Journal of Computer Science 5 (12): 956-961, 2009
ISSN 1549-3636
© 2009 Science Publications

Server Optimization Using Heuristic Algorithmsfor
Dynamic-Split-and-M er ge Scheme in Wireless M ulticast

'R. Sukumar an@V. Vasudevan
'Department of Computer Science and Engineering,
Sethu Institute of Technology, Kariapatti, Virudlagar District, Tamilnadu, India
Department of Information Technology,
Arulmigu Kalasalingam College of Engineering, Knsimkovil, India

Abstract: Problem statement: In order to minimize the overall network traffic @ multiserver
system, the number of users served by each seamdrhence the group size) should remain constant.
As the underlying traffic fluctuates, a split anénge scheme is implemented in a physical server to
achieve load balancind\pproach: Minimizing the number of servers during the mergeration is

NP hard and to achieve these two algorithms namE bin packing algorithm and LL algorithm
were proposed to find the near optimal values afidation serversResults: The performance of
these algorithms were analyzed and compared baseseveral parameter€onclusion: Results
showed that LL algorithm outperforms FFD algorithm.

Key words: Heuristic algorithm, load balancing, dynamic splid merge, destination servers

INTRODUCTION a bin packing problem well known in the field of
operations researthWe are given items of different
The number of users in a multicast group tends tsizes in the bin packing problem and asked to pack
fluctuate due to frequent user join/leave. In ortler them all into a minimum n umber of bins with a give
handle key management efficiently and reduce theapacity. Items for server consolidation are emgsti
join/leave latency a dynamic split and merge scheme servers, item sizes are group sizes of differentess
suggested”. If the number of users in a server is and bins are destination servers.
greater tharl ., the server is split into several logical An important parameter to study the performance
servers for which the number of users in each sésve of server packing algorithms is the server response
as close as possible to the optimal group glee* . If time. For a server packing algorithm to exhibit doo
there are some servers in which the total number ofonvergence, response time is not expected todsere
users is less thafl m, the groups are merged into a drastically. For example in a M/M/1 queuing modet,
single logical server with the goal of getting émse as p be the utilization and 1/u be the service timeictviis
possible tgp/m*. The problem of finding proper groups the minimum response time observed when a single
to be merged is NP-hard. NP is the set of problemet request has been processed; then, the responséstime
that, when given a solution, whether it is a tropptimal ~ expressed as 1/u@)- The service time 1/u of most
solution or not can be verified in polynomial times., applications running efficiently on existing serveare
O (rf) time, where n is the problem size (the number ofufficiently short and further reduced on the deston
items in the packing problem) and c is a consfant server whose performance may be several times thighe
Naturally, finding an optimal solution needs mdraed, than that of the existing servers. The response tim
for example, exponential time O"(@and is impossible cannot be more than a certain number of times longe
in practice for not a small n. Even if c = 2 and @00, than such a small 1/u. For example, a responseisime
the exponential time will be almost 0The “server” five times as long as 1/ if= 0.8 (80%).
merging problem is also NP hard and the number of Thus we need a better heuristic algorithm for
destination servers is required to be as smalbasiple finding a near-optimal solution to the server pagki
from the point of view of cost reduction and problem in reasonable time. Numerous algorithmshav
manageability. This minimization can be formalizzsl already been proposed for one and two-dimensidnal b
Corresponding Author: R. Sukumar, Department of Computer Science andréeging, Sethu Institute of Technology,
Pulloor, Kariapatti-626 106. Virudhunagar Districgamil Nadu, India
Tel: 04566-308001 Fax: 04566-308000
956

J. Computer i, 5 (12): 956-961, 2009

packing problems and First-Fit Decreasing (FFD)re Turkay Dereli and Sena B8 studied a hybrid
of the bes?. FFD and its family are greedy, i.e., items Simulated-Annealing (SA) algorithm for the 2-
are packed as much as possible into currently pedpa Dimensional (2D) packing problem. A recursive
bins and new bin added if an item cannot be packegrocedure has been used in the proposed algorithm t
into any of the current bins. Therefore, the FFbifg allocate a set of items to a single object. Thebigrm
unbalances the load between bins that are addéd eahas been handled as a permutation problem and the
and lat€®!. This is why we compared FFD with the proposed recursive algorithm is hybridized with the
Least Loaded (LL), a load-balancing algorithm wjdel simulated annealing algorithm. The effectivenesthef
used in request-based systems. The load balancirdgorithm has been tested on a set of benchmark
approach is more favorable for performance butrimds problems. The computational results have shown that
yet been considered within the context of the pagki the algorithm gives promising results.
problem. Zhao and Yan§ proposed an accumulated k-
subset algorithm (AK algorithm) to balance load in
MATERIALSAND METHODS distributed SLEE. Based on a model of resource
heterogeneity and load vector, they have found tthet
Related works: Much of the previous research on AK algorithm improves the k-subset algorithm by
server optimization has been done without congideri accumulating load information within every update
the dynamic nature of the multicast group membersinterval. Experiments on different update intervaisal
This body of work includes dynamic split and mergerequest arrival rates suggested AK further rediezd
scheme for large scale wireless multicast. Preserdffect due to stale load information and outperfoin
research is based on the scheme givéiiliand we subset algorithm by 5-10%. F. Clautiawt al.”
model and analyze it. Previous research addresslynai proposed a new exact method for the well-known two-
reducing number of existing servers and has coreide dimensional bin-packing problem. It is based on an
neither a dynamic split and merge scheme nor théerative decomposition of the set of items intootw
comparison between FFD and LL algorithms. disjoint subsets. They have tested the efficierfcthis
Ted® focuses on an experimental analysis of themethod against benchmarks of the literature.
performance and scalability of cluster-based web

servers. The three dispatcher-based schedulingynamic split and merge: Since the number of users
algorithms analyzed are: R_ound robin schedulingstle "5 multicast group tends to fluctuate, the systzm
connected based scheduling and least loaded basggdye variable number of servers. During a busyoperi
sched_ullng. The least loaded aIgonthm is usedhqs t when more number of users join the group, number of
baseline (upper performance bound) in the anagfis gervers can be more and during a quiet period, the
the performance metrics include average waitin®@tim number of servers can be less in order to handléaly
average response time and average web serv@fanagement efficiently. We therefore fix a threghol
utilization. It is found that the least connectégbathm Nmae fOF the maximum number of users in a group and
performs well {f])r medium to high workload, Omax for maximum number of servers the system can
Shenet al.™ present heuristic algorithms that may aye 4t 4 particular period of time. This is duethe

be_used for_ Iight-path routing and wavelengthg, o that more number of servers adds to the codiiple
assignment in optical WDM networks under g¢ina system

dynamically varying traffic conditions. They considd The number of servers the system needs at a

both the situations where the wavelength continuity,, icyjar period of time is decided by the followi
constraint is enforced or not enforced along atligh procedure:

path. The performance of these algorithms has been
studied through simulations. A comparative study on)

their performance with that of a simpler systemttha * Step 1: Fixathreshold forp.and mi,
uses fixed shortest-path routing has been performed * Step 2:If n > Ra, Split the group
The proposed algorithms provided lower blocking © Step 3:If n < i, Merge the group
probabilities and are simple enough to be applad f

real time network control and management. They have Merging a group with some other group is done in
also studied that the heuristic algorithms aresuch a way that the total number of users in thegete
computationally simple and efficient to implementda group does not exceeg,n Therefore, before merging

provide good wavelength utilization leading to @fnt a group we must find the possible groups that aan b
usage of the network's resources. merged.

957

J. Computer i, 5 (12): 956-961, 2009

= @@ ® @
S Hooe &
ooomo/.\

Fig. 1: Splitting and merging for K = 3 e e

Where, Ra and n,, representmaximum and
minimumnumber of users in a group respectively.

Initially there will be a single server and when
more number of users join the group multiple sesver First-fit decreasing bin packing algorithm: In the
are introduced into the system. We use the LKH fofrFD algorithm, items are first sorted in decreasing
generation and distribution of group keys. order of siz&. The FFD algorithm to address the server

We fix a threshold for number of users in a groupPpacking problem is shown in Fig. 2. There are alpem
and when the number of users goes beyond this valug empty bins of size with increasing index. Themis
we dynamically split the servers. In the same wayare placed into the bins one by one, placing et@ch in
when the number of users fall below the threshaldes the first bin in which it will fit (i.e., the totakize of
we merge the servers. items in the bin does not exceed) in a round-robin

Figure 1 shows an example of merging andmanner. The time complexity of FFD algorithm is
splitting for K = 3. If there is a group in whiche total shown to be O(n log n), where n is the numbereshi.
number of users, n, is greater than méxe group is FFD algorithm is applied for merging servers. Each
split into three sub groups and the original subgro server is considered as an item with its group agzthe
keys, S, S;and $become the new group keys,;3G’, item size. Assuming that there are many bins wiith s
and Gz, for these three new groups respectively.of 0,,, packing operation is done in such a way that,
Whereas, if there are three groups in which n $s le the number of nonempty bins is very close to the
than min, the groups are merged and generate a newptimal number of servers. Therefore, each bin lshou
group key is generated. The original group keys, G’ be filled as much as possible. After packing theugs
G’; and Gz, become subgroup keys;, &, and 3, into the bins, the groups can be merged in a bim an
which can be used to encrypt the new group keyaB t new larger group served by a single logical server.
is sent to these three groups. Hence, the new wherge The following example demonstrates a simple
group will have three sets of message overheadfane method to merge the trees. In order to keep thekegw
each subgroup. tree as short and as balanced as possible, the trales

In order to tackle this problem several algorithms(j.e., a tree with greater depth) are added inghéni
have been proposed in the bin packing context folevel nearer to the root (i.e., level) while theoger
consolidating items into minimum number of bins. In gnes into the lower level (i.e., level). Figurstbws a
this study First-Fit Decreasing (FFD) bin-packing case of merging five servers with a branching facfo
algorithm and the Least Loaded (LL) are t§édBoth 4 |t o1 and G2 are the shortest two trees, these t
these algorithms are given the same input and thgeeg are added into the second level and the tedles

results are compared for various number of Servers, o »qded into the first level. The dotted ovajsesent
Two parameters are considered for comparison: Thﬁ1e new nodes created after merging.

time complexity and the number of destination sexve The FED algorithm to address the server packing

Algorithms. Two heuristic algorithms, FFD bin Problem is shown in Fig. 2. FFD receives n existing
packing algorithm and LL algorithm that are evadgat Servers and sorts them in descending order of
in our experiments are discussed below. We study thutilizations of a certain resource. The sortingasried
performance of FFD bin packing algorithm and the LLout for the largest (peak) utilizations within ané
algorithm. These algorithms were chosen because theperiod even if time-series data are (S&dAfter the

are some of the mostly used algorithms in thiglfamdd algorithm is executed, we obtain server
are fairly simple to implement and do not addaccommodations ¥ = 1,....,m), where m is the number
redundant delays in the system. of destination servers. The function packablg, &

958

Fig. 2: An example of server merge operation

J. Computer i, 5 (12): 956-961, 2009

returns true if packing existing servelirgo destination
server ssatisfies the constraints (i.e., the utilizatidn o
§ does not exceed a threshold for any resource);
otherwise it returns fal§e*.

FFD sequentially checks if all existing servers
s;,.---,$ can be packed into one of m current destination
servers. FFD then packs iito a destination server
first found to be able to accommodate it. ;ifcannot
be packed into any current destination server, the
(m+1)-th destination server is added and
accommodates it. The complexity of this FFD
algorithms is O(p) because m is almost proportional
to n. Here, we assumed the utilizations of no axst

Sort existing servers to {s1,...,8n) i descending order;
m e 1, X ()
foris<—1 ton do
for j<—1 to m do
if packable3s, s then
PR R TN
break
fi
end for;
if j=m+1 then
m — mtl;
Hm < {=}

*IF fail to pack 5 */

* anew server is added ¥
i* to have ™

fi

end for

servers were beyond thresholds. Note that the Yinargig. 3: FFD algorithm

search technique can reduce this complexity tol@gn
n), but the sequential search is better for actual
problems with time-series data.

Least loaded algorithm: The LL algorithm works on
the principle of load balancing. The LL algorithm
attempts to balance the load between servers by
assigning incoming jobs to the least-loaded sér7rn
server packing, an existing server with a highzaailon

is packed into a destination server with a low
utilization™. Figure 3 shows the LL algorithm that
addresses the server packing problem. The funtfi®n
({s4,.....8}) in Fig. 3 returns the theoretical lower bound
for the number of destination servers that acconateod
existing servers {s.....s}. The lower bound is the
smallest integer of numbers larger than the surhef
utilizations divided by a threshold. The lower bdifor
the CPU is LB =[X, p. /R, | while that for the disk

is LBy :|_Zi":19d‘ IR, | Function LB ({s,.....§}) returns

the larger integer of the two lower bounds [CTO01].
There are two differences between LL and FFD:

e First LL starts repacking after a new destination
server is added when it has failed to pack an
existing server into current m destination servers
This is aimed at balancing the load between a
newly added destination server and the others. I
contrast, FFD packs the existing server in questiori
into a new destination server and continues to pac
the remaining existing servers. LL initializes m to
the lower bound to save time, even though we can
also start withm =1

e Second, LL sorts destination servers (which

accommodate X....X;) in ascending order of des

utilizations each time before packing an existing
server, so as to pack it into a less-loaded
destination server

959

sort existing servers to {s],.... sut in descending order,
m ¢ LB ({31,..3a})
while true do

forj < Ttomdo

X e {} M intialization *7

end for;

fori & Ttondo

sort destination servers to {3),..30,} m ascending order,
forj+ Ttomdo

if packable (35, 5 then 35 & 350{55),
break

fi

end for;

fj=m + 1then /* ffal to pack s, *

m < m +1, *anew server iz added */
brealk

fi

end for;

ifi=n+1then *al packed */

break

fi

end while

Fig. 4: LL algorithm

The complexity of LL is O(d .4pg n), where d is
the difference between the lower bound and thel fina
number m of destination servers. This complexity ca
be reduced to O(d “nif we efficiently sort destination
servers. The sorting does not actually require 1@gm)
time but O(n) because only the utilizations of a
Eestination server that has accommodatésl pdated
ih iterations with i.

RESULTSAND DISCUSSION

Table 1 shows the average numbers m of
tination servers obtained with the FFD and LL
Igorithms for each n value. The column “m B
indicates the ratios of m to the lower bounds LRI an
stands for consolidation efficiencies. The valuesBi*

J. Computer i, 5 (12): 956-961, 2009

closer to 1.00 mean higher efficiencies. The rigigtm It is understood that for smaller values of n thisr@a
column indicates the average execution times fer thmoderate difference in the performance of the LL
algorithms. The algorithms have been implemented ialgorithm compared to FFD algorithm. Figure 7 skow
java language (JDK 1.5). Figure 5 shows the corspari the comparison between FFD and LL algorithm based o
between FFD and LL algorithm based on number oﬁxecgtion time. It is clear that theT executi(_)n tifoieL L
destination servers. The results show that while nflgorithm for larger values of n is very high comgzh
increases linearly with n, LL algorithm results time 0 FFD algorithm.

better m values compared to FFD algorithm. Figure 6

shows the comparison between FFD and LL algorithm
based on lower bound for the number of destination
servers that accommodate existing servers..{S}.

Table 1: Comparison of average number m of destimaservers
offered by FFD and LL for various n values

Cornparison between FFD and LL
algorithrs for various n values

035+
0.3+
0.254
0.2 4

0.154

n Algorithm m m LB Time (sec)
50 FFD 39.6 1.34 0.061
LL 37.0 1.12 0.073
100 FFD 87.3 1.26 0.069
LL 84.2 1.11 0.078
150 FFD 131.7 1.19 0.082
LL 127.0 1.09 0.188
200 FFD 188.0 1.14 0.127
LL 171.0 1.09 0.284
250 FFD 217.0 1.08 0.142
LL 203.0 1.05 0.323

250 4

200

1504

100 4

504

Comparison between FFD and LL
algorithms for various n values

250

Fig. 5: Comparison of FFD and LL based on m

1.6 -

Commnparison between FFD and LL
algorithms for various n values

0.1+

Execution time (sec)

0.054

Fig. 7: Comparison of FFD and LL based on
convergence time

CONCLUSION

In order to efficiently handle the frequent
membership change in a multicast system, a dynamic
split and merge technique has been proposed. Two
algorithms, FFD and LL, have been suggested toegat
optimal values for number of destination serversngu
the merge operation. Comparison between FFD and LL
algorithm shows that the convergence time is lofwer
FFD, whereas LL algorithm performs well in getting
the number of destination servers very close to the
optimal value and balances the load better than. FFD

REFERENCES

1. Cardellini, V., M. Colajanni and P.S. Yu, 1999.
Redirection algorithms for load sharing in
distributed web-server systems. Proceedings of the
19th IEEE International Conference on Distributed

14 Computing Systems, May 31-June A4EEE
12 '-_ Computer Society, Washington DC., USA., pp: 528.
e — — http://portal.acm.org/citation.cfm?id=880581&d|=
T ' &coll=
T 08 2. Zhao, Y. and F. Yang, 2006. A dynamic load
06+ balancing algorithm for distributed SLEE in mobile
044 —+—1L service provisioning. Proceeding of the
0.2 4 - T International Conference on Wireless
0 . , . Communications, Networking and Mobile
50 100 150 200 250

Fig. 6: Comparison of FFD and LL based on nitB

Computing, Sept. 22-24, IEEE Computer Society,
Washington DC., USA,, pp: 1-4.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnu
ber=4149561

J. Computer i, 5 (12): 956-961, 2009

Teo, Y.M., 2001. Comparison of load balancingl10. Goldberg, A.P., G.J. Popek and S.S. Lavenberg,

strategies on cluster-based web servers. Simulation
77:185-195.
http://sim.sagepub.com/cgi/content/abstract/77/5-
6/185

Shen, G., S.K. Bose, T.H. Cheng, C. Lu and T.Y.iCha
2001. Efficient heuristic algorithms for light-path
routing and wavelength assignment in WDM
networks under dynamically varying
Comput. Commun., 24: 364-373. DOI:
10.1016/S0140-3664(00)00236-X

Clautiaux, F., J. Carlier and A. Moukrim, 20@V.
new exact method for the two-dimensional bin
packing problem with fixed orientation. Operat.
Res. Lett., 35: 357-364.
10.1016/j.0rl.2006.06.007

Caprara, A. and P. Toth, 2001. Lower bounds and
algorithms for two dimensional vector packing

problem. Discrete Applied Math., 111: 231-262. 13.

http://portal.acm.org/citation.cfm?id=508254

Lodi, A., S. Martello and D. Vigo, 2002. Recent
advances on two dimensional bin packing
problem. Discrete Applied Math., 123: 379-396.

DOI: 10.1016/S0166-218X(01)00347-X 14.

Spellmann, K.E. and J. Reynolds, 2003. Server
consolidation using performance modeling. IT
Professional, 5: 31-36. DOI:
10.1109/MITP.2003.1235607

Eager, D.L., E.D. Lazowska and J. Zahorjan, 198615.

A comparison of receiver-initiated and sender-
initiated adaptive load sharing. Perform. Evaluat.
6: 53-68. DOI: 10.1016/0166-5316(86)90008-8

961

loads. 11.

DOl: 12.

1983. A validated distributed system performance
model. Proceedings of the 9th International
Symposium on Computer Performance Modeling,
Measurement and Evaluation, May 25-North-
Holland Publishing Co., Amsterdam, The
Netherlands, pp: 251-268.
http://portal.acm.org/citation.cfm?id=724593

Ha, 1986. A distributed algorithm for
performance improvement through replication and
migration. Proceeding of the IEEE Computer
Networking Symposium, Nov. 17-18, Washington,
DC., USA., pp: 163-168.
http://portal.acm.org/citation.cfm?id=76153
Tantawi, A.N. and D. Towsley, 1985. Optimal
static load balancing in distributed computer
systems. J. ACM., 32: 445-465.
http://portal.acm.org/citation.cfm?doid=3149.3156
Wang, Y.T. and R.J.T. Morris, 1985. Load shgrin
in distributed systems. IEEE Trans. Comput.,
C-34: 204-217.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsplarn
ber=1676564

Baker, B.S., 1985. A new proof for the firgt-fi
decreasing bin-packing algorithm. J. Algorithms,
6: 49-70.
http://cat.inist.fr/?aModele=afficheN&cpsidt=9264
746

Turkay dereli and G. Sena P&002. A hybrid
simulated annealing algorithm For 2d packing
problems. Proc. Int. Symp. Intell. Manufactur.
Syst., 1: 959-966.

