
Journal of Computer Science 6 (2): 141-162, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Muhammad Ikhwan Jambak, Department of Modeling and Industrial Computing,
 Faculty of Computer Science and Information System, University Technology Malaysia, 81310,
 Johor Bahru, Malaysia

141

Soft Computing in Optimizing Assembly Lines Balancing

1Muhammad Zaini Matondang and 1,2Muhammad Ikhwan Jambak

1Department of Modeling and Industrial Computing,
Faculty of Computer Science and Information System,

2Soft Computing Research Group, Research Alliance on K-Economy,
University Technology Malaysia, 81310 Johor Bahru, Malaysia

Abstract: As part of manufacturing systems, the assembly line has become one of the most valuable
researches to accomplish the real world problems related to them. Many efforts have been made to
seek the best techniques in optimizing assembly lines. Problem statement: Since it was published by
Salveson in 1955, some methods and techniques have been developed based on mathematical
modeling. In recent years, some researches in Assembly Line Balancing (ALB) have been conducted
using Soft Computing (SC) approaches. However, there is no comprehensive survey studies conducted
regarding the use of SC in ALB problems, which is became the aim of this study. Approach: This
study reviewed published literatures and previous related works that applied SC in solving ALB
problems. Main outcomes: This study looks into the suitability of SC approaches in several types of
ALB problems. Furthermore, this study provides the classification of ALB problems that can facilitate
distinguishing those problems as fields of research. Result: This study found that Genetic Algorithms
(GAs) are predominantly applied to solve ALB problems compared to other SC approaches. This high
suitability in ALB refers to GAs’ main characteristics that include its robustness and flexibility. These
SC approaches have mostly been applied to simple ALB problems, which are not problems that are
covered in a real complex manufacturing environment. Conclusion/Recommendations: This study
recommends that future researches in ALB should be conducted with regard to other issues, beyond the
simple ALB problems and more practical to the industries. Besides the advantages of GAs, there are
still opportunities to use other SC approaches and the hybrid-systems among them that could increase
the suitability of these approaches, especially for multi-objective ALB problems. This study also
recommends that human involvement in ALB needs to be considered as a problem factor in ALB.

Key words: Assembly lines balancing, soft computing, optimization

INTRODUCTION

 A manufacturing system could be defined as a
collection of integrated equipment (including
production machines and tools, material handling and
work-positioning devices and computer systems) and
human resources, whose function is to perform one or
more processing and/or assembly operations on raw
materials, a part, or set of parts (Groover, 2008). In this
system, human resources are required either full time or
periodically to keep the system running. There are
seven systems included in a manufacturing system: they
are; taxonomy, single-station cells, group technology, a
flexible manufacturing system, manual assembly lines,
automated assembly lines and transfer lines. In this
study, the discussion will focus on an assembly line

system. It is both an old problem and a new problem,
due to the fact that many researchers still attempt to
stumble on optimized ways, methods or techniques to
assembly lines balancing.
 Balancing assembly lines becomes one of the most
important parts for an industrial manufacturing system
that should be supervised carefully. The success of
achieving the goal of production is influenced
significantly by balancing assembly lines. Since then,
many industries and for sure researchers, attempt to find
the best methods or techniques to keep the assembly line
balanced and even to make it more efficient.
Furthermore, this problem is known as an assembly lines
balancing problem. As there are many researches that
have been performed, few techniques and methods have
been used in solving the optimization problems. They are

J. Computer Sci., 6 (2): 141-162, 2010

142

based on mathematical modeling, such as the use of
linear programming and then the latest are based on the
soft computing approach, with the more famous one
being the use of genetic algorithms.

MATERIALS AND METHODS

 Optimization could be defined as the effort, way,
technique, method or system to use for calculating or
finding the best possibilities of utilization of resources
(which can be people, time, process, vehicles,
equipment, raw materials, supplies and others) needed
to achieve an expected result, with it being the best
possible solution to the problem. In mathematics, the
simplest case of optimization, or mathematical
programming, refers to the study of problems in which
one seeks to minimize or maximize a real function by
systematically choosing the values of real or integer
variables from within an allowed set. The first
optimization technique, which is known as steepest
descent, goes back to Gauss. Historically, the first term
to be introduced was ‘linear programming’, which was
invented by George Dantzig in the 1940s. The term
‘programming’ in this context does not refer to
computer programming (although computers are
nowadays used extensively to solve mathematical
problems). Instead, the term comes from the use of
program by the United States military to refer to
proposed training and logistics schedules, which were
the problems that Dantzig was studying at the time. The
wide variety of applications benefiting from
optimization include: Production planning and
scheduling, raw material blending, yield and revenue
management, crew scheduling, financial portfolio
management, product configuration, technician and
truck dispatching, satellite mission planning and others.
However, for those kinds of applications, there are
many techniques and methods used for optimization
purpose and basically they are divided according to the
number of variables involved, which are called Single
Variable Optimization (SVO) and Multi-Variable
Optimization (MVO).
 Another literature (Chong and Zak, 2008) stated
the optimization problems are divided into two twice-
differentiable functions: Constrained and unconstrained
problems. Unconstrained problems can be solved by
finding the points where the gradient of the objective
function is zero and using the Hessian matrix to classify
the type of each point. The existence of derivatives is
not always assumed and many methods were devised
for specific situations. The basic classes of methods,
based on smoothness of the objective function, are:
Combinatorial methods, derivative-free methods, first

and second order methods, gradient descent (aka
steepest descent or steepest ascent), interior point
methods, line search method, Newton's method, quasi-
Newton methods, subgradient method-similar to
gradient method in case there are no gradients and
many others. Constrained problems can often be
transformed into unconstrained problems with the help
of Lagrange multipliers. Few other popular methods
such as ant colony optimization, beam search, bee
algorithms, differential evolution, dynamic relaxation,
evolution strategy, genetic algorithms, harmony search,
hill climbing, particle swarm optimization, quantum
annealing, simulated annealing, stochastic tunneling
and Tabu search. However, among those methods,
genetic algorithms, which are part of soft computing
approaches, is the most used technique today for
optimization matters, even compared with other soft
computing approaches. It is because genetic algorithms
provide an alternative to traditional optimization
techniques by using directed random searches to locate
optimum solutions in complex landscapes.
 In this study, a survey study of soft computing
applications in assembly line balancing is presented.
The survey study focused on the efforts of previous
works in finding the best techniques to optimize
assembly lines based on soft computing approaches.
Furthermore, this study is looking for the suitability of
SC approaches in several types of ALB problems.
 The discussions of this study are managed as
follow. At first, we present an overview of this study
and explain a few definitions and facts about
optimization problems and the techniques used. We
continue the discussion by detailing the assembly lines
balancing, including its characteristics, layout,
problems classification, and its role in manufacturing.
A brief discussion of soft computing and its general
capabilities is presented, and furthermore the soft
computing applications in assembly lines balancing as
the core this survey. At the end of this critical review,
we present our conclusion and recommendation for
future researches.

Assembly line balancing: we brief an introduction in
here to get more understanding about assembly lines
balancing. The discussions cover basic knowledge
about assembly lines, a few definitions, characteristics,
problems classifications and the important of assembly
lines balancing.

Assembly lines and the balancing problem: There are
three reasons why assembly lines were developed. They
are for a cost-efficient mass-production of standardized
products, designed to exploit a high specialization of

J. Computer Sci., 6 (2): 141-162, 2010

143

labor and the associated learning effects (Shtub and
Dhar-El, 1989). Since then assembly lines have been
gradually improved. Henry Ford’s introduction of
assembly lines, from straight single-model lines to more
flexible systems including, among others, lines with
parallel work stations or tasks, customer-oriented
mixed-model and multi-model lines, U-shaped lines as
well as un-paced lines with intermediate buffers
(Becker and Scholl, 2006).
 Few definitions of assembly lines are given by few
researchers. Becker and Scholl (2006) said that
assembly lines are a traditional and still effective means
of mass and large-scale production. They are also
dubbed as flow-oriented production systems which are
still typical in the industrial production of high-quantity
standardized commodities and even gain importance in
low-volume production of customized products. Lusa
(2008) said that assembly lines could be defined as a
production system made up of a series of workstations
that are connected by a conveyor belt or a similar
system that transports the object that is being
assembled. Furthermore, Yaman (2008) stated that
assembly lines are an example of flow lines which is
the most commonly used system in a mass-production
environment. Assembly lines enable the assembly of
complex products by workers who have received a
short training period (Gunasekaran and Cecile, 1998).
Thus, an efficient assembly line design, as a part of a
manufacturing system, is a vital problem for some
companies. An assembly line is a usual solution for
medium and high-production volumes.
 In any case, an important decision problem, called
also assembly line balancing problem, arises and has to
be solved when (re-) configuring an assembly line. It
consists of distributing the total workload for
manufacturing any unit of the product to be assembled
among the workstations along the line. Falkenauer
(2005) explained that Assembly Lines Balancing
(ALB), or simply Line Balancing (LB), are the problem
of assigning operations to workstations along an
assembly line, in such a way that the assignment is
optimal in some sense. It has been an optimization
problem which was very crucial for many industries.
By managing an assembly line, few advantages occur,
such as better labor and machine utilization, easy
learning for workers, less work-in-process inventory
and less space requirement (Veeramani, 2001). Mayers
and Stephens (2005) stated some purposes of the
assembly lines balancing technique. They are to
equalize the workload among the assemblers, to
identify any operational bottlenecks, to establish the
speed of assembly lines, to determine the number of

workstations, to determine the labor cost of assembly
and packaging, to establish the percentage workload of
each operator, to assist in plan layout and to reduce
production costs.
 Few literatures have stated the main objective of an
assembly line, which is to increase the efficiency of the
system by maximizing the ratio between throughput
and required cost. An assembly chart shows the
sequence of operations required to put a product
together as the final stage of manufacture. This
assembly process can be shown graphically by using
the parts list and related drawings. In complex products,
the sequence of assembly may have other alternatives.
For a good decision among these alternatives, time-
standards and precedence lists are required (Meyers and
Stephens, 2005; Boysen et al., 2007). With this
background, an assembly line may be designed and
balanced with the aim of optimizing the assembly system.
For other descriptions of assembly systems and different
balancing problems one could refer to Buxey et al.
(1973); Baybars (1986); Shtub and Dhar-El (1989);
Gosh and Gagnon (1989); Erel and Sarin (1998); Scholl
(1999); Rekiek and Delchambre (2001) and the most
recent survey of Becker and Scholl (2006).

Characteristics of assembly lines: There is a work
element and workstation as a part in assembly lines.
Then, it is better to know about a work element and
workstation first, before knowing all about the
assembly lines. A work element is the smallest unit
productive work that adds values to the product, such as
tightening (thinning/reduction) a screw, welding,
inserting a gear assembly. A workstation is also dubbed
as a collection of a set of work elements that are
performed there. A product is passed down the line and
visits each workstation in sequence. An assembly line
contains of a set of sequential workstations, typically
connected by a continuous material handling system. It
is designed to assemble component parts of a product
and perform any related operations to produce the
finished product. There also other components in there,
namely workers (manual and robotic), a material
handling system (conveyors), buffers, unloading and
storage space, layout (linear, U-shape and others).
 Referring to Tasan and Tunali (2008), an assembly
line consists of a sequence of tasks, each having an
operational processing time and a set of precedence
relations, is widely adopted in manufacturing plans (by
previous literature (Becker and Scholl, 2006), a
sequence of workstations have the same meaning with a
sequence of tasks in this context). Precedence relations
contain the order in which tasks must be performed.

J. Computer Sci., 6 (2): 141-162, 2010

144

Fig. 1: Precedence graph

Table 1: List of common notations
Notations Definitions
n Number of workstations; i = 1,…,n
c Cycle time
m Number of tasks; j = 1,…,m
tj

Processing time of tasks j

tsum

Total processing time of tasks;
m

sum j
j 1

t t
=

=∑

WSi

Workstation load of workstation i
t(WSi)

Workstation time of workstation i;

i

i j
j WS

t(WS) t
∈

= ∑

Max(t(WSi))

Maximum workstation time
K

Largest single processing time of a task, a constant

Nv

Number of violations in precedence relations
cɶ

Fuzzy cycle time

it(W S)ɶ

Fuzzy workstation times for workstation s

ns

Number of workstations in solution
M

Number of models; k = 1,…,M

qk

Demand ratio of model k
it ik

Idle time for workstation i after processing model k

IT i

Average idle time for workstation i;
M

i ik
k 1

IT qk it
=

=∑

E

Line efficiency
f(s)

Fitness function of a solution c

Figure 1 illustrates an example of precedence relations
by a representation of a precedence graph, which
contains 9 nodes for tasks, node weights in italic for
task-processing times and arcs for orderings. It is noted
that the most commonly used objective function in the
literature is the maximization of line efficiency:

sumt
E

n c
=

⋅

 The following Table 1 presents the widely-used
notations in assembly lines balancing literature (Tasan
and Tunali, 2008).
 As follows, the characterizations of the relevant
properties of assembly lines, which have to be
considered when balancing those lines, are given:

• Number and variety of products: If only one

product or several products with (almost) identical
production processes, e.g., production of compact
discs (Lebefromm, 1999) or drinking cans (Grabau
and Maurer, 1998) are assembled, the production
system can be treated as a single-model line.

Fig. 2: Assembly line based on the number and variety

of the products (redrawn Becker and Scholl,
2006). (a) single-model line; (b) mixed-model
line; (c) multi-model line

In modern production systems however, several
products or different models of the same base
product often share the same assembly line. In
general, two different forms of organization are
distinguished (c.f. Wild, 1972; Buxey et al., 1973):
A mixed-model line (A mixed-model line produces
the units of different models in an arbitrarily
intermixed sequence (cf. Scholl, 1999)) and a multi-
model line (A multi-model line produces a sequence
of batches (each containing units of only one model
or a group of similar models) with intermediate
setup operations.). An illustration is given in Fig. 2,
which shows the characteristics of assembly lines
based on number and variety of the products

• Line control: Assembly systems can be
distinguished with regard to the control of job
movements between stations. The exact type of
line control, which has far-reaching consequences
for the structure of the balancing decision, is
divided into paced and un-paced lines

• Variability of task times: In reality, task times are
basically never deterministic (Tempelmeier, 2003)

• Line layout: Traditionally, an assembly line is
organized as a serial line, where single stations are
arranged along a (straight) conveyor belt. The
actual line layout is, however, not necessarily
determined prior to the balancing decision. The
real-world arrangement of the conveyor belt does
not usually affect the assignment decision and can
thus be ignored

• Parallelization of assembly work: Assembly line
production makes intensive use of increasing labor
efficiency by partitioning the total work among
different productive units

• Equipment and processing alternatives: In order to
perform a task assigned, the station must be
equipped with productive resources like operators,

J. Computer Sci., 6 (2): 141-162, 2010

145

machines and tools which provide the skills and/or
technological capabilities required. Furthermore,
the necessary material must be made available

• Assignment restrictions: In ALB, task assignments
to stations are always restricted by precedence
relationships. In model formulations, the
corresponding precedence graph might either have
a general structure or be restricted to some special
graph type, e.g., linear (Kimms, 2000), diverging
or converging graphs. In any case, the precedence
graph has to be (made) acyclic to find feasible task-
processing sequences (Ahamdi and Wurgaft, 1994)

Objectives: Several of the extensions outlined above
can only be considered in a meaningful way, if other
objectives than the capacity-oriented ones introduced in
previous discussion are observed. Whenever alternative
resources are available, resource costs will need to be
regarded in the associated selection problem.

Problem classification in assembly lines: There are a
few ways in defining the problem of assembly lines
balancing, while the problem also has variations which
may add some complexity to the problem. Here are
some variations which are introduced by Chow (1990):

• Multiple products: Since assembly processes and

process times may not be the same for different
products, a single line cannot be balanced for all
products

• Variable process time: Variability may take a
number of different forms and the two most
common ones result from human inconsistencies
found at manual operations and different reject
conditions at test/ inspection operations

• Multiple workstations: If the mean process time of
an operation is larger than a planned completion
cycle, multiple workstations are needed. However,
line sizing and balancing become interrelated
problems

• Human factors: According to industrial
experiences. it has been shown that the repetition
of the same motion pattern induces excessive
muscle fatigue and may lead to body injury

• Product characteristics: An assembly line is usually
composed of a number of subassemblies and tasks
that belong to different subassemblies should not
be assigned to the same operation

• Length of cycle time: Assembly lines balancing
problems are dependent on the selected cycle time
and that the determination of cycle time is a
complicated problem

 Apart from the variations in the ways in defining the
problems of assembly lines balancing as listed above and
as stated earlier in this study, assembly lines balancing
research has traditionally focused on the Simple
Assembly Line Balancing Problem (SALBP), which has
some restricting assumptions. However, nowadays, a lot
of research work has been done in order to describe and
solve more realistic generalized problems, namely
General Assembly Lines Balancing Problems (GALBP).
 Several version of ALBP also arise by varying the
objective function (Scholl, 1999): They are Type-1 until
Type-5 and Type-E and Type-F. Type-1 and Type-2
have a dual relationship; the first one tries to minimize
the number of workstations for a given cycle time and
the second one tries to minimize the cycle time for a
given number of workstations. Type 3-5 corresponds to
maximization of workload smoothness, maximization
of work relatedness and multiple objectives, with Type
3 and 4 respectively (Kim et al., 1996). Type-E is the
most general problem version, which tries to maximize
the line efficiency by simultaneously minimizing the
cycle time and a number of workstations. While the
last, Type-F is an objective-independent problem,
which is to establish whether or not a feasible line
balance exists for a given combination of m and c.
 Furthermore, several version of ALB problem also
arise based on the problem structure. It can be classified
into two groups. The first group are (Becker and Scholl,
2006; Scholl, 1999), divided into Single-Model
Assembly Line Balancing (SMALB) which is involve
only one product, Multi-Model Assembly Line
Balancing (MuMALB) which is involve more than one
product produced in batches and Mixed-Model
Assembly Line Balancing (MMALB) which is refer to
assembly lines, which are not in batches. Meanwhile, the
second group (Baybars, 1986) is divided into Simple
Assembly Line Balancing (SALB), which is involves
only one product, with features such as paced line with
fixed cycle time, deterministic independent processing
times, no assignment restrictions, serial layout, one sided
workstations, equally equipped workstations and fixed
rate launching and General Assembly Line Balancing
(GALB), which is include cost function, equipment
selection, paralleling, U-shape line layout and mixed-
model production.
 In another survey of assembly line research
(Falkenauer, 2005), there is an identification of
additional difficulties (with respect to SALBP) that
must be tackled in a line balancing tool, in order to be
applicable in those industries and it may be become a
reason why current researches should evolve towards in
formulating and solving Generalized Problems
(GALBP) with different additional characteristics such

J. Computer Sci., 6 (2): 141-162, 2010

146

as cost functions, equipment selection, paralleling, U-
shaped line layout and mixed-model production. They
are: do not balance but re-balance, workstation
identities, un-moveable operations and zoning
constraints, cannot eliminate workstations, loads
equalization, multiple operators, multi-operator
operations, ergonomic constraints (operator positions),
multiple products and drifting operations. Figure 3
shows several problem versions which arise from
varying the objective in SALBP.
 From Fig. 3, few facts could be concluded as listed:

• SALBP-E maximizes the line efficiency E
• SALBP-1 minimizes the number m of stations

given the cycle time c
• SALBP-2 minimizes cycle time c given number m

of solutions
• SALBP-F seeks for a feasible solution given m

and c

 Based on a survey study by Boysen et al. (2008),
assembly lines balancing problems are classified into a
few groups in order to assign typical attributes to
different aspects of real-world assembly systems. By
doing so, joint occurrences of SALBP-extensions can
be identified which are especially characteristic for
certain groups of assembly systems in the real world.
They are classified based on number models (single,
mixed and multi-model), line control (paced line, un-
paced synchronous and un-paced asynchronous),
frequency (full-time installation and reconfiguration),
level of automation (manual lines and automated lines)
and lines of business (automobile production).
Furthermore, a comparison with the existing literature
can clarify if solution procedures for these typical cases
already exist or if their development remains for future
research. Figure 4 shows a classification of assembly
lines balancing problems made by Boysen et al. (2008).
 On the other hand, due to very different conditions
in industrial manufacturing, assembly line production
systems and corresponding ALB problems show a great
diversity (Boysen et al., 2007). For other descriptions
of assembly systems and different balancing problems,
please refer to, e.g., Buxey et al. (1973); Baybars

(1986); Shtub and Dhar-El (1989); Ghosh and Gagnon
(1989); Erel and Sarin (1998); Scholl (1999) and
Rekiek and Delchambre (2001), as well as the most
recent survey of Becker and Scholl (2006). Table 2
summaries the classifications of assembly line
balancing problem researches up to now. It is an
adaptation from Tasan and Tunali (2008) and few
modifications are made to complete it, based on the
current surveys and investigations.
 It is noted that Scholl and Becker (2006) present a
survey on problem and methods for GALPB (seems
quite similar with Baybars (1986)) with features such as
cost/profit-oriented objectives, equipment selection/
process alternatives, parallel workstations/tasks, U-
shaped line layout, assignment task processing times
and mixed-model assembly lines.

RESULTS

The important research of assembly lines balancing:
Assembly lines have been studied extensively (since
Salveson, 1955) by introducing his mathematical
modeling and looking to the original aim of assembly
lines. Balancing assembly lines is a recurring task in
operation management, where such models have been
used to support the decision maker in configuring an
efficient assembly system to optimize productivity
(Scholl and Klein, 1999; Boysen et al., 2007), which
depends on the kinds of assembly lines as classified in
Fig. 3, 4 and Table 2, so it became important and
carries more benefits and advantages by optimizing
assembly lines in order to optimize the productivity.

Fig. 3: Version of simple assembly line balancing

problem (redrawn Becker and Scholl, 2006)

Table 2: Classifications of assembly line balancing problem
 Based on Based on problem structure
According to survey objective function ---
by Chow (1990) Scholl (1999) Baybars (1986) Scholl (1999); Becker and Scholl (2006) Boysen et al. (2008)
Multiple products Type-E Simple Assembly Line Balancing Single-Model Assembly Line Balancing Number models
Variable process time Type-F (SALB) (SMALB) Line control
Multiple workstation Type 1 and 2 General Assembly Line Balancing Multi-Model Assembly Line Balancing Frequency
Human factors Type 3-5 (GALB) (MuMALB) Level of automation
Product characteristics Mixed-Model Assembly Line Balancing Line of business
Length of cycle time (MMALB)

J. Computer Sci., 6 (2): 141-162, 2010

147

Fig. 4: Kinds of assembly lines (redrawn Boysen et al.,

2008)

 A well-known assembly design problem is the
Assembly Line Balancing Problem (ALBP), which
deals with the allocation of tasks among workstations
so that the precedence relations are not violated and
the given objective function is optimized.
 ALPB falls into the non-deterministic polynomial
hard (NP-hard) class of combinatorial optimization
problems (Karp, 1972). The complexity of the ALBP
renders optimum seeking methods impractical, for
instance, of more than a few tasks and/or workstations,
with assumptions there are m tasks and r precedence

constraints and then there are
r

m!

2
 possible task

sequences (Baybars, 1986). Therefore, it can be time-
consuming for optimum seeking methods to obtain an
optimal solution within this vast search space. This fact
also carries out to a conclusion that researches in
assembly lines is very important to do. Even so, many
attempts have been made in the literature to solve the
ALBP using optimum seeking methods, such as:
Linear programming by Salveson (1955), Integer
programming by Bowman (1960), Dynamic
programming by Held et al. (1963) and Branch-and-
bound approaches by Jackson (1956). However, none
of these methods have been proved to be of practical
use for large problems, due to their computational
inefficiency (Tasan and Tunali, 2008).
 Furthermore, based on surveys by Tasan and
Tunali (2008), Genetic Algorithms (GAs) received an
increasing attention from researchers, since it provides
an alternative to the traditional optimizations technique
by using directed random searches to locate optimum
solutions in complex landscapes. Few surveys also have
been made regarding the subject, namely Dimopoulus
and Zalzala (2000) who reviewed the use of
evolutionary computation methods for solving
manufacturing optimization problems, including the
classic job-shop and flow-shop scheduling problems,
assembly line balancing and aggregate production
planning, Aytug et al. (2003) who have reviewed over
110 papers using genetic algorithms to solve various
types of production and operations management
problems including production planning and control,

facility layout design, line balancing, and supply chain
management. They noted that none of these studies
placed an adequate amount of emphasis on the use of
genetic algorithms for solving ALBPs, since their scope
was very broad., Scholl and Becker (2006) who
presented a review and analysis of exact and heuristic
solution procedures for solving ALBPs and Tasan and
Tunali (2008) who presented the latest survey on it
which conducts to the recent published literature on
ALB including genetic algorithms and summarized
the main specifications of the problems studied, the
genetic algorithm suggested and the objective
functions used in evaluating the performance of the
genetic algorithms.
 However, since there are many efforts by previous
researchers in finding the best techniques in solving
optimization problems in assembly lines balancing and
of course there still wide open problems in ALB, those
facts showed that research on assembly lines balancing
is important and needs to be addressed in future.
Furthermore, it will be important in manufacturing and
for sure it is also of paramount importance in the
industrial production of high-quantity standardized
commodities (Boysen et al. 2007).

Soft computing: Soft computing, according to
Bonissone (1997) refers to a fusion of techniques that
mainly bring together neural networks, fuzzy logic, and
evolutionary algorithms (Dubois and Prade, 1998).
Here, we present a brief discussion of soft computing
and their general capabilities. Furthermore the
applications of soft computing in assembly lines
balancing are discussed.

An overview of soft computing: The three techniques
mentioned above are known as traditional technologies
in soft computing. But nowadays, many more novel
techniques in soft computing are arisen from behavioral
studies, such as ant colony optimization, small world
theory, and memes theory (Ovaska et al., 2006).
Current results have concluded that these technologies
have steadily changed the way to solve real-world
problems in science and engineering.
 The way soft computing techniques are used in
solving problems differ to the way that traditional
computer algorithms are used. Soft-computing
techniques have the ability to generate solutions for
many computationally difficult problems
(Chaudhari et al., 2006). However, in the midst of
deployment of soft computing techniques to solve many
such problems, it has also given rise to many
fundamental questions that are of interest to the
discipline of computer science. While many soft

J. Computer Sci., 6 (2): 141-162, 2010

148

computing techniques have attempted to give solutions
to specific problems, it is not clear how this approach is
generalized for solving all computational problems.
Here are four such questions (Chaudhari et al., 2006):

• Is the given soft-computing technique general

enough, in the sense that, is it possible to express
any arbitrary computation in that technique

• Does the given soft-computing technique possess
the ability of automatically generating a solution to
any arbitrary problem for which an algorithm is
known to exist

• Does the given soft-computing technique possess
the ability of generating automatically the most
efficient solution to an arbitrary computable
problem

• When the given soft-computing technique does
not generate the most efficient solution, does it
generate a reasonably efficient solution, with the
performance bound on how far the resulting
solution would be from the most efficient
solution?

 However, few researchers (e.g., Turchin’s meta-
computations (1993 and 1996a) and super-compilations
(Turchin, 1996b), Mitchell’s investigations (1994) for
cellular automata computations have attempted to
answer those questions, even if it has been very
difficult. Another interesting field in soft computing is
evolutionary computation. Evolutionary computing is
based on the concepts of biological evolutionary theory
that mimics the mechanics of reproduction, mutation,
recombination, natural selection, and survival of the
fittest. Three basic kinds of evolutionary computations are
genetic algorithms, genetic programming and
evolutionary algorithms. Follow we present a brief
introduction to the computational capabilities of some soft
computing frameworks (adopted from Chaudhari et al.,
2006).

Turing machine: There is a famous list of nineteenth
century problems by Hilbert which is “Does there exists
an algorithm for deciding whether or not a specific
mathematical assertion does or does not have a proof?”
(Weisstein, 1999). Alan Turing, in 1937, showed that
the answer for this problem is negative for elementary
number theory. In the process of obtaining the solution
to this problem, he invented the formalism of “Turing
Machine”, which is now accepted as (one of the
models) to represent any arbitrary computation; in fact,
it is an accepted notion today that the problems which
can be “computed” are precisely the ones for which a
Turing Machine exists (Chaudhari et al., 2006). Turing

machines are not assigned as a practical computing
technology, but a thought experiment about the limits
of mechanical computation. Thus, they were not
actually constructed. Studying their abstract properties
yields many insights into computer science and
complexity theory.

Neural networks: A neural network is an artificial
system that aims to perform intelligent tasks similar to
those performed by the human brain (Pitts and
McCullough, 1947). A neural network stores its
knowledge through learning within inter-neuron
connection strengths known as synaptic weights. These
networks have shown themselves to be adept at solving
function approximation including time series
prediction, fitness approximation and modeling, data
processing including filtering, clustering, and also
nonlinear controller. The most common neural network
model is Multi-Layer Perceptron (MLP). The MLP and
other neural network models can be trained using a
learning algorithm such as (error) back-propagation,
steepest descent, least square error, genetic algorithm,
evolutionary computation, expectation-maximization
and non-parametric methods. Using one of these
algorithms, the weights are determined and the network
is said to be trained for a set of data.

Genetic algorithms: Genetic Algorithms (Goldberg,
1989) are based on the Darwinian-type survival of the
fittest strategy with sexual reproduction and Mendel’s
theory of genetics as the basis of biological inheritance.
In these theories, stronger individuals in the population
have a higher chance of creating offspring. Each
individual in the population represents a potential
solution to the problem to be solved. Genetic
algorithms do not work with a single point on the
problem space but use a set, or population of points to
conduct a search. This gives genetic algorithms the
power to search multi-modal spaces littered with local
optimum points.
 Genetic algorithms can be used to train a multi-
layer perceptron in which weights form a parameter
space. While genetic algorithms have the advantage of
not getting stuck in local optima, they have other
problems. When the search space is very large then
genetic algorithm methods generally take a long time to
converge to good quality solutions. The length of the
search is due to the optimal generalization of the
training process with no-prior knowledge about the
parameter space.

Evolutionary computing: Evolutionary Computation
(EC) has become a standard term to denote a very broad

J. Computer Sci., 6 (2): 141-162, 2010

149

group of algorithms and techniques that are based on the
principles of natural processes involving biological
evolution. Evolutionary Algorithms (EAs) are mainly
meta-heuristic and optimization methods that share some
generic concepts borrowed from the natural process of
biological evolution. Research in this area has mainly
been focused on solving the problems which can be
formulated as an exhaustive search over the space of all
possible solutions. Using evolutionary computing
frameworks, many approaches have been proposed in
the last decade. Some approaches for global
optimization algorithms include the approaches based
on evolution of species (Davis et al., 1999), immune
system (Castro et al., 2002), social behavior of ants
(Bonabeau et al., 2000), memetic and cultural evolution
(Ong et al., 2004; Ong et al., 2006). Many variants of
ECs are also studied by various researchers. For
example, Boettecher and Percus (2001) proposed a new
optimization algorithm that is based on the principles of
natural selection, but it does not follow the basic genetic
algorithm framework for population reproduction. Their
approach is one step towards integrating different models
like principles of self-organized criticality of Bak and
Sneppen (1993) in a broad EC framework.

DISCUSSION

Soft computing application: Based on a survey of
published theoretical and application literature, it can be
concluded that soft computing applications have been
used and developed in many research fields and
industry. Few of them are automotive and
manufacturing, bioinformatics, phylogenetics,
computational science, engineering, economics,
chemistry, manufacturing, mathematics, physics and
other fields, such as neural networks, which are data-
driven self-adaptive methods without depending much
on prior knowledge about the structural relationship
between demand forecasts and the determining factors,
can approximate any continuous function arbitrarily
well to any given accuracy (Pinkus, 1999). Other than
the financial field, a major application of neural
networks-based forecasting is in electricity load
consumption study (Zhang, et al., 1998). As an
approximator, similar to neural networks, fuzzy systems
can also approximate any continuous function to any
degree of accuracy (Ying, et al., 1999). Although the
performance is similar, neural networks, which are
known for their simplicity and model-free approach,
have been well accepted in practice and used by many
utilities for load forecasting (Hippert et al., 2001;
Khotanzad, et al., 1998) and also there are many other
soft computing applications for real-world problems.

Soft computing in assembly lines balancing: It is
reported that soft computing approaches have been used
(among of them are fuzzy logic and genetic algorithms)
in solving assembly lines balancing problems and it is
also reported that genetic algorithms have been
dominantly used. The uses of genetic algorithms
received increasing attention from the researchers, since
it provides an alternative to traditional optimization
techniques by using directed random searches to locate
optimum solutions in complex landscapes (Tasan and
Tunali, 2008). In here, we discuss few previous works
which used soft computing approaches in solving the
assembly line balancing problems, and then the
discussion followed by those who used genetic
algorithms.
 Hui et al., (2002) proposed fuzzy operator
allocation for balance control of assembly lines in
apparel manufacturing. In their work, they
demonstrated the use of a fuzzy logic-based system in
making balance control decisions. The experimental
results show the advantages of the fuzzy logic-based
approach over traditional methods, with its ability to
reach the target production output more consistently.
They also developed a system called FOA for operation
allocation, based on a set of fuzzy rules and
membership functions obtained through interview
sessions with human experts. The performance of the
FOA system was compared with that of the supervisors
in a men’s shirt factory, using a set of data collected
over 30 consecutive working days. It was found to
outperform the actual supervisors and extends the
literature by increased production efficiency of 30%.
 Fonseca et al. (2005) proposed a work to model
and solve the stochastic assembly line balancing
problem with a fuzzy representation of the time
variables as a viable alternative method. Two widely-
used line balancing methods, the Computer Method for
Sequencing Operations for Assembly Lines
(COMSOAL) and Ranked Positional Weighting
Technique were modified and then transformed to solve
the ALBP with fuzzy operating times. The fuzzy
heuristics were then automated via Visual Basic. Three
test example problems from the available literature
were used to successfully validate the constructed fuzzy
techniques. Thus, a viable alternative approach to
solving the stochastic assembly line balancing problem
was developed. The experimental results show that the
new fuzzy methods are capable of producing solutions
similar to and in some cases better than, those reached
by the traditional methods.
 Kara et al. (2009) proposed a binary fuzzy goal
programming model for straight assembly line
balancing uses and extends the IP model of Talbot and

J. Computer Sci., 6 (2): 141-162, 2010

150

Patterson (1984) and a BFGP model for U-shaped
assembly line balancing uses and extends the IP model
of Urban (1998). Some results and advantages are
yielded from the proposed model. They are:

• Allow decision-makers to consider the cycle time

and the number of workstation goals as imprecise
values

• Minimize the number of workstations and the cycle
time at the same time in a fuzzy environment

• It is solved using the Chang’s (2007) primary
BFGP method

• It is valid and useful for straight and U-shaped
assembly line balancing problems

• Enable decision-makers to simultaneously consider
conflicting objectives of assembly line balancing in
a fuzzy environment

• Allow decision-makers to assign priorities to the
goals using weighted goal programming approach

• All these aspects to enable the proposed models to
be significant and integrated approaches for
assembly line balancing

• The combinatorial nature of the assembly line
balancing problems makes the development of fast
and effective heuristics significant

 Based on the BFGP approaches proposed in this
study, the development of heuristics can be considered
as topics for further researches.

Genetic algorithm in assembly line balancing: The
discussion according to this issue was adopted from the
survey by Tasan and Tunali (2008). However, there are

also few additional surveys for completing. The survey
made is based on the classification given in Baybars
(1986) which is to identify the major trends in types of
problems studied. Figure 5 represents the structural
framework for reviewing, which is done by Tasan and
Tunali (2008). However, the discussions only focus on
the uses of genetic algorithms for solving ALBP, based
on problem specifications only.
 Since the research on the ALB problems which
used genetic algorithms in solving the problems is
much heavier than the other soft computing techniques,
so that the discussions are divided into two groups,
namely SALBP and GALBP. I will start with the first
one, which is research on SALBP problem.

Research on SALB problem regarding the use of
genetic algorithms: An assembly line consists of
workstations k = 1,…m which are usually arranged
along a conveyor belt or similar mechanical material
handling equipment. The workpieces (jobs/tasks) are
consecutively launched down the line and are moved
from station to station. At each station, certain
operations are repeatedly performed regarding the cycle
time. Cycle time is a maximum or average time
available for each work cycle. The basic problem
described so far is called a Simple Assembly Line
Balancing Problem (SALBP) in the literature (Baybars,
1986). We focus the discussion on SALB problems
which used genetic algorithms or a hybrid system on it
to solve the problem and continued by the discussion
on GALB problem which used genetic algorithm.

Fig. 5: The structural framework for reviewing GAs in assembly line balancing by Tasan and Tunali
(2008) (redrawn)

J. Computer Sci., 6 (2): 141-162, 2010

151

Falkenauer and Delchamber (1992) were the first to
solve the SALB problem with Genetic Algorithms
(GAs). Falkenauer (1991) presented the Grouping
Genetic Algorithm (GGA) especially for solving
grouping optimization problems, where the aim was to
group members of a set into a small number of families
in order to optimize objective function under given
constraints. GGA has a special chromosome
representation scheme and genetic operators, which are
used to suit the representation scheme. Later,
Falkenauer and Delchambre (1992) implemented the
GGA to two grouping optimization problems; i.e., a bin
packing problem and a SALB Type-1 problem. This
study was the first attempt to balance an assembly line
Type-1 problem with a genetic algorithm. The authors
first presented a special representation scheme and
special genetic operators for the bin packing problem
and they later modified the special genetic operators for
line balancing. Other implementations of GGA for
solving ALBPs can be found in Falkenauer (1997);
Rekiek et al. (1999) and Brown and Sumichrast
(2005).
 After Falkenauer and Delchambre (1992), the
SALB problem was also studied by many researchers.
Leu et al. (1994) developed a genetic algorithm to solve
SALB Type-1 problems and used heuristic procedures
to determine the initial population. They also proposed
a number of techniques to deal with the feasibility
problems during initialization of the population as well
as after the reproduction phase. They also demonstrated
the possibility of balancing assembly lines with
multiple criteria and zoning constraints.
 The first article, which presented a genetic
algorithm application to the SMALB Type-2 problem,
was published by Anderson and Ferris (1994). The
authors mainly aimed at showing the effective use of
genetic algorithms in solving combinatorial
optimization problems. They first described a fairly
typical serial implementation of a genetic algorithm for
the ALBP and studied the effects of various genetic
algorithm variables on the performance of the genetic
algorithm. Later, they introduced an alternative parallel
version of the genetic algorithm, where each individual
in the population resided on a processor. The
comparative study between serial and parallel genetic
algorithms showed that the quality of the solutions from
the parallel implementations was worse than the best
solutions obtained from serial implementation.
 Rubinovitz and Levitin (1995) used a genetic
algorithm to obtain a SALB Type-2 problem, in which
the processing time of a task was dependent upon
workstation assignment. The authors compared the
proposed genetic algorithm to Dar El and Rubinovitz

MUST (1979), where the proposed genetic algorithm
solved the problems involving more than 20
workstations faster than MUST. Finally, the authors
concluded that their genetic algorithm achieved its
greater advantage when the precedence constraints were
the least restrictive.
 Kim et al. (1996) developed a genetic algorithm to
solve multiple objective SMALB problems. They
addressed several types of ALBP, such as to minimize
the number of workstations (Type-1), minimize the
cycle time (Type-2), maximize workload smoothness
(Type-3), maximize work relatedness (interrelated tasks
are allotted to the same workstation as much as
possible) (Type-4) and a multiple objective with Type 3
and 4 (Type-5). The authors placed the emphasis on
seeking a set of diverse Pareto optimal solutions.
Although, Kim et al.’s (1996) multi-objective genetic
algorithm seems to be very promising, the chromosome
representation scheme they used is not well suited to
the some of the problem types, since they used a single
chromosome representation scheme to represent all of
the problem types.
 Kim et al. (1998) considered maximizing the
workload smoothness, which has been generally
neglected in the literature. Extensive computational
experiments were made and the advantages of
incorporating problem-specific heuristics information
into the algorithm were demonstrated. The
experimental results showed that the proposed genetic
algorithm outperformed the existing heuristics and the
standard genetic algorithm.
 Rekiek et al. (1999) proposed a grouping genetic
algorithm by Falkenauer and Delchambre (1992) based
on an Equal Piles approach for solving the SALB
problem. They tried to assign tasks to a fixed number of
workstations in such a way that the workload of each
workstation was nearly equal by leveling on average the
size of each workstation (minimizing the standard
deviation of sizes). Therefore, the proposed method
warranted obtaining the desired number of workstations
and tried to equalize the workloads of workstations as
much as possible. Later, Rekiek et al. (2001) developed
a grouping genetic algorithm for solving multi-
objective assembly line design problems.
 Bautista et al. (2000) considered the SALB
problem with incompatibilities between tasks. To avoid
assigning two incompatible tasks to the same station,
the authors developed a Greedy Randomized Adaptive
Search Procedure (GRASP), obtained from the
application of some classic heuristic methods and a
genetic algorithm. They first tried to solve the SALB
Type-1 problem and then the SALB Type-2 problem
once the number of workstations has been determined.

J. Computer Sci., 6 (2): 141-162, 2010

152

They also revised GRASP by using weights and called
it Greedy Randomize Weighted Adaptive Search
Procedure (GRWASP). In the proposed method, the
greedy heuristic methods were based on the application
of priority rules for assignment of tasks to workstations
such as the longest processing time and the greatest
number of immediate successors. The greedy heuristic
favors tasks with the best index value, while the genetic
algorithm phase simply changes the order of elements
in the solution. Their comparative study showed that
the proposed genetic algorithm and GRWASP resulted
in better performance than the greedy heuristics and
GRASP.
 Ponnambalam et al. (2000) developed a multi-
objective genetic algorithm for SMALB Type-1
problems to optimize several objectives simultaneously:
the number of workstations, the line efficiency and the
smoothness index. Several comparisons were made
between other heuristics on several examples. The
results of the comparisons indicated that the genetic
algorithm performed better in all cases studied.
However, the execution time for the genetic algorithm
was found to be longer.
 Sabuncuoglu et al. (2000) developed a new genetic
algorithm to solve the SMALB problem by utilizing the
intrinsic characteristics of the problem. The authors also
proposed a method called ‘dynamic partitioning’ that
modified chromosome structure of genetic algorithms
to save CPU time. The method modifies the
chromosome structure by allocating tasks to
workstations (i.e., freezing certain tasks) that satisfy
some criteria and continues with the remaining
unfrozen tasks. Furthermore, they constructed a new
elitism structure adopted from the concept of simulated
annealing. It is observed that this new elitism structure
contributes significantly to the performance of the
genetic algorithm. In fact, the results of extensive
computational experiments indicated that the proposed
genetic algorithm approach outperformed the well-
known heuristics in the literature.
 Carnahan et al. (2001) considered the physical
demands placed on workers in solving the SALB
Type-2 problem. In order to measure physical
demand, the authors used grip strength capacity that
represented the maximum finger flexor strength
generated by a worker using a semi-pronated power
grip. Three methods, i.e., a ranking heuristic, a
combinatorial of the genetic algorithm and a problem
space of the genetic algorithm, were developed to
simultaneously minimize the maximum manual
gripping demands and the cycle time. The authors
concluded that the problem space of the genetic
algorithm performed better than the others.

 Goncalves and De Almedia (2002) presented a
hybrid genetic algorithm, which combined heuristic
priority rules with a genetic algorithm to solve the
SALB Type-1 problem. Several problems from the
literature have been used to demonstrate the
effectiveness and robustness of the proposed hybrid
genetic algorithm. The result of the experiments
showed that the proposed method performed
remarkably well.
 Stockton et al. (2004a; 2004b) investigated the use
of genetic algorithms for solving various problems that
arise when designing and planning manufacturing
operations; i.e., assortment planning, aggregate
planning, lot sizing within material requirement
planning environments, line balancing and facilities
layout. In Stockton et al. (2004a), the authors have
examined the application of a genetic algorithm to the
SMALB Type-1 problem. They compared the
performance of the genetic algorithm with a traditional
solution method, i.e., Ranked Positional Weight (RPW)
(Helgerson and Birnie, 1961). In Stockton et al.
(2004b), the authors performed computational
experiments in order to identify suitable genetic
operators and parameter values.
 Brown and Sumichrast (2005) compared the
performance of grouping genetic algorithm GGA by
Falkenauer (1991) against the performance of a typical
genetic algorithm across a range of grouping problems,
i.e., bin packing, machine part cell formation and SALB
Type-1 problems. They applied the two techniques, i.e.,
standard GA and GGA, to a set of problems and
compared the results, with respect to solution quality
and computation time. They noted that both of the
techniques managed to find the optimal solution for all
the test problems, however GGA found the optimal
solution more quickly.

Research on GALB problems regarding the uses of
genetic algorithms: Simply, the discussion on GALB
problems is all of the problems that are not SALB. Such
as: balancing of single-model or mixed-model, parallel,
U-shaped and two-sided lines, with stochastic, fuzzy or
dependent processing times.
 Tsujimura et al. (1995) were the first to solve
GALB problems with genetic algorithms. The authors
used the fuzzy numbers to represent the imprecise,
vague and uncertain task processing times, as the
processing times are uncertain due to both machine and
human factors. They proposed a genetic algorithm to
solve SMALB Type-1 problems, represented the fuzzy
processing times by triangular membership functions
and illustrated the application of the proposed genetic
algorithm on a problem with 80 tasks.

J. Computer Sci., 6 (2): 141-162, 2010

153

 Following Tsujimura et al. (1995), several versions
of GALB problems were studied by many researchers.
Suresh et al. (1996) used a genetic algorithm to solve
the SMALB Type-1 problem with stochastic processing
times. A modified genetic algorithm, working with two
populations (one allowing infeasible solutions) and
exchange of specimens at regular intervals, were
proposed for handling irregular search space (i.e., the
infeasibility problem due to problem specifications).
The authors believed that a population of feasible
solutions would lead to a fragmented search space, thus
increasing the probability of getting trapped in a local
minimum. They stated that infeasible solutions can be
allowed in the population only if the genetic operators
can lead to feasible solutions from unfeasible ones.
Throughout the generations, some solutions were
exchanged at regular intervals between the two
populations (i.e., the exchanged solutions have the same
rank of fitness value in their own populations). The
results of the experiments indicated that the genetic
algorithm working with two populations can give better
results than the genetic algorithm with only feasible
population.
 Falkenauer (1997) presented a genetic algorithm
based on a Grouping Genetic Algorithm (GGA) by
Falkenauer and Delchambre (1992) and a branch-and-
bound algorithm for a SMALB Type-1 problem with
resource-dependent processing times. The problem
involved allocating resources with different cost and
speed to each task and also assigning the tasks to
workstations, in such a way that the total cost of the line
is minimal. The author employed GGA to assign the
tasks to workstations and then branch and bound
algorithm to select the optimal source for each
workstation. In this problem, the processing time of a
task depends on the resources being used; therefore,
resources with different costs and speeds are allocated
to each task in addition to the assignment of tasks to
workstations, in such a way that the total cost of the line
is minimal. In the proposed method, the tasks were
assigned to workstations by GGA and the optimal
source for each workstation was selected by a branch-
and-bound algorithm.
 Ajenblit and Wainwright (1998) were pioneers in
balancing the U-shaped SMALB Type-1 problem using
genetic algorithms. The authors dealt with two possible
variations of this problem; minimizing the total idle
time and balancing the workload between workstations,
or a combination of both. They developed six different
assignment algorithms to interpret a chromosome and
assign tasks to workstations. The authors applied the
proposed genetic algorithm to 61 test problems. In
comparison to previous researchers, they obtained

superior results in 11 cases, the same results in 49 cases
and a worse result in one case.
 Chan et al. (1998) proposed a genetic algorithm for
a SMALB Type-1 problem in the clothing industry. The
authors tried to improve the line efficiency by
minimizing the time spent in assembly line balance
planning. They also included the various skill levels of
workers as problem-specific information to solve a 41-
task ALBP. The experimental results showed that the
performance of a genetic algorithm was much better
than the performance of the greedy algorithm, which
performed optimization by proceeding to a series of
alternatives and assigned the most skillful worker to
each task.
 Kim et al. (2000) developed a genetic algorithm for
balancing a two-sided SMALB Type-1 problem with
positional constraints. Two-sided assembly lines consist
of two connected serial lines in parallel, where some
task can be performed at one of the two sides of the
line, while the others can be performed at either side of
the line. In the two-sided assembly lines, the tasks were
classified into three types: L (left); R (right) and E
(either) type tasks. L-type tasks are easily performed at
the left-hand side of the line, similarly R-type tasks are
easily performed at the right-hand side of the line and
E-type tasks are easily performed at both sides of the
line. The performance of the proposed genetic
algorithm was compared to integer programming and
other heuristic methods by Kim et al. (1998b), using
five test problems. The results indicated that the
proposed genetic algorithm showed a better
performance than the heuristics studied. The authors
stated that the proposed genetic algorithm can be
directly applied to the different versions of the ALBP.
 Simaria and Vilarinho (2001a) proposed an
iterative search procedure, including a genetic
algorithm for a MMALB Type-2 problem with parallel
workstations. The proposed genetic algorithm
procedure was originally based on the model developed
in Simaria and Vilarinho (2001b) for a SMALB Type-2
problem, where the simulated annealing was used as a
solution method. The iterative procedure starts with a
lower bound of cycle time and successively solves the
MMALB Type-1 problem by increasing cycle times.
Once a feasible solution is found, the procedure
employs a genetic algorithm to decrease the cycle time.
Besides minimizing the cycle time, the procedure
minimizes the workload balances. The iterative
procedure was illustrated using a simple example with
two assembly models and 25 tasks.
 Chen et al. (2002) presented a genetic algorithm
approach for assembly planning involving various
objectives, such as minimizing cycle time, maximizing

J. Computer Sci., 6 (2): 141-162, 2010

154

workload smoothness, minimizing the frequency of tool
change, minimizing the number of tools and machines
used and minimizing the complexity of assembly
sequences. They classified the assembly line planning
problems into line balancing, tooling and scheduling
problems. The proposed method was improved by
including heuristic solutions into initial population and
developing a self-tuning method to correct infeasible
chromosomes. Several examples were employed to
illustrate the proposed genetic algorithm. Experimental
results indicated that the proposed genetic algorithm
efficiently yields many alternative assembly plans to
support the design and operation of an assembly system.
 Miltenburg (2002) solved the assembly line
balancing Type-1 problem and sequencing problems
simultaneously for mixed model U-shaped assembly
lines. They proposed a genetic algorithm to solve the
balancing and sequencing problems jointly. The
proposed genetic algorithm was found to offer good
solutions.
 Valente et al. (2002) proposed a genetic algorithm
to solve assembly line balancing Type-2 problem in a
real-world application, a two-sided car assembly line.
The solution to the problem involved satisfying the
constraints that the length of each workstation was
constant. The proposed genetic algorithm was found to
reduce the total assembly time of the current line by
28.5%.
 Brudaru and Valmar (2004) proposed a hybrid
genetic algorithm for solving a SMALB Type-1
Problem. They considered the processing times of tasks
as fuzzy numbers like Tsujimura et al. (1995). Their
hybrid method combined the branch-and-bound and
genetic algorithm. The authors presented a special
chromosome representation scheme, embryonic
representation, which used subsets of solutions rather
than the individual solutions. They also proposed a new
type of genetic operator called a growing operator to be

used for the hybrid genetic algorithm. The proposed
hybrid genetic algorithm was found to take a longer
computation time, with respect to solution quality.
 Martinez and Duff (2004) addressed the U-shaped
SMALB Type-1 problem. They first solved this
problem using 10 heuristic rules adapted from the simple
line balancing problem, such as maximum ranked
positional weight, maximum total number of follower
tasks or precedence tasks and maximum processing time
and compared these heuristic solutions with the optimal
solutions obtained from previous researches. Following
on, they modified Ponnambalam et al. genetic algorithm
(2000) and inserted the solutions obtained using these
heuristic rules to the initial population. They illustrated
the proposed genetic algorithm using Jackson’s
problem (1956). The results showed that the addition of
a genetic algorithm can improve the current solution.
 Simaria and Vilarinho (2004) expanded the
application of their previous work in Simaria and
Vilarinho (2001), where they proposed an iterative
genetic algorithm-based search procedure for a
MMALB Type-2 problem with parallel workstations.
The authors have also conducted a set of computational
experiments on a set of generated ALBPs.
 Levitin et al., (2006) proposed a genetic algorithm
for solving a special kind of SMALB Type-2 problem,
i.e., Robotic Assembly Line Balancing (RALB)
problem. The authors defined a robotic assembly line,
where robots with different capabilities and
specializations were assigned to the assembly tasks.
Various procedures for adapting the genetic algorithm
to the RALB problem, such as a local optimization (hill
climbing) work-piece exchange procedure, were
introduced. Tests were conducted on a set of randomly-
generated problems to determine the most effective
genetic algorithm procedure, based on the best
combination of parameters.

Table 3: Summary of the previous research
References Problem type Tools
Falkenauer and Delchamber (1992) SALB Type-1 Grouping genetic algorithm
Leu et al. (1994) SALB Type-1 Genetic algorithm with heuristic procedures
Anderson and Ferris (1994) SMALB Type-2 Genetic algorithm
Rubinovitz and Levitin (1995) SALB Type-2 Genetic algorithm
Tsujimura et al. (1995) GALB (SMALB Type-1) Genetic algorithms
Kim et al. (1996) SMALB Type-1, 2, 3, 4, 5 Genetic algorithm
Suresh et al. (1996) GALB (SMALB Type-1) Genetic algorithm with stochastic processing times
Falkenauer (1997) GALB (SMALB Type-1) Grouping genetic algorithm
Ajenblit and Wainwright (1998) GALB (U-shape SMALB Type-1) Genetic algorithms
Chan et al. (1998) GALB (SMALB Type-1) Genetic algorithm
Kim et al. (1998a) SALB Type-2 Genetic algorithm
Rekiek et al. (1999) SALB equal piles Grouping genetic algorithm based on Equal Piles approach
Rekiek et al.(2001) Multi-objective ALB Grouping genetic algorithm
Bautista et al. (2000) SALB Type-1, Type-2 GRASP with genetic algorithm and GRWASP with
 genetic algorithm

J. Computer Sci., 6 (2): 141-162, 2010

155

Table 3: Continued
Kim et al. (2000) GALB (SMALB Type-1) Genetic algorithm
Ponnambalam et al. (2000) SMALB Type-1 Multi-objective genetic algorithm
Sabuncuoglu et al. (2000) SMALB Genetic algorithm with dynamic partitioning
Carnahan et al. (2001) SALB Type-2 Ranking heuristic
 Combinatorial of genetic algorithm
 Problem space of genetic algorithm (better than the others)
Simaria and Vilarinho (2001a; 2001b) GALB (MMALB Type-2) Genetic algorithm
 SMALB Type-2 Simulated annealing
Chen et al. (2002) GALB (assembly planning Type-2) Genetic algorithm
Goncalves and De Almeida (2002) SALB Type-1 Hybrid genetic algorithm (combination of heuristic
 priority rules with genetic algorithm)
Miltenburg (2002) GALB (MMALB and sequencing Genetic algorithm
 simultaneously Type-1)
Valente et al. (2002) GALB (SMALB Type-2) Genetic algorithm
Hui et al. (2002) SALBP Fuzzy logic-based system
Zha and Lim (2002) Intelligent design and planning of manual Neuro-fuzzy
 assembly workstation
Brudaru and Valmar (2004) GALB (SMALB Type-1) Hybrid genetic algorithm (combined branch and bound
 with genetic algorithm)
Martinez and Duff (2004) GALB (U-shape SMALB Type-1) 10 heuristic rules with genetic algorithm
Simaria and Vilarinho (2004) GALB (MMALB Type-2) Iterative genetic algorithm based search procedure
Stockton et al. (2004) SALB Type-1 Genetic algorithm
 SMALB Type-1 Genetic algorithm with computational experiments
Brown and Sumichrast (2005) SALB Type-1 Genetic algorithm
 Grouping genetic algorithm (better than the others)
Fonseca et al. (2005) Stochastic SALBP Fuzzy representation of the time variables as viable
 alternative method
Levitin et al. (2006) GALB (SMALB Type-2 for RALB) Genetic algorithm
Noorul Haq et al. (2006) GALB (MMALB Type-1) Hybrid genetic algorithm (incorporated the solution from
 the modified RPW method into genetic algorithm)
Kara et al. (2009) Straight and U-shape ALBP Binary fuzzy goal programming model

 Noorul Haq et al., (2006) proposed a hybrid
genetic algorithm for solving MMALB Type-1
problems. They incorporated the solution from the
Modified RPW (MRPW) method into the genetic
algorithms randomly-generated initial population to
reduce the search space within the global search space.
It was noted that this integration reduced the search
time. The authors illustrated the implementation of a
hybrid genetic algorithm approach on seven problems
and compared the results with the MRPW and the
standard genetic algorithm. The results showed that the
proposed approach performed better than the standard
genetic algorithm. The following Table 3 presents the
summaries of the previous work regarding assembly
line balancing and the uses of genetic algorithms in
solving the problems.

CONCLUSION

 Assembly line balancing involves numerous
problems such as costs, quality, environmental impact,
safety, workers, products, reliability, accuracy,
robustness of the system and others. In order to make
the system stable and balanced, a good manager should
take care of all the factors influencing assembly line

balancing, since the first-time installation or when it is
needed to reconfiguration them. As an approach, soft
computing differs from a traditional method, such a
conventional or hard computing, in that soft computing
approaches are tolerant of imprecision, uncertainty,
partial truth and approximation. In effect, the role
model for soft computing is the human mind (Zadeh).
With all the capabilities of soft computing, especially in
optimizing and the simply use of it, make soft
computing suitable for assembly line balancing
problems that always attempt to optimize the system.
The capabilities of soft computing in optimizing have
been proven and it is better than hard computing. On
the other hand, soft computing approaches make the
optimization process simple to do than using the
conventional one, which is impractical and
computationally inefficient.
 However, the fact is that soft computing has been
used by many researches and among the approaches,
fuzzy logic and genetic algorithms are already being
used in solving assembly line balancing problems and
genetic algorithms have become the most used method
in solving assembly lines balancing problems. The use
of genetic algorithms received increasing attention from
the researchers, since it provides an alternative to the

J. Computer Sci., 6 (2): 141-162, 2010

156

traditional optimization technique by using directed
random searches to locate optimum solutions in
complex landscapes (Tasan and Tunali, 2008).
 In Table 3, it could be listed in the findings survey
study, based on problem specifications. They could be
listed as follows (Tasan and Tunali (2008) with few
modifications):

• Almost half of the papers surveyed focused on

SALB, the simplest version of assembly line
balancing problems, while others half-focused on
GALB

• Only four articles surveyed dealt with mixed-
model assembly line balancing. They are Simaria
and Vilarinho (2001a); Simaria and Vilarinho
(2004); Miltenburg (2002) and Noorul Haq et al.
(2006)

• One of the articles (Miltenburg, 2002) tried to
solve balancing and sequencing problems of
mixed-model assembly lines simultaneously

• Few of the surveyed papers studied on Type-1
problems which minimized the number of
workstations and a few others studied on Type-2
problems which minimized the cycle time, but four
of them (Kim et al., 1996; Bautista et al., 2000;
Rekiek et al., 2002; Ponammbalam et al., 2000)
considered the multi object

• Only two articles by Suresh et al. (1996) and
Fonseca et al. (2005) dealt with stochastic; another
three, by Tsujimura et al. (1995); Brudaru and
Valmar (2004) and Kara et al. (2009) dealt with
fuzzy and all the others dealt with deterministic
processing times

• Only one article, by Rubinovitz and Levitin (1995),
dealt with workstation-dependent and another one
by Falkenauer (1997) dealt with resource-
dependent deterministic processing times

• Only one article, by Bautista et al. (2000),
considered the incompatibilities between tasks

• Only one article, by Carnahan et al. (2001),
considered the physical demands placed on
workers during assembly line balancing

• Only one article, by Levitin et al. (2006),
considered RALB problems, where robots have
different capabilities and specializations

• Only one article, by Hui et al. (2002), considered
the ability of the assembly line to reach target
production output more consistently by a proposed
fuzzy logic operator allocation-based approach

• Only one article, by Kara et al. (2009), considered
straight assembly line balancing and a U-shaped
model using binary fuzzy goal programming

 However, it is noted that most of the researchers
focused on SALB, the simplest version of the problem
with a single objective and ignore the recent trends, i.e.,
mixed-model production and U-shaped lines in the
complex manufacturing environments, where ALBP are
multi-objective in nature. So, it is clearly known and
seen that most of the previous researches of assembly
lines balancing did not take into account the human
factor. It’s obvious that human factors influence the
balancing of assembly lines, since there are still many
jobs that prefer to be assigned to human beings,
although automated production systems are most
widely used. Akagi et al. (1983) were the first research
to pay attention to it. They proposed a method called
the Parallel Assignment Method (PAM) which is an
alternative way to increase the production rate (hence
lowering the cycle time) by assigning multiple workers
to one workstation. The experimental results showed
that practical problems which cannot be solved by serial
line balancing methods are provided and solved by
explaining the effectiveness of PAM and could be use
to achieve a higher production rate. However, since
then, there is very few researchers have achieved the
same results or have developed Akagi et al.’s (1983)
work further. Another finding also been made during
this survey study. There are a many reasons which
make genetic algorithms become one of the promising
optimization techniques in solving assembly lines
balancing problems even better than others in some
cases. A few of them are listed in Table 4.

Closing/Recommendation: This study has presented
a survey study of assembly lines balancing, the
problem classifications and their characteristics. A
review on the uses of soft computing approaches in
assembly line balancing is presented too, as the main
concern of this study. This study shows the great
effort made by many researchers to prove the
capability of soft computing approaches in solving the
line balancing problem, rather than using traditional
methods such as mathematical modeling and other
heuristic methods. This study also shows the importance
of researching assembly line balancing. Regarding the
review of previous works on assembly line balancing,
this study shows that among the soft computing
approaches, GAs have been used predominantly in
solving assembly line balancing problems, especially
the simplest ones. However, in contrast to the high
suitability of genetic algorithms in assembly line
balancing for multi-objective problems, some researchers
(such as Kim et al., 1996; Ponnambalam et al., 2000)
have proved that GA’s computation time is
considerably longer. On the other hand, the multi-
objective problems of assembly line balancing are
the most current issues that need to be addressed.

J. Computer Sci., 6 (2): 141-162, 2010

157

Table 4: List of other findings regard the uses of genetic algorithm in assembly line balancing
Researchers Facts about genetic algorithms
Rubinovitz and A few previous researches have produced several good methods and algorithms for solving assembly lines balancing
Levitin (1995) problems, but most of the methods and algorithms suggested just one solution for assembly lines balancing problems
 (Talbot, 1986). However, in reality, assembly line design needs to investigate alternative solutions, where preference for
 work allocation to stations is considered, or constraints other then technological precedence are taken into account. Therefore,
 genetic algorithms are used, since it has the ability to generate multiple solutions to assembly lines balancing problems. The
 ability of GAs have been compared to the one of optimization techniques, namely MUST (multiple solutions technique
 (Dar-El and Rubinovitz, 1979)) which can also generate multiple solutions to assembly lines balancing problems, as Gas
 do. The results show that GAs are faster than MUST algorithms in generating solutions, even for assembly lines balancing
 problems with large number of stations and a high flexibility ratio.
 Genetic algorithm-based assembly line balancing algorithms allows for balancing a line where task times are
 station-independent.
 The main characteristic of genetic algorithms which robustness implies high independence between the search process
 and the problem complexity or size.
 The procedures solution quality evaluation may be easily changed or modified, providing a desirable flexibility to consider
 and elements and factors of real assembly line design and balancing.
Kim et al. (1996) A genetic algorithms representation suitable to a wide variety of ALB problems, including multiple objective cases.
 An efficient decoding method for individual representation of sequence alternatives.
 A simple and effective repair method to preserve the solution’s feasibility.
 The combinations of genetic operators for various single objectives and
 In the case of multiple objectives, a selection scheme to produce diverse non-dominated solutions.

Ajenblit and Genetic algorithms provide the ability to find one or more optimum sequences among
r

m!

2
 possible task sequences with

Wainwright (1998) m tasks and r ordering constraints than there are, while it is nearly impossible to obtain an efficient solution using a
 deterministic algorithm.
Rekiek et al. (1999) The classical assembly lines balancing approach tends to group operations under precedence and cycle time constraints.
 This generally does not yield to a desired number of balanced stations. As no efficient computational methods leading to
 the exact solution are known for the proposed problem, generally a heuristic method, namely a Grouping Genetic Algorithm
 (GGA) is used to tackle it.
Kim et al. (2000) A genetic algorithm is a proper strategy for solving the two ALB problems. Not only does GA find good quality solutions
 quickly to such complex problems, but it is able to readily deal with constraints imposed on by the features of two-sided lines.
 Therefore, a new GA, a genetic encoding and decoding scheme and genetic operators suitable for the problem are devised.
Sabungcuoglu et al. The common characteristic of all the heuristic search methodologies is the use of problem-specific knowledge intelligently
(2000) to reduce the search efforts. In this context, GAs are intelligent random search mechanisms that are applied to various
 combinatorial optimization problems, such as scheduling, TSP and ALB.
 GA can be used as a very effective search technique in solving difficult problems because of its ability to move from one
 solution set to another and its flexibility to incorporate the problem-specific characteristics.
 GAs are adaptive methods which can be used to solve optimization problems.
 In general, the power of GAs comes from the fact that the technique is robust and can deal with a wide range of problem
 areas. Although GAs are not guaranteed to find the optimal solution, they generally find good solutions within reasonable
 computational requirements.
 The effective use of GAs in the solution of combinatorial optimization problems, working specifically on the ALB problem.
 The ability of GAs to consider a variety of objective functions is regarded as the major feature of GAs.
 Some of the characteristics of GA devise with the inspiration of the ALB system.
 Coding: Each task is represented by a number that is placed on a string (i.e., chromosome) with the string size equal to
 the number of tasks. The tasks are ordered on the chromosome, relative to their order of processing. Then the tasks are
 allocated into stations, such that the sum of the task times in each station does not exceed the cycle time.
 Fitness function: The objective of the ALB problem considered.
 Initial population: The initial population is generated randomly by assuring feasibility of precedence relations.
 Crossover and mutation: The major reason that makes this crossover operator very suitable for ALB is that it assures
 feasibility of the offspring. Since both parents are feasible, both children must also be feasible. Keeping a feasible
 population is a key to the ALB problem, since preserving feasibility drastically reduces computational effort. The
 mutation operator of Leu et al. (1994) is scramble mutation; that is, a random cut-point is selected and the genes after
 the cut-point are randomly replaced (scrambled), assuring feasibility.
 Elitism, i.e., replacing a parent with an offspring only if the offspring is better than the parent, is applied to both the
 crossover and the mutation procedures. Both of these operators are the same as Leu et al.’s (1994) crossover and
 mutation operators.
 Scaling: The objective is to minimize the fitness scores, then it needs to assign the highest scaled fitness score to the
 lowest fitness score and vice versa, to assign a probability of selection that is proportional to the fitness of chromosomes.
 Selection Procedure: Each chromosome, consisting of an interval proportional to its scaled fitness score, are placed next
 to each other on the [0,1] interval. Then, a uniform random number in the [0,1] interval is generated and the
 chromosome which is assigned to the interval corresponding to the random number is selected. This procedure selects
 chromosomes proportional to their fitness scores.
 Stopping Condition: The algorithm terminates after a certain number of iterations.

J. Computer Sci., 6 (2): 141-162, 2010

158

Finally, this study also provides information to
researchers about the problems in assembly line
balancing which have been solved and also the ones
that are still in progress. This study recommends the
following for future research: The human involvement
in assembly line balancing needs to be considered as a
problem factor; there are still opportunities to use soft
computing approaches that have other advantages
compared to genetic algorithms, especially for multi-
objective problems; to increase the suitability of soft
computing approaches, with the hybrid system being
one possibility.

ACKNOWLEDGMENT

 The researchers honorably appreciate the
Malaysian Ministry of Higher Education (MOHE) for
the FRGS grant vote number 78366, Malaysian
Ministry of Science, Technology and Innovation
(MOSTI) and the Research Management Centre (RMC)
of University Technology Malaysia (UTM) for the
support in making this project successful. The authors
also would like to express their cordial thanks to the
reviewers for their valuable comments.

REFERENCES

Ahmadi, R. H. and H. Wurgaft, 1994. Design for

synchronized flow manufacturing. Manage. Sci.,
40: 1469-1483. DOI: 10.1287/mnsc.40.11.1469

Ajenblit, D.A. and R.L. Wainwright,1998. Applying
genetic algorithms to the u-shaped assembly line
balancing problem. Proceeding of the 1998 IEEE
International Conference on Evolutionary
Computation, May 4-9, IEEE Xplore Press,
Anchorage, Alaska, USA., pp: 96-101. DOI:
10.1109/ICEC.1998.699329

Akagi, F. H., Osaki and S. Kikuchi, 1983. A method for
assembly line balancing with more than one worker
in each station. Int. J. Prod. Res., 21: 755-770.
DOI: 10.1080/00207548308942409

Anderson and, E. J., M.C. Ferris, 1994. Genetic
algorithms for combinatorial optimization: The
assembly line balancing problem. ORSA J.
Comput., 6: 161-173. DOI: 10.1287/ijoc.6.2.161

Aytug, H. M., Khouja and F.E. Vergara, 2003. Use of
genetic algorithms to solve production and
operations management problems: A review. Int. J.
Prod. Res., 41: 3955-4009. DOI:
10.1080/00207540310001626319

Bak, P. and K. Sneppen, 19993. Punctuated equilibrium
and criticality in a simple model of evolution.
Phys. Rev. Lett., 71: 4083-4086. DOI:
10.1103/PhysRevLett.71.4083

Bautista, J., R. Suarez, M. Mateo and R. Companys,
2000. Local search heuristics for the assembly line
balancing problem with incompatibilities between
tasks. Proceedings of the IEEE International
Conference on Robotics and Automation, Apr. 24-
28, IEEE Xplore Press, San Francisco, pp: 2404-
2409. DOI: 10.1109/ROBOT.2000.846387

Baybars, I.,1986. A survey of exact algorithms for the
simple assembly line balancing problem. Manage.
Sci., 32: 909-932. DOI: 10.1287/mnsc.32.8.909

Becker, C. and A. Scholl, 2006. A survey on problems
and methods in generalized assembly line
balancing. Eur. J. Operat. Res., 168: 694-715. DOI:
10.1016/j.ejor.2004.07.023

Boettcher, S. and A.G. Persus, 2001. Optimization with
extremal dynamics. Phys. Rev. Lett., 86: 5211-5214.
DOI: 10.1103/PhysRevLett.86.5211

Bonissone, P.P., 1997. Soft computing: The
convergence of emerging reasoning technologies.
Soft Comput., 1: 1-6. DOI:
10.1007/s005000050002

Bonabeau, E., M. Dorigou and G. Theraulaz, 2000.
Inspiration for optimization from social insect
behavior. Nature, 406: 39-42.
DOI:10.1038/35017500.

Bowman, E.H., 1960. Assembly line balancing by
linear programming. Operat. Res., 8: 385-389.
DOI: 10.1287/opre.8.3.385

Brown, E.C. and R.T. Sumichrast, 2005. Evaluating
performance advantages of grouping genetic
algorithms. Eng. Appli. Artifi. Intel., 18: 1-12.
DOI: 10.1016/j.engappai.2004.08.024

Brudaru, O. and B. Valmar, 2004. Genetic algorithm
with embryonic chromosomes for assembly line
balancing with fuzzy processing times. Proceeding
of the 8th International Research/Expert
Conference Trends in the Development of
Machinery and Associated Technology. Neum,
Bosnia and Herzegovina.

Boysen, N., M. Fliedner and A. Scholl, 2007. A
classification of assembly line balancing problems.
Eur. J. Operat. Res., 183: 674-693. DOI:
10.1016/j.ejor.2006.10.010

Boysen, N., M. Fliedner and A. Scholl, 2008. Assembly
line balancing: Which model to use when. Int. J.
Prod. Econ., 111: 509-528. DOI:
10.1016/j.ijpe.2007.02.026

Buxey, G.M. N.D. Slack and R. Wild, 1973. Production
flow line system design-a review. AIIE Trans., 5:
37-48. DOI: 10.1080/05695557308974880

Carnahan, B.J., B.A. Norman and M.S. Redfern, 2001.
Incorporating physical demand criteria into
assembly line balancing. IIE Trans., 33: 875-887.
DOI: 10.1080/07408170108936880

J. Computer Sci., 6 (2): 141-162, 2010

159

Castro, L. N. and J. Timmis, 2002. An artificial
immune network for multimodal function
optimization. Proceedings of the IEEE Congress on
Evolutionary Computation (CEC’02), IEEE Press,
Hawaii, pp: 669-674.

Chan, C.C.K., P.C.L. Hui, K.W. Yeung and F.S.F. Ng,
1998. Handling the assembly line balancing
problem in the clothing industry using a genetic
algorithm. Intl. J. Cloth. Sci. Technol., 10: 21-37.
DOI: 10.1108/09556229810205240

Chang, C.T., 2007. Binary fuzzy goal programming.
Eur. J. Operation. Res., 180: 29-37. DOI:
10.1016/j.ejor.2006.03.030

Chaudhari, N.S., Y.S. Ong and V. Trivedi, 2006.
Computational capabilities of soft-computing
frameworks: An overview. Proceeding of the 9th
International Conference on Control, Automation,
Robotics and Vision, Dec. 5-8, IEEE Xplore Press,
Singapore, pp: 1-6. DOI:
10.1109/ICARCV.345433

Chong, E.K.P. and S.H. Zak, 2008. An Introduction to
Optimization. 3rd Edn., Wiley-Inter Sciences
Series in Discrete Mathematics and Optimization.
New York, USA., ISBN: 0-471-75800-0, pp: 479.

Chen, R.S., K.Y. Lu and S.C. Yu, 2002. A hybrid
genetic algorithm approach on multi-objective of
assembly planning problem, Eng. Appli. Artifi.
Intel., 15: 447-457. DOI: 10.1016/S0952-
1976(02)00073-8

Chow, W.M., 1990. Assembly Line Design:
Methodology and Applications. 1st Edn., Marcel
Dekker Inc., New York, USA., ISBN: 0-8247-
8322-0, pp: 121.

Dar-El, E.M. and Y. Rubinovitz, 1979. MUST-a
multiple solutions technique for balancing single
model assembly lines. Manage. Sci., 25: 1105-
1114. DOI: 10.1287/mnsc.25.11.1105

Davis, L.D., K. De Jong, M.D. Vose and L.D. Whitley,
1999. Evolutionary Algorithms. In: The IMA
Volumes in Mathematics and Applications, Davis,
L.D., K. De Jong, M.D. Vose and L.D. Whitley
(Ed.). Springer Verlag., Berlin, ISBN: 10:
0387988262, pp: 191-206.

Dimopoulos, C. and A.M. Zalzala, 2000. Recent
developments in evolutionary computation for
manufacturing optimization: Problems, solutions
and comparisons. IEEE Trans. Evolut. Comput., 4:
93-113. DOI: 10.1109/4235.850651

Dubois, D. and H. Prade,1998. Soft computing, fuzzy
logic and artificial intelligence. Soft computing-a
fusion of foundations. Methodol. Appli., 2: 7-11.
DOI: 10.1007/s005000050025

Erel, E., S.C. Sarin, 1998. A survey of the assembly
line procedures. Prod. Plann. Control, 9: 414-434.
DOI: 10.1080/095372898233902

Falkenauer, E. and A. Delchambre, 1992. A genetic
algorithm for bin packing and line balancing.
Proceedings of the 1992 IEEE International
Conference on Robotics and Automation, Nice,
France, pp: 1186-1192. DOI:
10.1109/ROBOT.1992.220088

Falkenauer, E., 1991. A genetic algorithm for grouping.
Proceedings of the 5th International Symposium on
Applied Stochastic Models and Data Analysis,
Apr. 23-26, Granada, Spain, World Scientific
Publishing Co. Pte. Ltd., Singapore, pp: 198-206.

Falkenauer, E.,1997. A grouping genetic algorithm for
line balancing with resource dependent task times.
Proceedings of the 4th International Conference on
Neural Information Processing, Nov. 24-28,
University of Otago, Dunedin, New Zealand,
pp: 464-468.

Falkenauer, E., 2005. Line balancing in the real world.
Proceedings of the International Conference on
Product Lifecycle Management, (PLM'05), 200x
Inderscience Enterprises Ltd., pp: 360-370.
http://www.optimaldesign.com/Download/OptiLin
e/FalkenauerPLM05.pdf

Ferrero, J., 2000. Computing in science and
engineering. Comput. Sci. Eng., 2: 94-97. DOI:
10.1109/MCSE.2000.10027

Fonseca, D.J., C.L. Guest, M. Elam and C.L. Karr,
2005. A fuzzy logic approach to assembly line
balancing. Mathware Soft Comput., 12: 57-74.
http://dmle.cindoc.csic.es/pdf/MATHWARE_2005
_12_01_05.pdf

Ghosh, S. and R.J. Gagnon, 1989. A comprehensive
literature review and analysis of the design,
balancing and scheduling of assembly systems. Int.
J. Prod. Res., 27: 637-670. DOI:
10.1080/00207548908942574

Goldberg, D.E., 1989. Genetic Algorithms in Search.
Optimization and Machine Learning. 1st Edn.,
Addison-Wesley Professional, ISBN: 10:
0201157675, pp: 229.

Gonçalves, J.F., J.R. De Almeida, 2002. A hybrid
genetic algorithm for assembly line balancing. J.
Heuristics., 8: 629-642. DOI:
10.1023/A:1020377910258

Grabau, M.R. and R.A. Maurer, 1998. Assembly line
balancing when scarp impact the bottom line. Prod.
Inventory Manage. J., 39: 16-21.

Groover, M.P., 2008. Automation, Production System
and Computer-Integrated Manufacturing. 3rd Edn.,
Prentice Hall International, Inc., Upper Saddle
River, New Jersey, ISBN: 0-13-207073-1, pp: 375.

J. Computer Sci., 6 (2): 141-162, 2010

160

Gunasekaran, A. and P. Cecile, 1998. Implementation
of productivity improvement strategies in a small
company. Technovation, 18: 311-320. DOI:
10.1016/S0166-4972(98)00005-4

Helgeson, N.B. and D.P. Birnie, 1961. Assembly line
balancing using the ranked positional weight
technique. J. Ind. Eng., 12: 394-398.

Held, M., R.M. Karp and R. Shareshian, 1963.
Assembly line balancing-dynamic programming
with precedence constraints. Operat. Res.,
11: 442-459. DOI: 10.1287/opre.11.3.442

Hippert, H. S., C.E. Pedreira and R.C. Souza, 2001.
Neural networks for short-term load forecasting: A
review and evaluation. IEEE. Trans. Power Syst.,
16: 44-55. DOI: 10.1109/59.910780

Hui, P.C.L., C.C. Keith, K.W. Chan, Yeung and S.F. Frency,
N.G., 2002. Fuzzy operator allocation for balance
control of assembly lines in apparel manufacturing.
IEEE Trans. N. Eng. Manage., 49: 173-180. DOI:
10.1109/TEM.2002.1010885

Jackson, J.R., 1956. A computing procedure for a line
balancing problem. Manage. Sci., 2: 261-272. DOI:
10.1287/mnsc.2.3.261

Karp, R.M., 1972. Reducibility among Combinatorial
Problems. In: Complexity of Computer
Computations, Miller, R.E. and J.W. Thatcher
(Eds.). Plenum Press, New York, pp: 85-133.

Kara, Y., T. Paksoy and C.T. Chang, 2009. Binary
fuzzy goal programming approach to single model
straight and u-shaped assembly line balancing. Eur.
J. Operat. Res., 195: 335-347. DOI:
10.1016/j.ejor.2008.01.003

Khotanzad, A., R.A. Rohani and D. Maratukulam,
1998. ANNSTLF-artificial neural network short-
term load forecaster-generation three. IEEE Trans.
Power Syst., 13: 1413-1422. DOI:
10.1109/59.736285

Kim, Y.K., Y.J. Kim and Y.H. Kim, 1996. Genetic
algorithms for assembly line balancing with
various objectives. Comput. Ind. Eng., 30: 397-
409. DOI: 10.1016/0360-8352(96)00009-5Kimms,
A., 2000. Minimal investment budgets for flow line
configuration. IIE Transactions, 32: 287-298. DOI:
10.1080/07408170008963907

Kim, Y. K., Y. Kim and T.O. Lee, 1998. Two-sided
assembly line balancing models. Technical report,
department of industrial engineering. Chonnam
National University, Korea. Cited in. DOI:
10.1016/S0360-8352(01)00029-8

Kim, Y.J., Y.K. Kim and Y. Cho, 1998. A heuristic-
based genetic algorithms for workload smoothing
in assembly lines. Comput. Operat. Res., 25: 99-
111. DOI: 10.1016/S0305-0548(97)00046-4

Kim, Y.K., Y. Kim and Y.J. Kim, 2000. Two-sided
assembly line balancing: A genetic algorithm
approach. Prod. Plann. Control., 11: 44-53. DOI:
10.1080/095372800232478

Lebefromm, U., 1999. Produktions Management. 4th
Edn., Einführung MIT Beispielen Aus SAP R/3.,
Oldenbourg. München, ISBN: 10: 3486273523, pp: 3.

Leu, Y.Y., L.A. Matheson and L.P. Rees, 1994.
Assembly line balancing using genetic algorithms
with heuristic generated initial populations and
multiple criteria. Dec. Sci., 25: 581-606. DOI:
10.1111/j.1540-5915.1994.tb01861.x

Levitin, G., J. Rubinovitz and B. Shnits, 2006. A
genetic algorithm for robotic assembly line
balancing. Eur. J. Operat. Res., 168: 811-825. DOI:
10.1016/j.ejor.2004.07.030

Lusa, A., 2008. A survey of the literature on the
multiple or parallel assembly line balancing
problem. Eur. J. Ind. Eng., 2: 50-72. DOI:
10.1504/EJIE.2008.016329

Martinez, U. and W.S. Duff, 2004. Heuristic
approaches to solve the u-shaped line balancing
problem augmented by genetic algorithms.
Proceedings of the IEEE Systems and Information
Engineering Design Symposium, Apr. 16-16, IEEE
Xplore Press, Charlottesville, VA., pp: 287-293.
DOI: 10.1109/SIEDS.2004.239976

Meyers, F.E. and M.P. Stephens, 2005. Manufacturing
Facilities Design and Material Handling. 3rd Edn.,
Prentice Hall, Pearson Education Upper Saddle
River, NJ., ISBN: 0131125354, pp: 106.

Miltenburg, J., 2002. Balancing and sequencing mixed-
model u-shaped production lines. Int. J. Flex.
Manuf. Syst., 14: 119-151. DOI:
10.1023/A:1014434117888

Mitchell, M., J.P. Crutchfield and P.T. Hraber, 1994.
Evolving cellular automata to perform
computations: Mechanisms and impediments.
Phys. D., 75: 361-391. DOI: 10.1016/0167-
2789(94)90293-3

Noorul, H.A., J. Jayaprakash and K. Rengarajan, 2006.
A hybrid genetic algorithm approach to mixed-
model assembly line balancing. Int. J. Adv. Manuf.
Technol., 28: 337-341. DOI: 10.1007/s00170-004-
2373-3

Ong, Y.S. and A.J. Keane, 2004. Meta-lamarckian
learning in memetic algorithm. IEEE Trans.
Evolut. Comput., 8: 99-110. DOI:
10.1109/TEVC.2003.819944

Ong, Y. S., M.H. Lim, N. Zhu and K.W. Wong, 2006.
Classification of adaptive memetic algorithms: A
comparative study. IEEE Trans. Syst. Man
Cybern.-Part B., 36: 141-152.
http://ieeexplore.ieee.org/iel5/3477/33385/0158062
5.pdf

J. Computer Sci., 6 (2): 141-162, 2010

161

Ovaska, S.J. and B. Sick, 2006. Fusion of Soft
Computing and Hard Computing: Applications and
Research Opportunities. In: Computational
Intelligence: Principles and Practice, Yen, G.Y.
and D.B. Fogel (Eds.). IEEE Computational
Intelligence Society, USA., ISBN: 0-9787135-0-8,
pp: 47-72.

Pinkus, A., 1999. Approximation theory of the MLP
model in neural networks. Acta, 8: 143-196. DOI:
10.1017/S0962492900002919

Ponnambalam, S.G., P. Aravindan, G. Naidu and
G. Mogileeswar, 2006. Multi-objective genetic
algorithm for solving assembly line balancing
problem. Int. J. Adv. Manuf. Technol., 16: 341-352.
DOI: 10.1007/s001700050166

Pitts, W.H. and W.S. Mc Culloch, 1947. How we know
universals: The perception of auditory and visual
forms. Bull. Math. Biophys., 9: 127-147. DOI:
10.1007/BF02478291

Rekiek, B., P. de Lit, F. Pellichero, E. Falkenauer and
A. Delchambre, 1999. Applying the equal piles
problem to balance assembly lines. Proceedings of
the 1999 IEEE International Symposium on
Assembly and Task Planning, July 21-24, IEEE
Xplore Press, Porto, Portugal, pp: 399-404. DOI:
10.1109/ISATP.1999.782991

Rekiek, B., P. de Lit, F. Pellichero, T.L. Eglise and
P. Fouda et al., 2001. A multiple objective
grouping genetic algorithm for assembly line
design. J. Intl. Manufactur., 12: 467-485. DOI:
10.1023/A:1012200403940

Rekiek, B. and A. Delchambre, 2001. Assembly line
balancing and resource planning: What is done and
what is still missing. Proceedings of the 17th
International Conference on CAD/ACM and
Factory of the Future (CARS and FOF), Durban,
South Africa, pp: 86-93.

Rekiek, B., A. Dolgui, A. Delchambre and A. Bratcu,
2002. State of art of optimization methods for
assembly line design. Annu. Rev. Control., 26:
163-174. DOI: 10.1016/S1367-5788(02)00027-5

Rubinovitz, J. and G. Levitin, 1995. Genetic algorithm
for assembly line balancing. Int. J. Prod. Econ., 41:
343-354. DOI: 10.1016/0925-5273(95)00059-3

Sabuncuoglu, I., E. Erel and M. Tanyer, 2000.
Assembly line balancing using genetic algorithms.
J. Intel. Manuf., 11: 295-310. DOI:
10.1023/A:1008923410076

Salveson, M.E., 1955. The assembly line balancing
problem. J. Ind. Eng., 6: 18-25. DOI: 10.1007/978-
1-84800-181-7_7

Simaria, A.S. and P.M. Vilarinho, 2001. A genetic
algorithm approach for balancing mixed model
assembly lines with parallel workstations.
Proceedings of the 6th Annual International
Conference on Industrial Engineering Theory,
Applications and Practice, (IETAP’01), San
Francisco, USA., pp: 1-30.

Simaria, A.S. and P.M. Vilarinho, 2001. The simple
assembly line balancing problem with parallel
workstations-a simulated annealing approach. Intl.
J. Ind. Eng., 8: 230-240.

Simaria, A.S. and P.M. Vilarinho, 2004. A genetic
algorithm based approach to mixed model
assembly line balancing problem of type II.
Comput. Ind. Eng., 47: 391-407. DOI:
10.1016/j.cie.2004.09.001

Scholl, A. and R. Klein, 1999. Balancing assembly
lines effectively: A computational comparison.
Eur. J. Operat. Res., 114: 50-58. DOI:
10.1016/S0377-2217(98)00173-8

Scholl, A., 1999. Balancing and Sequencing of
Assembly Lines. 2nd Edn., Physica-Verlag,
Heidelberg, ISBN: 3-79808-1180-7, pp: 20.

Scholl, A. and C. Becker, 2006. State of the art exact
and heuristic solution procedures for simple
assembly line balancing. Eur. J. Operat. Res., 168:
666-693. DOI: 10.1016/j.ejor.2004.07.022

Shtub, A. and E.M. Dar-El,1989. A methodology for
the selection of assembly systems. Int. J. Prod.
Res., 27: 175-186. DOI:
10.1080/00207548908942537

Stockton, D.J., L. Quinn and R.A. Khalil, 2004. Use of
genetic algorithms in operations management part
1: Applications. Proc. Institut. Mech. Eng.-Part B.
J. Eng. Manuf., 218: 315-327. DOI:
10.1243/095440504322984867

Stockton, D.J., L. Quinn and R.A. Khalil, 2004. Use of
genetic algorithms in operations management part
2: Results. Proc Institut. Mech. Eng.-Part B. J.
Eng. Manuf., 218: 329-343. DOI:
10.1243/095440504322984876

Suresh, G., V.V. Vinod and S. Sahu, 1996. A genetic
algorithm for assembly line balancing. Prod. Plann.
Control., 7: 38-46. DOI:
10.1080/09537289608930323

Talbot, F.B., J.H. Patterson and W.V. Gehrlein, 1986. A
comparative evaluation of heuristic line balancing
techniques. Manage. Sci., 32: 430-454. DOI:
10.1287/mnsc.32.4.430

Tasan, S.O. and A. Tunali, 2008. A review on the
current of genetic algorithm in assembly line
balancing. Int. J. Manuf., 19: 49-60. DOI:
10.1007/s10845-007-0045-5

J. Computer Sci., 6 (2): 141-162, 2010

162

Tempelmeier, H., 2003. Practical considerations in the
optimization of flow production systems. Int. J.
Prod. Res., 41: 149-170. DOI:
10.1080/00207540210161641

Tsujimura, Y., M. Gen and E. Kubota, 1995. Solving
fuzzy assembly line balancing using genetic
algorithms. Comput. Ind. Eng., 29: 543-547. DOI:
10.1016/0360-8352(95)00131-J

Turing, A.M., 1937. Computability and lambda-
definability. J. Symbol. Logic, 2: 153-163.
http://projecteuclid.org/euclid.jsl/1183383711

Turchin, F.V.,1993. Program transformation with
metasystem transitions. J. Funct. Programm., 3:
283-313. DOI: 10.1017/S0956796800000757

Turchin, F.V., 1996. Meta-computation: Meta-system
transitions plus super-compilation. Lecture Notes.
Comput. Sci., 1110: 481-509. DOI: 10.1007/3-540-
61580-6_24

Turchin, F.V., 1996. Super-compilation: Techniques
and results. Lecture Notes. Comput. Sci., 1181:
227-248. DOI: 10.1007/3-540-62064-8_20

Valente, S.A., H.S. Lopes and L.V.R. Arruda. Genetic
Algorithms for the Assembly Line Balancing
Problem: A Real-World Automotive Application.
In: Soft Computing in Industry-Recent
Applications, Roy, R., M. Köppen, S. Ovaska, T.
Fukuhashi and F. Hoffman (Eds.). Springer-Verlag,
Berlin, ISBN: 1-85233-539-4, pp: 319-328.

Urban, T.L., 1998. Optimal balancing of u-shaped
assembly lines. Manage. Sci., 44: 738-741. DOI:
10.1287/mnsc.44.5.738

Veeramani, R., 2001. Assembly Line Balancing. IE
415, http://ecow.engr.wisc.edu/cgi-
bin/get/ie/415/veeramani/courseoutline2001.pdf

Wild, R., 1972. Mass-production Management: The
Design and Operation of Production Flow-Line
Systems. Jhon Wiley and Sons Ltd, London, ISBN-
10: 047194405X, ISBN-13: 978-0471944058
1972, pp: 135.

Weisstein, E.W., Decision Problem. Mathworld-A
Wolfram Web Resource. CRC Press and Wolfram
Research, Inc.

 http://mathworld.wolfram.com/DecisionProblem.ht
ml

Yaman, R., 2008. An assembly line design and
construction for a small manufacturing company.
Assembly Automat., 28: 163-172. DOI:
10.1108/01445150810863743

Ying, H.Y., S. Ding, Li and S. Shao, 1999. Comparison
of necessary conditions for typical takagi-sugeno
and mamdani fuzzy systems as universal
approximators. IEEE Trans. Syst. Man Cybernet.
Part A., 29: 508-514.
http://ieeexplore.ieee.org/iel5/3468/17007/0078417
7.pdf

Zhang, G., B.E. Patuwo and M.Y. Hu, 1998.
Forecasting with artificial neural networks: The
state of the artfi. Int. J. Forecast., 14: 35-62. DOI:
10.1016/S0169-2070(97)00044-7

