
Journal of Computer Science 6 (2): 163-167, 2010 
ISSN 1549-3636 
© 2010 Science Publications 

Corresponding Author: Shamim Akhter, Aida Lab, National Institute of Informatics, Tokyo, Japan 
163 

 
Sorting N-Elements Using Natural Order: A New Adaptive Sorting Approach   

 
1Shamim Akhter and 2M. Tanveer Hasan 

1Aida Lab, National Institute of Informatics, Tokyo, Japan 
2 CEO, DSI Software Company Ltd., Dhaka, Bangladesh 

 
Abstract: Problem statement: Researchers focused their attention on optimally adaptive sorting 
algorithm and illustrated a need to develop tools for constructing adaptive algorithms for large classes 
of measures. In adaptive sorting algorithm the run time for n input data smoothly varies from O(n) to 
O(nlogn), with respect to several measures of disorder. Questions were raised whether any approach or 
technique would reduce the run time of adaptive sorting algorithm and provide an easier way of 
implementation for practical applications.  Approach: The objective of this study is to present a new 
method on natural sorting algorithm with a run time for n input data O(n) to O(nlogm), where m 
defines a positive value and surrounded by 50% of n. In our method, a single pass over the inputted 
data creates some blocks of data or buffers according to their natural sequential order and the order can 
be in ascending or descending. Afterward, a bottom up approach is applied to merge the naturally 
sorted subsequences or buffers. Additionally, a parallel merging technique is successfully aggregated 
in our proposed algorithm. Results: Experiments are provided to establish the best, worst and average 
case runtime behavior of the proposed method. The simulation statistics provide same harmony with 
the theoretical calculation and proof the method efficiency. Conclusion: The results indicated that our 
method uses less time as well as acceptable memory to sort a data sequence considering the natural 
order behavior and applicable to the realistic researches. The parallel implementation can make the 
algorithm for efficient in time domain and will be the future research issue.  
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INTRODUCTION 

 
 Sorting a huge data set in a very nominal time is 
always a demand for almost all fields of computer 
science. As mentioned above, in the sorting technique 
arena, natural order is taken into deep consideration. 
And in this study, we are proposing a new sorting 
approach to reduce the running time to O(nlogm), 
where m <= n/2. 
 A general and extremely successful strategy for 
the design and analysis of algorithm is “divide and 
conquer” and it is the basis of infinitude of sorting 
algorithms for the usual comparison-based model of 
computation. Over all view, divide and conquer is a 
bottom up approach followed by a top down 
traverse. 
 In the recent history, measurement of disorder has 
been studied as a universal method for the development 
of adaptive sorting algorithms (Chen and Carlsson, 
1991). In the adaptive technique, a bottom up traverse 
is enough after calculating the disorderness. The design 
of generic sorting algorithms results in several 
advantages (Estivill-Castro and Wood, 1992a), for 
example: 

• The algorithm designer can focus the efforts on the 
combinatorial properties of the measures of 
disorder of interest rather than in the combinatorial 
properties of the algorithm 

• The designer can regulate the trade-off between the 
number of measures for adaptivity and the amount 
of machinery required 

• The resulting implementations are practical and do 
not require complex data structures 

• Parallelism is present as the approach is inherited 
from Mergesort (JaJa, 1992)  

 
 In the proposed technique, at first, the disorderness 
of the data is checked and partitioned in a single pass 
over the data set. Thereafter, the partitions are merged 
according to their order. It has been ensured that the 
approach provides the optimum time while the bottom 
up merging tree is balanced. 
 In the study, we used “log” to denote the base 2 
logarithms, “n” is the total number of elements in the 
data set, “m” is the number of partition buffers 
required. BELLOW has been used as a notation of 
BELLOW(n); for example the running time for any 
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algorithm BELLOW(n) means that time needed for the 
particular algorithm is at most n.  
 
Natural order: Any raw data set contains some natural 
order or sequence among them. Even in the most 
disordered situation at least two elements have an 
ordered sequence, may be increasing or decreasing. For 
an example, let’s consider the data set {9, 5, 3, 4, 10, 
12, 8 and 2}. Using these data we will get the following 
Zig-zag diagram, Fig. 1. Our goal is to make the data 
sorted, means the result set of the above data will be {2, 
3, 4, 5, 8, 9, 10, 12}. Figure 2 presents the Zig-zag 
diagram represents sorted data in natural order. 

 

 
 
Fig. 1: Zig-zag diagram for natural disorder data set 

 

 
 
Fig. 2: Zig-zag diagram for sorted data in natural order  

 

 
 
Fig. 3: Revised Zig-zag diagram for natural disorder 

data set 

 Figure 3 and 4 will help to understand the 
difference between classical sorting algorithm and 
adaptive sorting algorithm. In all classical ways, 
sequence Ids are shifted to gain the sorted order. 
However, in adaptive sorting scheme, lines, connecting 
the points are taken into consideration. And by doing 
so, all the points on the two lines (currently under 
process), are in action. In natural order, in the proposed 
technique, at least two points are in one line and there 
comes the time complexity of proposed technique: 

 
BELLOW(m) 

 
where, m <= n/2. 
 According to the Fig. 4, we make lines L1 = <9, 5, 
3>, L2 = <4, 10, 12>, L3 = <8, 2> and finally merging 
these lines we will get approximately a straight line 
(represents the data are successfully sorted) present in 
Fig. 2.  

 
Ordering complexity: In order to express the 
performance of a sorting algorithm in terms of the 
length and the disorder in the input, we must evaluate 
the disorder in the input. Intuitively, a measure of 
disorder is a function that is minimized when the 
sequence has no disorder and depends only on the 
relative order of the elements in the sequence (Estivill-
Castro and Wood, 1992a).  
 There are several measures of disorder. We define 
the most three common measures of disorder (Estivill-
Castro and Wood, 1992b). Runs(n) as the minimum 
number of contiguous up-sequences required to cover n 
data. A natural generalization of Runs is the minimum 
number of ascending subsequences required to cover the 
given sequence and denoted by Shuffled Up-Sequences 
(SUS). We generalize again and define SMS(n) (for 
Shuffled Monotone Subsequence) as the minimum 
number of monotone (ascending or descending) 
subsequences  required   to   cover  the  given sequence. 

 

 
 
Fig. 4: Zig-zag diagram after buffering 



J. Computer Sci., 6 (2): 163-167, 2010 
 

165 

For example W0 = <6, 5, 8, 7, 10, 9, 4, 3, 2, 1> has 
Runs (W0) = 8, while SUS(W0) = ||{<6, 8, 10>, <5, 7, 
9>, <4>, <3>, <2>, <1>}|| = 7 and SMS(W0) = ||{<6, 8, 
10>, <5, 7, 9>, <4, 3, 2, 1>}|| = 3 (Estivill-Castro and 
Wood, 1992a). This technique also provide ||{<6, 5>, 
<8, 7>, <10, 9, 4, 3, 2, 1>}|| = 3. The number of 
ascending runs is directly related to the measure Runs,  
Natural  Mergesort takes O(|n| (1 + log[Runs(n) + 1])) 
time. Quick sort takes O(|n| log[n+1]) running time in 
average case.  
 Many researches were conducted to focus on the 
time complexity minimization of the sorting algorithm 
and their proposed algorithms successfully partitioned 
the input data, but they didn’t focus on the partitioning 
with both ascending and descending order. Moreover, 
the cost needed to partition is also an important point 
and need to take under consideration. In our view, if we 
consider both ascending and descending order, which 
will be needed only at the bottom level in the bottom-up 
traversing of the merge-tree and this approach will 
reduce the number of partitions. Thus, the time needed 
in worst case will be: 
 

BELLOW (n + nlogm) 
 
where, m <= n/2. 
 It can also be mentioned, in an average case of 
disorder in data set, m<n/2 and for the best case m = 1. 
Thus, the time complexity of the new approach would 
be: 
 

O(|n|(log[m])) 
 
 Inheriting the thoughts of co-thinkers walking in 
this arena of adaptive sort, we have used merge sort to 
implement the new adaptive method and that is why, 
this approach will also provide the chance of 
improvement using parallel algorithm. Parallelism in 
merge sort improves the run time complexity. Using 
merge sort algorithm, sorting a sequence of n elements 
can be done optimally in O(logn log (log n )) (JaJa, 
1992). According to Simple Merge Sort (JaJa, 1992), 
the running time of this algorithm is O(logn log (log n)) 
and the total number of operations used is O(n log n) 
(where PRAM model will be CREW PRAM). And just 
to mention again, (Fig. 6) our technique reduces the 
number of nodes in the merge tree, so reduces the time 
needed by parallel processing. 
 

MATERIALS AND METHODS 
    
 In the classical merge sort algorithm, first comes a 
top down traverse and then follows a bottom up merge. 

This has been showed in Fig. 5 with a data set {9, 5, 3, 
4, 10, 12, 8, 2}.  
 In the adaptive sorting algorithm, using the 
proposed ordering scheme, for the same data set, {9, 5, 
3, 4, 10, 12, 8, 2}, the partitions will be {9, 5, 3}, {4, 
10, 12}, {8, 2}. And the following merging is 
represented in Fig. 5. In this averagely ordered data set, 
the proposed algorithm traverse only a tree of height 3, 
followed by a single pass over the data set. 
 For n element data set, we first make some buffers 
(m) according to their sequential order, the order may 
be in ascending or descending, the running time will 
need O(n). Each buffer will get information about the 
starting index and the ending index of the sequential 
sorted data and also a flag which will provide us the 
order of the sequential data (flag 0 means ascending, 
flag 1 means descending order), this flag will be needed 
to check only in the first level comparisons but the rest 
levels no need to check. 
 In  Table 1,   we  consider the Fig. 4, the buffer 
L1 = <9, 5, 3>, where 9 is the first and 3 is the last 
element of this particular data set. So, the Starting index 
is 1 and Ending index is 3. Data set 9 to 3 is in 
descending order, so the flag is set to 1.  
 If number of buffers is m, for a data set of n 
elements and divide-and-conquer is the approach to 
merge the m buffers then merging m sorted buffers(total 
n data ) needs O(nlogm) time (Horowitz et al., 1997). 
Deriving from this information, the proposed algorithm 
has a time complexity of O(nlogm) where m<n. In the 
best data set distribution, all the elements are sorted 
naturally, in an ascending order or descending.  
 

 
 
Fig. 5: Classical merge sort algorithm 
 

 
 
Fig. 6: Merge sort with proposed algorithm 
 
Table 1: The buffer information 
Starting index 1 
Ending index 3 
Flag 1 
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Table 2:  Proposed algorithm run time statistic 

Size of Partitioning Buffer Tree height Comparisons in Theoretical total Algorithm 
inputted data n comparisons size (m) log (m) each level value [n*log m + n] generate value 
1000 1000 414 9 928 9693 9064 
2000 2000 821 10 1875 21362 20154 
3000 3000 1224 10 2818 33772 31905 
4000 4000 1649 11 3773 46748 44320 
5000 5000 2058 11 4710 60036 56845 

 
For this Naturally Sorted data, there will be only one 
buffer, i.e., m = 1 and no need to apply merge. This 
reduces the best case time complexity to O(n). 
 The steps of the proposed algorithm are presented 
bellow, assuming n elements of data set is stored in an 
array A[1..n]. 
 
Partition(n): 
 

Beginning from index 1 in A[], continue 
traversing up to index k where A[1], A[2] … 
A[k] is sorted in any order (ascending or 
descending). If A [1…k] is in ascending, i.e. 
flag = 0, then A [k+1]<A[k] else for 
descending, i.e., flag = 1, A[k]>A[k+1]. This 
represents a line in the data sequence (Table 1). 
 
Thereafter, store the information (start_index, 
ending_index, flag) in an array of buffer. 
Continue this procedure up to n. 
 

 After the Partition(n) function we will get m 
buffers, where m will be at most n/2 . 
 
Sort(m): 
 

If all data is in a Natural Sorted, means that the 
number of buffers m is 1 (Reverse, if needed), 
then Terminate  

 
Otherwise merge m buffers, taking two at a 
time. By following this level-by-level bottom 
up procedure will assure the merging tree to be 
appropriately balanced  

 
  foreach level of the bottom up traversal  
    for( i is 1 to |m| ) 
   merge (2i-1)th and 2ith buffers 

 
RESULTS AND DISCUSSION 

 
 Based on the proposed algorithm, Table 2 statistics 
have been presented. In this statistics, we have used a 
randomly picked data set and values are the average of 
1000 times operation. 

 Table 2 shows statistics sounds the same harmony 
that is present in the theoretical calculation. Finding out 
the natural sub-sorted sequence will need only exactly n 
unit of time. Here, m denotes the number of buffers 
made after partition. So, if the merging goes in a 
balanced tree, height of the tree will be [log m]. In most 
of the cases, calculated value is less than estimated 
value. It is because, in the theoretical calculation, 
merging buffers in any level of the tree needs O(n) 
time. However, sometimes, it is less than that, when 
sizes of the buffers are not unique. In the worst case, 
time in each level we have to compare n data. So, total 
needing comparison will be n*log m + n and m is n/2. 
So, total comparison will be O(nlogm).  
 

CONCLUSION 
 
 The research evaluates the power of a new scheme 
in the era of sorting algorithm. A good sorting 
algorithm is always preferable for any kind of 
application developed in fields Computer Aided 
Technology and the proposed technique uses less time 
as well as acceptable memory to sort a sequence 
considering the natural order, which is already there. 
 We have already mentioned that our providing 
criteria will give best effort when the tree (after 
buffering) will be balanced. So, there will be a great 
chance for the future developer to implement this 
technique using parallel approach. Additionally, for any 
formal high-level language, a library function can be 
provided using this algorithm, like we have for 
Quicksort (Horowitz et al., 1997). 
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