
Journal of Computer Science 5 (12): 956-961, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: R. Sukumar, Department of Computer Science and Engineering, Sethu Institute of Technology,
Pulloor, Kariapatti-626 106. Virudhunagar District, Tamil Nadu, India

 Tel: 04566-308001 Fax: 04566-308000
956

Server Optimization Using Heuristic Algorithms for

Dynamic-Split-and-Merge Scheme in Wireless Multicast

1R. Sukumar and 2V. Vasudevan
1Department of Computer Science and Engineering,

Sethu Institute of Technology, Kariapatti, Virudhunagar District, Tamilnadu, India
2Department of Information Technology,

Arulmigu Kalasalingam College of Engineering, Krishnankovil, India

Abstract: Problem statement: In order to minimize the overall network traffic in a multiserver
system, the number of users served by each server (and hence the group size) should remain constant.
As the underlying traffic fluctuates, a split and merge scheme is implemented in a physical server to
achieve load balancing. Approach: Minimizing the number of servers during the merge operation is
NP hard and to achieve these two algorithms namely FFD bin packing algorithm and LL algorithm
were proposed to find the near optimal values of destination servers. Results: The performance of
these algorithms were analyzed and compared based on several parameters. Conclusion: Results
showed that LL algorithm outperforms FFD algorithm.

Key words: Heuristic algorithm, load balancing, dynamic split and merge, destination servers

INTRODUCTION

 The number of users in a multicast group tends to
fluctuate due to frequent user join/leave. In order to
handle key management efficiently and reduce the
join/leave latency a dynamic split and merge scheme is
suggested[5,7]. If the number of users in a server is
greater than ∅max, the server is split into several logical
servers for which the number of users in each server is
as close as possible to the optimal group size ρ/m* . If
there are some servers in which the total number of
users is less than ∅min, the groups are merged into a
single logical server with the goal of getting as close as
possible to ρ/m*. The problem of finding proper groups
to be merged is NP-hard. NP is the set of problems such
that, when given a solution, whether it is a truly optimal
solution or not can be verified in polynomial time, i.e.,
O (nc) time, where n is the problem size (the number of
items in the packing problem) and c is a constant12.
Naturally, finding an optimal solution needs more time,
for example, exponential time O (cn) and is impossible
in practice for not a small n. Even if c = 2 and n = 100,
the exponential time will be almost 1030. The “server”
merging problem is also NP hard and the number of
destination servers is required to be as small as possible
from the point of view of cost reduction and
manageability. This minimization can be formalized as

a bin packing problem well known in the field of
operations research8. We are given items of different
sizes in the bin packing problem and asked to pack
them all into a minimum n umber of bins with a given
capacity. Items for server consolidation are existing
servers, item sizes are group sizes of different servers
and bins are destination servers.
 An important parameter to study the performance
of server packing algorithms is the server response
time. For a server packing algorithm to exhibit good
convergence, response time is not expected to increase
drastically. For example in a M/M/1 queuing model, let
ρ be the utilization and 1/µ be the service time, which is
the minimum response time observed when a single
request has been processed; then, the response time is
expressed as 1/µ(1-ρ). The service time 1/µ of most
applications running efficiently on existing servers are
sufficiently short and further reduced on the destination
server whose performance may be several times higher
than that of the existing servers. The response time
cannot be more than a certain number of times longer
than such a small 1/µ. For example, a response time is
five times as long as 1/µ if ρ = 0.8 (80%).
 Thus we need a better heuristic algorithm for
finding a near-optimal solution to the server packing
problem in reasonable time. Numerous algorithms have
already been proposed for one and two-dimensional bin

J. Computer Sci., 5 (12): 956-961, 2009

957

packing problems and First-Fit Decreasing (FFD) is one
of the best[9]. FFD and its family are greedy, i.e., items
are packed as much as possible into currently prepared
bins and new bin added if an item cannot be packed
into any of the current bins. Therefore, the FFD family
unbalances the load between bins that are added early
and late[13]. This is why we compared FFD with the
Least Loaded (LL), a load-balancing algorithm widely
used in request-based systems. The load balancing
approach is more favorable for performance but has not
yet been considered within the context of the packing
problem.

MATERIALS AND METHODS

Related works: Much of the previous research on
server optimization has been done without considering
the dynamic nature of the multicast group members.
This body of work includes dynamic split and merge
scheme for large scale wireless multicast. Present
research is based on the scheme given in[6,7] and we
model and analyze it. Previous research address mainly
reducing number of existing servers and has considered
neither a dynamic split and merge scheme nor the
comparison between FFD and LL algorithms.
 Teo[3] focuses on an experimental analysis of the
performance and scalability of cluster-based web
servers. The three dispatcher-based scheduling
algorithms analyzed are: Round robin scheduling, least
connected based scheduling and least loaded based
scheduling. The least loaded algorithm is used as the
baseline (upper performance bound) in the analysis and
the performance metrics include average waiting time,
average response time and average web server
utilization. It is found that the least connected algorithm
performs well for medium to high workload.
 Shen et al.[4] present heuristic algorithms that may
be used for light-path routing and wavelength
assignment in optical WDM networks under
dynamically varying traffic conditions. They considered
both the situations where the wavelength continuity
constraint is enforced or not enforced along a light-
path. The performance of these algorithms has been
studied through simulations. A comparative study on
their performance with that of a simpler system that
uses fixed shortest-path routing has been performed.
The proposed algorithms provided lower blocking
probabilities and are simple enough to be applied for
real time network control and management. They have
also studied that the heuristic algorithms are
computationally simple and efficient to implement and
provide good wavelength utilization leading to efficient
usage of the network's resources.

 Türkay Dereli and Sena Daş[15] studied a hybrid
Simulated-Annealing (SA) algorithm for the 2-
Dimensional (2D) packing problem. A recursive
procedure has been used in the proposed algorithm to
allocate a set of items to a single object. The problem
has been handled as a permutation problem and the
proposed recursive algorithm is hybridized with the
simulated annealing algorithm. The effectiveness of the
algorithm has been tested on a set of benchmark
problems. The computational results have shown that
the algorithm gives promising results.
 Zhao and Yang[2] proposed an accumulated k-
subset algorithm (AK algorithm) to balance load in
distributed SLEE. Based on a model of resource
heterogeneity and load vector, they have found that the
AK algorithm improves the k-subset algorithm by
accumulating load information within every update
interval. Experiments on different update intervals and
request arrival rates suggested AK further reduces herd
effect due to stale load information and outperforms k-
subset algorithm by 5-10%. F. Clautiaux et al.[5]
proposed a new exact method for the well-known two-
dimensional bin-packing problem. It is based on an
iterative decomposition of the set of items into two
disjoint subsets. They have tested the efficiency of this
method against benchmarks of the literature.

Dynamic split and merge: Since the number of users
in a multicast group tends to fluctuate, the system can
have variable number of servers. During a busy period
when more number of users join the group, number of
servers can be more and during a quiet period, the
number of servers can be less in order to handle the key
management efficiently. We therefore fix a threshold
nmax, for the maximum number of users in a group and
∅max, for maximum number of servers the system can
have at a particular period of time. This is due to the
fact that more number of servers adds to the complexity
of the system.
 The number of servers the system needs at a
particular period of time is decided by the following
procedure:

• Step 1: Fix a threshold for nmax and nmin
• Step 2: If n > nmax, Split the group
• Step 3: If n < nmin, Merge the group

 Merging a group with some other group is done in
such a way that the total number of users in the merged
group does not exceed nmax. Therefore, before merging
a group we must find the possible groups that can be
merged.

J. Computer Sci., 5 (12): 956-961, 2009

958

Fig. 1: Splitting and merging for K = 3

 Where, nmax and nmin represent maximum and
minimum number of users in a group respectively.
 Initially there will be a single server and when
more number of users join the group multiple servers
are introduced into the system. We use the LKH for
generation and distribution of group keys.
 We fix a threshold for number of users in a group
and when the number of users goes beyond this value
we dynamically split the servers. In the same way,
when the number of users fall below the threshold value
we merge the servers.
 Figure 1 shows an example of merging and
splitting for K = 3. If there is a group in which the total
number of users, n, is greater than maxt, the group is
split into three sub groups and the original subgroup
keys, S1, S2 and S3 become the new group keys, G’1, G’2

and G’3, for these three new groups respectively.
Whereas, if there are three groups in which n is less
than mint, the groups are merged and generate a new
group key is generated. The original group keys, G’1,
G’2 and G’3, become subgroup keys, S1, S2 and S3,
which can be used to encrypt the new group key, G that
is sent to these three groups. Hence, the new merged
group will have three sets of message overhead, one for
each subgroup.
 In order to tackle this problem several algorithms
have been proposed in the bin packing context for
consolidating items into minimum number of bins. In
this study First-Fit Decreasing (FFD) bin-packing
algorithm and the Least Loaded (LL) are used[14]. Both
these algorithms are given the same input and the
results are compared for various number of servers.
Two parameters are considered for comparison: The
time complexity and the number of destination servers.

Algorithms: Two heuristic algorithms, FFD bin
packing algorithm and LL algorithm that are evaluated
in our experiments are discussed below. We study the
performance of FFD bin packing algorithm and the LL
algorithm. These algorithms were chosen because they
are some of the mostly used algorithms in this field and
are fairly simple to implement and do not add
redundant delays in the system.

Fig. 2: An example of server merge operation

First-fit decreasing bin packing algorithm: In the
FFD algorithm, items are first sorted in decreasing
order of size[6]. The FFD algorithm to address the server
packing problem is shown in Fig. 2. There are a number
of empty bins of size with increasing index. The items
are placed into the bins one by one, placing each item in
the first bin in which it will fit (i.e., the total size of
items in the bin does not exceed) in a round-robin
manner. The time complexity of FFD algorithm is
shown to be O(n log n), where n is the number of items.
 FFD algorithm is applied for merging servers. Each
server is considered as an item with its group size as the
item size. Assuming that there are many bins with size
of ∅min, packing operation is done in such a way that,
the number of nonempty bins is very close to the
optimal number of servers. Therefore, each bin should
be filled as much as possible. After packing the groups
into the bins, the groups can be merged in a bin into a
new larger group served by a single logical server.
 The following example demonstrates a simple
method to merge the trees. In order to keep the new key
tree as short and as balanced as possible, the taller trees
(i.e., a tree with greater depth) are added into higher
level nearer to the root (i.e., level) while the shorter
ones into the lower level (i.e., level). Figure 2 shows a
case of merging five servers with a branching factor of
4. If G1 and G2 are the shortest two trees, these two
trees are added into the second level and the taller trees
are added into the first level. The dotted ovals represent
the new nodes created after merging.
 The FFD algorithm to address the server packing
problem is shown in Fig. 2. FFD receives n existing
servers and sorts them in descending order of
utilizations of a certain resource. The sorting is carried
out for the largest (peak) utilizations within a time
period even if time-series data are used[10]. After the
algorithm is executed, we obtain server
accommodations Xj(j = 1,....,m), where m is the number
of destination servers. The function packable (Xj, si)

J. Computer Sci., 5 (12): 956-961, 2009

959

returns true if packing existing server si into destination
server sj satisfies the constraints (i.e., the utilization of
sj does not exceed a threshold for any resource);
otherwise it returns false[8,15].
 FFD sequentially checks if all existing servers
s1,....,sn can be packed into one of m current destination
servers. FFD then packs si into a destination server
first found to be able to accommodate it. If si cannot
be packed into any current destination server, the
(m+1)-th destination server is added and
accommodates it. The complexity of this FFD
algorithms is O(n2) because m is almost proportional
to n. Here, we assumed the utilizations of no existing
servers were beyond thresholds. Note that the binary
search technique can reduce this complexity to O(n log
n), but the sequential search is better for actual
problems with time-series data.

Least loaded algorithm: The LL algorithm works on
the principle of load balancing. The LL algorithm
attempts to balance the load between servers by
assigning incoming jobs to the least-loaded server[1,12]. In
server packing, an existing server with a high utilization
is packed into a destination server with a low
utilization[11]. Figure 3 shows the LL algorithm that
addresses the server packing problem. The function LB
({s1,.....sn}) in Fig. 3 returns the theoretical lower bound
for the number of destination servers that accommodate
existing servers {s1,.....sn}. The lower bound is the
smallest integer of numbers larger than the sum of the
utilizations divided by a threshold. The lower bound for
the CPU is LBc = 

i

n
i 1 c cρ / R=∑  while that for the disk

is LBd = 
i

n
i 1 d dρ / R=∑  Function LB ({s1,.....sn}) returns

the larger integer of the two lower bounds [CT01].
 There are two differences between LL and FFD:

• First LL starts repacking after a new destination

server is added when it has failed to pack an
existing server into current m destination servers.
This is aimed at balancing the load between a
newly added destination server and the others. In
contrast, FFD packs the existing server in question
into a new destination server and continues to pack
the remaining existing servers. LL initializes m to
the lower bound to save time, even though we can
also start with m = 1

• Second, LL sorts destination servers (which
accommodate X1,.....Xm) in ascending order of
utilizations each time before packing an existing
server, so as to pack it into a less-loaded
destination server

Fig. 3: FFD algorithm

Fig. 4: LL algorithm

 The complexity of LL is O(d . n2log n), where d is
the difference between the lower bound and the final
number m of destination servers. This complexity can
be reduced to O(d . n2) if we efficiently sort destination
servers. The sorting does not actually require O(n log n)
time but O(n) because only the utilizations of a
destination server that has accommodated si is updated
in iterations with i.

RESULTS AND DISCUSSION

 Table 1 shows the average numbers m of
destination servers obtained with the FFD and LL
algorithms for each n value. The column “m LB−1”
indicates the ratios of m to the lower bounds LB and
stands for consolidation efficiencies. The values m LB−1

J. Computer Sci., 5 (12): 956-961, 2009

960

closer to 1.00 mean higher efficiencies. The rightmost
column indicates the average execution times for the
algorithms. The algorithms have been implemented in
java language (JDK 1.5). Figure 5 shows the comparison
between FFD and LL algorithm based on number of
destination servers. The results show that while m
increases linearly with n, LL algorithm results in the
better m values compared to FFD algorithm. Figure 6
shows the comparison between FFD and LL algorithm
based on lower bound for the number of destination
servers that accommodate existing servers {s1,.....sn}.

Table 1: Comparison of average number m of destination servers

offered by FFD and LL for various n values

n Algorithm m m LB−1 Time (sec)
50 FFD 39.6 1.34 0.061
 LL 37.0 1.12 0.073
100 FFD 87.3 1.26 0.069
 LL 84.2 1.11 0.078
150 FFD 131.7 1.19 0.082
 LL 127.0 1.09 0.188
200 FFD 188.0 1.14 0.127
 LL 171.0 1.09 0.284
250 FFD 217.0 1.08 0.142
 LL 203.0 1.05 0.323

Fig. 5: Comparison of FFD and LL based on m

Fig. 6: Comparison of FFD and LL based on m LB−1

It is understood that for smaller values of n there is a
moderate difference in the performance of the LL
algorithm compared to FFD algorithm. Figure 7 shows
the comparison between FFD and LL algorithm based on
execution time. It is clear that the execution time for LL
algorithm for larger values of n is very high compared
to FFD algorithm.

Fig. 7: Comparison of FFD and LL based on

convergence time

CONCLUSION

 In order to efficiently handle the frequent
membership change in a multicast system, a dynamic
split and merge technique has been proposed. Two
algorithms, FFD and LL, have been suggested to get near
optimal values for number of destination servers during
the merge operation. Comparison between FFD and LL
algorithm shows that the convergence time is lower for
FFD, whereas LL algorithm performs well in getting
the number of destination servers very close to the
optimal value and balances the load better than FFD.

REFERENCES

1. Cardellini, V., M. Colajanni and P.S. Yu, 1999.

Redirection algorithms for load sharing in
distributed web-server systems. Proceedings of the
19th IEEE International Conference on Distributed
Computing Systems, May 31-June 4, IEEE
Computer Society, Washington DC., USA., pp: 528.
http://portal.acm.org/citation.cfm?id=880581&dl=
&coll=

2. Zhao, Y. and F. Yang, 2006. A dynamic load
balancing algorithm for distributed SLEE in mobile
service provisioning. Proceeding of the
International Conference on Wireless
Communications, Networking and Mobile
Computing, Sept. 22-24, IEEE Computer Society,
Washington DC., USA., pp: 1-4.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=4149561

J. Computer Sci., 5 (12): 956-961, 2009

961

3. Teo, Y.M., 2001. Comparison of load balancing
strategies on cluster-based web servers. Simulation,
77: 185-195.

 http://sim.sagepub.com/cgi/content/abstract/77/5-
6/185

4. Shen, G., S.K. Bose, T.H. Cheng, C. Lu and T.Y. Chai,
2001. Efficient heuristic algorithms for light-path
routing and wavelength assignment in WDM
networks under dynamically varying loads.
Comput. Commun., 24: 364-373. DOI:
10.1016/S0140-3664(00)00236-X

5. Clautiaux, F., J. Carlier and A. Moukrim, 2007. A
new exact method for the two-dimensional bin
packing problem with fixed orientation. Operat.
Res. Lett., 35: 357-364. DOI:
10.1016/j.orl.2006.06.007

6. Caprara, A. and P. Toth, 2001. Lower bounds and
algorithms for two dimensional vector packing
problem. Discrete Applied Math., 111: 231-262.
http://portal.acm.org/citation.cfm?id=508254

7. Lodi, A., S. Martello and D. Vigo, 2002. Recent
advances on two dimensional bin packing
problem. Discrete Applied Math., 123: 379-396.
DOI: 10.1016/S0166-218X(01)00347-X

8. Spellmann, K.E. and J. Reynolds, 2003. Server
consolidation using performance modeling. IT
Professional, 5: 31-36. DOI:
10.1109/MITP.2003.1235607

9. Eager, D.L., E.D. Lazowska and J. Zahorjan, 1986.
A comparison of receiver-initiated and sender-
initiated adaptive load sharing. Perform. Evaluat.,
6: 53-68. DOI: 10.1016/0166-5316(86)90008-8

10. Goldberg, A.P., G.J. Popek and S.S. Lavenberg,
1983. A validated distributed system performance
model. Proceedings of the 9th International
Symposium on Computer Performance Modeling,
Measurement and Evaluation, May 25-27, North-
Holland Publishing Co., Amsterdam, The
Netherlands, pp: 251-268.
http://portal.acm.org/citation.cfm?id=724593

11. Hać, 1986. A distributed algorithm for
performance improvement through replication and
migration. Proceeding of the IEEE Computer
Networking Symposium, Nov. 17-18, Washington,
DC., USA., pp: 163-168.
http://portal.acm.org/citation.cfm?id=76153

12. Tantawi, A.N. and D. Towsley, 1985. Optimal
static load balancing in distributed computer
systems. J. ACM., 32: 445-465.
 http://portal.acm.org/citation.cfm?doid=3149.3156

13. Wang, Y.T. and R.J.T. Morris, 1985. Load sharing
in distributed systems. IEEE Trans. Comput.,
C-34: 204-217.

 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1676564

14. Baker, B.S., 1985. A new proof for the first-fit
decreasing bin-packing algorithm. J. Algorithms,
6: 49-70.

 http://cat.inist.fr/?aModele=afficheN&cpsidt=9264
746

15. Türkay dereli and G. Sena Daş, 2002. A hybrid
simulated annealing algorithm For 2d packing
problems. Proc. Int. Symp. Intell. Manufactur.
Syst., 1: 959-966.

