [3, 4],[1, 2, 5] 
B2 2, 4, 5],[1, 3, 6, 7] [3, 4],[1, 2, 5, 6, 7] 
B3 [1, 3, 9],[2, 6, 8],[4, 5, 7] [1, 7],[5, 6],[3, 9],[2, 4, 8] 
 IG DBI 
 -------------------------------- ------------------------------- 
B1 [3, 4],[1, 2, 5] [4, 5],[1, 2, 3] 
B2 [3, 4],[1, 2, 5, 6, 7] [1, 3],[4, 5],[2, 6, 7] 
B3 [1, 7],[5, 6],[3, 9],[2, 4, 8] [5, 6],[3, 9],[7, 8],[1, 2, 4] 

 For instance, by using the CE fitness function, the 
values for Element2 and Type2 are coupled together (in 
B1 and B2) to form a single pattern that is used in the 
clustering process. These values can be used to 
represent the characteristics of the clusters formed. On 
the other hand, by using the IG alternative, the values 
for Type1 and Type2 are coupled together (in B1 and 
B2) to form a single pattern that will be used in the 
clustering process. Based on Table 6, it can be 
determined that when CE is used, attributes are coupled 
more appropriately compared to the other alternatives. 
For instance, by using DBI, the values for Type2 and 
Bond are coupled together to form a single pattern and 
these attributes are not appropriately coupled.  
 In these experiments, we have proposed a genetic-
based feature construction algorithm that constructs a 
set of features to generate patterns that can be used to 
represent records stored in the non-target tables. The 
genetic-based feature construction method makes use of 
four predefined fitness functions studied in these 



J. Computer Sci., 5 (11): 864-877, 2009 
 

876 

 

experiments. We evaluated the quality of the newly 
constructed features by comparing the predictive 
accuracy of the J48 classifier obtained from the data 
with patterns generated using these newly constructed 
features with the predictive accuracy of the J48 
classifier obtained from the data with patterns generated 
using the original attributes. 
 
 In summary, based on the results shown in Table 3, 
the following conclusions can be made: 
 
• Setting the total Cluster Entropy (CE) as the 

feature scoring function to determine the best set of 
constructed features can improve the overall 
predictive accuracy of a classification task 

• Better performance accuracy can be obtained when 
using an optimal number of clusters to summarize 
the data stored in the non-target tables 

• The best performance accuracy is obtained when 
the number of clusters is in the higher end of the 
range (19). Therefore, it can be assumed that 
performing data summarization with a relatively 
optimal number of clusters would result in better 
performance accuracy on the classification task 

 
CONCLUSION 

 
 In the process of learning a given target table that 
has a one-to-many relationship with another non-target 
table, a data summarization process can be performed 
to summarize records stored in the non-target table that 
correspond to records stored in the target table. In the 
case of a classification task, part of the data stored in 
the non-target table can be summarized based on the 
class label or without the class label. To summarize the 
non-target table, a record can be represented as a vector 
of patterns and each pattern may be generated from a 
single attribute value (PSingle) or a combination of 
several attribute values (PAll ). These objects are then 
clustered or summarized on the basis of these patterns. 
In this study, methods of feature construction for the 
purpose of data summarization were studied. A genetic-
based feature construction algorithm has been proposed 
to generate patterns that best represent the 
characteristics of records that have multiple instances 
stored in the non-target table. 
 Unlike other approaches to feature construction, 
this paper has outlined the usage of feature construction 
to improve the descriptive accuracy of the proposed 
data summarization approach (DARA). Most feature 
construction methods deal with problems to find the 

best set of constructed features that can improve the 
predictive accuracy of a classification task. This study 
has described how feature construction can be used in 
the data summarization process to get better descriptive 
accuracy, and indirectly improve the predictive 
accuracy of a classification task. In particular, we have 
investigated the use of Information Gain (IG), Cluster 
Entropy (CE), Davies-Bouldin Index (DBI) and a 
combination of Information Gain and Cluster Entropy 
(CE-IG) as the fitness functions used in the genetic-
based feature construction algorithm to construct new 
features. 
 It is shown in the experimental results that the 
quality of summarized data is directly influenced by the 
methods used to create patterns that represent records in 
the (n×p) TF-IDF weighted frequency matrix. The 
results of the evaluation of the genetic-based feature 
construction algorithm show that the data 
summarization results can be improved by constructing 
features by using the Cluster Entropy (CE) genetic-
based feature construction algorithm. 
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