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Abstract: Problem statement: The idea of this study stemmed from the fact that most of the currently 
used optimization algorithms use a local quadratic representation of the objective function. It also 
arisen from the fact that the objective function may not be represented adequately by quadratic 
functions and the global minimizer may be obtained for objective functions. So, in this study, we 
generalized the field of quadratic model into the field of the non-quadratic model. Approach: A new 
non-quadratic model was suggested for solving unconstrained optimization problems, which modified 
the classical Conjugate Gradient (CG) algorithm by scaling the standard quadratic model. Results: The 
new algorithm was derived and evaluated theoretically and numerically for some standard well-known 
and effective test functions. The results, in general, indicated that the new algorithm had improvements 
on different well-known algorithms used in this study. Conclusion: The new proposed algorithm 
would be generic and easy to implement in all gradient based optimization process. Its simulation 
results showed that it was robust and had a potential significantly enhance the computational efficiency 
of iterations and function evaluations.   
 
Key words: Unconstrained minimization, conjugate-gradient algorithm, rational models, global 

convergence, exact line searches  
 

INTRODUCTION 
 
 This study considers the calculation of a local 
minimizer x* say, for the problem  
 
Minf(x),   x∈Rn,   f∈C2  (1) 
 
 It is assumed that expressions for the elements of 
the gradient vector g(x) = gradient of f(x) are available 
are calculated but the Hessian matrix is not available. 
Standard algorithms for solving this problem include 
CG-algorithms which are iterative algorithms and 
generate a sequence of approximations to minimize a 
function f(x). This type of algorithms requires 4n 
locations of computer storage to implement. However, 
this study considers a more general model than the 
usual quadratic function 
  

( ) T T1
F x x Gx+b x

2
=  (2) 

 
Definition 1: A set of vectors *

id  in En is said to be 

conjugate with respect to the symmetric positive 
definite matrix G if and only if T

i jd Gd 0=   for i j≠ . 

 Hestenes and Stiefel (1952) published the first CG-
algorithm, for solving a system of linear algebraic 
equations. Fletcher and Reeves, (1964) were the first, 
among other scholars, to use this technique to minimize 
a non-linear function of several variables. Since then 
this algorithm has been used successfully to tackle 
many problems. 
      We can list outline of the CG-algorithm as follows: 

 
Outline of the standard CG-algorithm: for given 
TOL and x0∈Rn an initial estimate of the minimizer x*: 

 
Step 1: Set 0 0d g= −   

Step 2: For i = 1, 2,…, compute i i 1 i 1 i 1x x d− − −= + λ  

where i 1−λ  is the optimal step-size obtained by 

  a line search procedure. 
Step 3: If  ig Tol≤  stop; otherwise continue. 

Step 4: Calculate the new direction di = −gi + βidi−1 

         where βI  is the conjugacy coefficient. 

 
 It is considered as one of the following formulas: 
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 T T
i i i i 1 i 1 i i 1g (g g ) / g (g g )− − −β = − −            (3a) 

 
Called: Hestenes and Stiefel (HS): 
 

2 2

i i i 1g / g −β =                                                (3b) 

 
Called: Fletcher and Reeves (FR): 
 

      T T
i i i i 1 i 1 i 1g (g g ) / (g g )− − −β = −  (3c) 

 
Called: Polak and Ribiere (PR): 
 

2 T
i i i 1 i 1g / (d g )− −β =                                            (3d) 

 
Called: Descent Dixon (DD): 
 

T T
i i i i 1 i 1 i 1g (g g ) / d g− − −β = − −   (3e) 

 
Called: Al-Bayati and Al-Assady (BA). 
 For the details of these formulas (Fletcher, 1987; 
Al-Bayati and Al-Assady, 1994). 
 When, quadratic functions and exact line searches 
are used, all the above formulas for i′β  s are equivalent. 

However, these formulas vary according to general 
functions. 
  Several algorithms have been suggested as 
alternative ways of modifying the classical CG-
algorithms (Al-Bayati, 1993; 2001; 2007; Al-Bayati 
and Al-Assady, 1994; 1997; Al-Bayati and Al-Naemi, 
1995;Al-Bayati and Rassam, 2009). 
 CG-algorithms have, in general, the following:  
 
BASIC properties: 
 
• The conjugacy condition 
• The orthogonally condition 
• The descent direction 
• The quadratic termination condition with Exact 

Line Search (ELS) 
 

MATERIALS AND METHODS 
 
Extended CG-algorithms for non-quadratic models: 
In this study, a more general model than quadratic one 
is suggested as a basis for a CG-algorithm. If q(x) is a 
quadratic function, then a function F(q(x)) is defined as 
a non-linear scaling of q(x) if the following condition 
holds: 
 

f(x) = F(q(x)), 
df

f 0
dq

′= >  and q(x) > 0  (4) 

where, x* is the minimizer of q(x) with respect to x, 
(Spedicato, 1976). 
 The following SCALING properties for f(x) are 
immediately derived from the above condition: 
 
• Every contour line of q(x) is a contour line of f(x) 
• If x* is a minimizer of q(x), then it is a minimizer of 

f(x) 
• If x* is a local minimizer of q(x), then it is a local 

minimizer of f(x) 
 
 Boland et al. (1979) was the first who observed 
that q(x) and f(q(x)) have determined the same search 
directions so that the finite termination property for 
their algorithm was satisfied. A CG-algorithm which 
minimizes the function  
 
f(x) = q(q(x))p, p > 0 and x∈Rn  (5a) 
 
in at most n step was described by (Fried, 1971). 
 The special case: 
 

( )( ) ( ) ( )2
1 2

1
F q x q x q x

2
= ε + ε  (5b) 

 
where, ε1 and ε2 are scalars, was investigated by 
(Boland et al., 1979). 
 
 (Tassopoulos and Storey, 1984) proposed two 
different rational models defined by: 
 

( )( ) ( )( )
( )

1

2

q x 1
F q x

q x

ε +
=

ε
, 2 0ε <  and ( )q x 0>  (5c) 

 
where, ε1 and ε2 are scalars and: 
 

( )( ) ( )
( )( )

q x
F q x

1 q x

ε
=

+
, 0ε >  and ( )q x 0>  (5d) 

 
 Al-Bayati (1993) proposed another rational model 
defined by: 
  

( ) 1
1 2

2 2

q(x)
F q(x) , 0 and 0

1 q (x)

ε= ε > ε <
− ε

 (5e) 

 
 In this study, a new logarithmic model is 
investigated and tested on a set of several standard test 
functions, on the assumption that condition (1) holds. 
An extended CG-algorithm is developed which is based 
on this new model and scales q(x) by the natural log 
function for the rational q(x) functions: 
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( )( ) ( )
( )

1

2

q x
F q x log

1 q x

 ε
=  

 − ε 
 , 2 0ε <  (6) 

 
 We first observe that q(x) and F(q(x)) given by (6) 
have identical contours, though with different function 
values and they have the same unique minimum point 
denoted by x*. 
 
New ECG-algorithm for non-quadratic model: For 
any  f satisfying the condition (4), it is shown in 
(Boland et al., 1979) that the updating process given 
below generates identical conjugate directions and the 
same sequence of approximations xi to the minimizer 
x*, as does the original algorithm of (Fletcher and 
Reeves, 1964) when applied to f (x) = q(x). Now let us 
modify the last scaling property of the function f(x) by: 
 If x* is a global minimizer of q(x) implies that it is 
a global minimizer of f(x), in the new extended 
logarithmic model defined in (6). Recall the basic 
theorem of (Renpu, 1989) which was illustrated below. 
 Suppose that F(x) has the form: 
 

( ) ( )
( )

1 1

2 2

f x
F x

g x
= where, x

T 
= (x1

T
,x2

T
) (7) 

 
and:  
 
f1(x1) > 0 and g2(x2) > 0 (8) 
 
 It follows from (7) that: 
 
log F(x) = log f 1(x1) − log g2(x2) (9)  
 
 Equation 9 is a separable function according to the 
following theorem. 
 
Theorem 1: The point x*

T
 = (x1*

T
, x2*

T
,..., xn*

T
) is a 

global minimizer of the rational separable function F(x) 
if and only if every xi* (i = 1, 2, ..., n) is a global 
minimizer of fi (xi). 
 
Proof: We can conclude that x* is a global minimizer 
of log F(x) if and only if  x1* and x2* are respectively 
global minimizer of log f1(x1) and -log g2(x2). 
Furthermore, the monotonicity of the log function 
implies that x* is a global minimizer of F(x) if and 
only if x1* and x2* are respectively global minimizer 
of f1(x1) and g2(x2) (Renpu, 1989). 
 Before listing the main outline of the new proposed 
algorithm, let us consider first the main outline of the 

(Tassopoulos and Storey, 1984) and (Al-Bayati, 1993) 
rational model extended CG-algorithms.  
 
ECG-algorithm (Tassopoulos and Storey, 1984): 
 
Step 1: Define: 
 T

i 1 i 1 i 1 i i 1n ( g d ) / 2, w F F ,− − − −= − λ = −  

 i iF F(q(x ))=  and compute (n w),+  

  i 1((n w)F nw).−+ −  

Step 2: Ifn w EPS+ ≤ , then set i 1ρ =  

 and go to Step 5, where EPS is a small number 
(i.e., 0.1E-10). 

Step 3: If i 1(n w)F nw EPS−+ − ≤  then set  

 i i -1 iρ = (F / F )  and go to Step 5 

Step 4: Compute 2
i [n / (2n w)]ρ = +  

Step 5: Calculate the new direction 

 
2 2

i i i i i 1 i 1d g ( g / g )d− −= − + ρ  

 
ECG-algorithm (Al-Bayati, 1993): 
 
Step 1: Define: 

  
T

i 1 i 1 i 1a ( g d ) / 2,

b w a,
− − −= λ

= −
 

 c = wa-(w-a)*fi−1 
Step 2: If. b Tol≤ or  c Tol≤  then set i 1ρ =  

  and go to Step 4, where TOL is a small 
 number  (i.e., 0.1E-10). 
Step 3: Set i (a / w)ρ = 2 

Step 4: Calculate the new direction 

 
2 2

i i i i i 1 i 1d g ( g / g )d− −= − + ρ  

 
Outline of the new ECG-algorithm:  
 
Step 1: Set do= − go 
Step 2: For i = 1, 2 ... 
  compute xi = xi-1 + λi−1 di−1 where λi−1 is the 

optimal step-size obtained by Armijo linear 
search procedure: set scalars sk, β and σ with: 

 

 
T
k k

k
k

g d
s

d
= − , (0,1)β∈  (9a)  

  

 and 
1

(0, )
2

σ ∈ and we set mk
k ks ,λ = β  where mk 

is the 1st non-negative integer m for which: 
  
 ( ) ( )i i 1w exp f exp f−= −  (9b) 
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 i.e., m= 0,1 are tried successively until the 
inequality above is satisfied for m = mk.  

Step 3: Calculate f which is a function value of an 
actual iterate as: 

  exp(f) =1 + f + f 2/2! + …  
 and define: 
  n = λi-1 g

T
i-1 d i-1 /2. 

  w = exp (fi) - exp(fi-1). 
  c = w-n exp (fi-1) 
Step 4: If |w|<0.1 E-5 or |c|<0.1 E-5, then set ρi = 1.0 

and go to Step 6. Else continue 

Step 5: Compute:
( )2

i 1 iNEW
i 2

n exp(f ).exp f

w
−⋅

ρ =  

where, the derivation of scaling ρi will be 
presented later.  

Step 6: Calculate the new direction di = −gi+βidi-1 

where, βi is defined by different modified 
formulas as follows: 

 
βi = ρi ( || g i||

2 / || g i-1||
2
)  (10a) 

 
βi = (gi

T
(ρi gi-gi-1)/g

T
i-1(gi- gi-1)) (10b) 

 
βi  = (gi

T
(ρ ig i -gi-1)/g

T
i-1gi-1) (10c) 

 
2 T

i i i i 1 i 1g d g− −β = ρ   (10d) 

 
T T

i i i i i 1 i 1 i 1g ( g g ) / d g− − −β = − ρ −  (10e) 

 
where, βi  in (10) are modified FR, HS, PR, 
DD and BA respectively. CG-algorithms are 
usually implemented by restarts in order to 
avoid an accumulation of errors affecting the 
search directions. It is therefore generally 
agreed that restarting is very helpful in 
practice, so we have used the following 
restarting criterion in our practical 
investigations. If the new direction satisfies: 
 
di

T
gI ≥ −0.8 ||gi||

2
  (11) 

 
then a restart is also initiated and the new 
direction is sufficiently downhill.  

 
The derivation of the new ECG-algorithm: The 
implementation of the extended CG-algorithm has been 
performed for general functions F(q(x)) of the form of 
(6). The unknown quantities ρi were expressed in terms 
of available quantities of the algorithm (i.e., function 
and gradient values of the objective function).  

 It is first assumed that neither ε1 nor ε2 is zero in 
Eq. 6. Solving (6) for q(x), yields: 
 

 ( ) ( )
( )( )2 1 2

exp f
q x

exp f
=

ε + ε ε
 (12)  

 
and using the expression for ρi(henceforth NEW

iρ )  

 

( )
( )

( )
( )

2

i i 1 1 2NEW i 1
i

i i 1 i 1 2

exp f exp ff

f exp f exp f
−−

−

  + ε ε′
ρ = =   

  ′ + ε ε  
  (13) 

 
the quantity that has to be determined explicitly is 
(ε1/ε2). 
 During every interaction (ε1/ε2) must be evaluated 
as a function of known available quantities from the 
relation: 
 

T '
i 1 i 1 i 1g f G(x x*)− − −= −  (14) 

 
T '
i 1 i 1 i 1g f G(x x*)− − −= −  (15) 

 
where, G is the Hessian Matrix and x* is the minimum 
point. Now, we have: 
 
g

T
i−1 (xi−x*) = g

T
i−1 (xi−1 + λi−1 di−1 −x*) 

 = g
T

i−1 (xi−1 − x*) + λi-1 g
T

i−1 di−1 

 

g
T

i(x i-1 −x*) = g
T

i(xi−λi−1di−1−x*) = g
T

i (xi−x*) 
 
 Since g

T
i di−1= 0, therefore, we can express NEW

iρ as 

follows: 
 

NEW
iρ = (g

T
i−1 (xi-1−x*) +λi−1g

T
ι−1di−1) /(g

T
i(xi−x*)) (16) 

 
From (14) and (15), we get: 
 

( ) ( )
( ) ( )

T* * T
i 1 i 1 i 1 i 1 i 1 i 1NEW

i T* *
i i i

f x x G x x g d

f x x G x x

− − − − − −′ − − + λ
ρ =

′ − −
 

 
Therefore: 
 

NEW
iρ  = (2f iَ−1qi-1+ λi−1g

T
i−1di−1)/2f’ iq i  

 = NEW
iρ (qi−1/qi) +λi-1g

T
i−1di−1 /(2f’ iqi)  (17) 

 
The quantities (qi−1/qi) and f’ i qi can be rewritten as: 
 

( ) ( )( )NEW
i 1 i i i 1 i(q / q )(1 / ) exp f exp f− −ρ  (18) 
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( )i 1 2'
i i

1 2

exp f
f q

+ ε ε
=

ε ε
 (19) 

 
 Substituting (18) and (19) in (17), gives: 
 

( ) ( )( )
( )) ( )

NEW NEW
i i i 1 i

T 1 2
i 1 i 1 i 1

i 1 2

exp f exp f

g d 2
exp f

 
   − 

 
 
 
 − − −
 
 

ρ = ρ +

ε ελ
+ ε ε

  (20)  

 
 Using the transformation: 
 

 T
i 1 i 1 i 1g d 2n− − −λ =  (21) 

 
and from RHS of  (13) ;  (20) and (21), we have: 
 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )

( )( ) ( )
( )

( )( )

2

i i 1 1 2 i 1

i 1 i 1 2 i

i i 1 1 2 1

i 1 i 1 2 2

i 1 2

2 i 1
i 1 1 2

i

i 1 1 2

exp f exp f exp f

exp f exp f exp f

exp f exp f
n

exp f exp f

1

exp f

exp f
exp f

exp f

exp f e

− −

−

−

−

−
−

−

   + ε ε
 =  

    + ε ε    

  + ε ε  ε  +      + ε ε ε   

 
 
 + ε ε 

 
+ ε ε =  

 
 

+ ε ε ( )( )
( )( ) ( )

( )
( ) ( )( )

( )( ) ( ) ( )( )
( )

i 1 2

i 1 2 1 2

i 1
i 1 2

i

2

i 1 i 1 I 11

2 i 1

xp f

exp f n

exp f
exp f

exp f

n exp f exp f w nw exp f

w nexp f

−

− − −

−

+ ε ε +

+ ε ε + ε ε

+ ε ε

− +ε =
ε −

 (22) 

 
Where: 
 

( ) ( )i i 1w exp f exp f−= −   (23) 

 
 Substituting (22) in (13), yields: 
 

( )
( )

2
iNEW i 1

i
i 1

exp f n exp(f

exp f w
−

=

−

  ⋅ ρ      
  (24a) 

 
or: 
 

( )2
i 1 iNEW

i 2

n exp(f ).exp f

w
−⋅

ρ =  (24b) 

 Now we are prove the global convergence of the 
new extended CG-algorithm as follows: we first assume 
that: 
 
Assumption  1: The  function  f  has  lower bound on 
L0 = {x∈Rn|f(x)≤f(x0)}, where x0∈ Rn is available. 
 
Assumption 2: The gradient g = ∇f(x) is Lipschitz 
continuous in  an  open convex  set  B which contains 
L0, i.e., L 0 g(x) g(y) L x y ,∃ > ∋ − ≤ −  x, y B.∀ ∈  

 
Theorem 2: If Assumptions 1; 2 and Tk kg d 0<  holds, 

then for Armijo line search procedure the new extended 
CG-algorithm generates an infinite sequence {xk} that 

satisfy 
T

2k k

k
k

g d
lim ( ) 0

d→∞

− = .  

 
Proof: For the new algorithm set 

1 k k 2 k kK {k | s },K {k | s }= λ = = λ <  by  (9b) we have: 

 
T

k k 1 k k k 1f f s g d , k K+− ≥ − σ ∀ ∈  (25) 

 
T

k k 1 k k k 2f f g d , k K+− ≥ −α σ ∀ ∈  (26) 

 
 By line search rule (9), since ,2k k/ s , k Kλ β ≤ ∀ ∈  we 

have: 
 

k
T

2k k k k k kf f (x / d ) g d / , k K− + α β < −λ σ β ∀ ∈  

 
 Using the mean value theorem on the LHS of the 
above inequality, there exists θk ∈[0,1] such that: 
 

T T
2k k k k k k k k kg(x d / ) d / g d / , k K−λ + λ θ β β < −λ σ β ∀ ∈  

 
Therefore: 
 

k
T

2k k k k kg(x d / ) g d , k K+ θ λ β > σ ∈  (27) 
 
 By Assumption 2, Cauchy-Schwartz inequality and 
(27), we have: 
 

2

k k k k k k k kL d / g(x d / ) g . dλ β ≥ + λ θ β −  
 

T T
2k k k k k k k k(g(x d / ) g ) d (1 )g d , k K≥ + λ θ β − ≥ − − σ ∈  

 
Thus: 
 

 k
k 22

T
k

k

(1 )g d
, k K

L d

β − σ
λ ≥ − ∈   (28) 



J. Computer Sci., 6 (5): 498-505, 2010 
 

503 

 It follows from (26) and (28): 
 

T
2k k

k k 1 2
k

(1 ) g d
f f ( ) , k K

L d+
βσ − σ −− > ∈  (29) 

 
 By (25) and the definition of sk, we have: 
 

T
2k k

k k 1 1
k

g d
f f ( ) , k K

d+
−− ≥ σ ∈   (30) 

 
 Set min{ , (1 ) / L}η = σ βσ − σ , by (29) and (30), we 
have:  
 

T
2k k

k k 1
k

g d
f f ( )

d+
−− ≥ η   (31) 

 
 By the first scaling property and Tk kd g 0< , it 

follows that:  
 

T
2k k

k
k

g d
lim( ) 0

d→∞

− =  

 
Theorem 3: Suppose that x1 is arbitrary point for which 
Assumptions 1 and 2 hold. For the new extended CG-
algorithm assume that the line search satisfies the 
conditions (9a) and (9b). Then if Tk kg d 0 k 1< ∀ ≥  we 

have: 
 

kk
lim inf g 0
→∞

=  (32) 

 
Proof: Suppose that the theorem is not true, then ∃ a 
constant α>0 such that: 
 

kg k 1≥ α ∀ ≥  (33) 

 
 Now, for our  new search direction defined in Step 
6 of the new extended  algorithm we have: 
 

2

22 T

2

k k 1
T
k k k 1 k 1 k

d d 1

(g d ) (g d ) g

−

− −
≤ +  (34) 

 
 Now, for any k≥1: 
 

2 2

2 2

k k 1
T T
k k k 1 k 1

d d 1

(g d ) (g d )
−

− −
≤ + = ∞

α
 (35) 

 
2

2

T
k k

k 1 k

(g d )

d≥
⇒ = ∞∑  (36) 

which is a contradiction. Hence, the theorem must be 
true and the algorithm has super-linear convergence 
 

RESULTS 
 
 In order to test the effectiveness of the new 
algorithm which has been used to extend the standard 
CG- algorithm, the comparative tests involve several 
standard; effective and well-known test functions. These 
test functions has been chosen and solved numerically by 
utilizing the new and established algorithms. 
 Table 1-4 utilize the comparisons between our  
new extended CG-algorithm which is corresponding to 
the new non-quadratic model represented in (6), 
denoted by (NEW), the classical Fletcher and Reeves 
CG-algorithm, denoted by (FRCG), the rational model 
of Tassopoulos and Storey, denoted by (TS);  Al-Bayati 
rational model, denoted by (B) for low and high 
dimensions. The cubic line search (Bunday, 1984), 
Armijo line search (Al-Bayati and Rassam, 2009) and 
the well-known convergence criterion ||gi||<1×10−5 were 
used. 
 
Table 1: Comparisons of different algorithms for non-quadratic 

models 2≤ n≤10 (low dimensions) 
  FRCG                  TS                    B        NEW 
Test  --------------- --------------- --------------- -------------- 
fun N NOI NOF NOI NOF NOI NOF NOI NOF 
1 2 31 73 31 73 31 81 29 68 
2 10 22 46 18 44 20 43 18 44 
3 4 28 61 36 78 25 58 30 64 
4 4 50 114 38 96 26 77 34 80 
5 4 57 178 46 139 162 516 44 124 
Total  188 472 169 430 264 775 155 389 
 
Table 2:  Comparison of different algorithms for non-quadratic 

models 20≤ n≤80 (low dimensions) 
  FRCG  TS  B  NEW 
Test  -------------- ---------------- ---------------- --------------- 
fun N NOI NOF NOI NOF NOI NOF NOI NOF 
1 60 23 56 23 57 30 79 27 63 
2 20 15 37 15 37 15 37 15 37 
3 40 51 105 43 90 25 58 34 71 
3 80 69 140 43 90 25 58 31 67 
4 60 67 136 43 90 30 90 28 59 
4 80 112 239 75 167 30 90 47 106 
6 20 24 61 24 61 21 55 24 60 
7 40 25 62 18 51 34 68 23 65 
Total   386 836 284 643 210 535 229 528 
 
Table 3: Comparisons of different algorithm for non-quadratic model 

100≤ n≤ 400 (high dimensions) 
  FRCG  TS  B  NEW 
Test  ----------------- --------------- -------------- -------------- 
fun N NOI NOF NOI NOF NOI NOF NOI NOF 
1 100 23 56 23 57 8 21 25 57 
1 400 23 56 23 57 8 21 23 65 
3 200 69 140 47 98 28 58 37 80 
3 400 69 140 47 98 26 60 29 61 
4 100 129 263 78 183 30 90 69 151 
5 200 209 472 154 351 65 255 47 128 
6 100 25 62 25 62 26 66 23 59 
7 100 25 59 28 68 51 115 35 43 
Total  572 1248 425 974 242 686 288 644 
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Table 4: Percentage ranging of NOI and NOF improvements 
NEW TS FRCG B 
NOI = 100 147 198 -15 
NOF = 100 151 193 106 
 
 Specifically, we record the Number Of Function 
calls (NOF), and the Number Of Iteration calls (NOI) 
for the purpose of our comparisons. For overcoming the 
overflow in our computer programs we have scaled the 
function values by a parameter equal to 1.E-10. 
 It is obvious that the new algorithm, for this set of 
low dimensionality test functions, improves: 
 
• FRCG in (18%) NOI and (20%) NOF 
• TS in (9%) NOI and (12%) NOF 
• B in (40%) NOI and (50%) NOF 
  
 Also, the new algorithm, for the high dimensions, 
beats: 
 
• FRCG in (41%) NOI and (37%) NOF 
• TS in (20%) NOI and (18%) NOF 
• B in (0%) NOI and (2%) NOF 
 
 In Table 4, taking the NOI and NOF 100%, we can 
determine the performance range of the new extended 
CG-algorithm according to others used in this study. 
Clearly it has (-15-98%) improvements in the NOI and 
it has about (6-93%) improvements in NOF. 
  We conclude that our new proposed rational 
logarithmic model is superior to some models in both 
quadratic and non-quadratic models. 
 The details of used test functions in this study are 
given in (Al-Bayati, 2007) and they are: 
 
Rosen-Brock function: 
 

( ) ( )2 2 T2
2 1 1 0f (x) 100 x x 1 x ,  x 1.2,  1= − + − = −    

 
Dixon function: 
 

( ) ( ) ( )
n 22 2 2

1 n i

T

0

n 1

i 1
i 1 i 1

f (x) 1 x 1 x x x ,

                     x 1,   ... ,  -1

−

+
= =

 
= − + − + − 

 

= −  

∑ ∑
 

 
Generalized Wood function: 
 

( ) ( )
( ) ( )

( ) ( )
( )( )

2 2

4i 2
i 1

2 22
4i 4i1

2 2

4i 2 4i

T

0

n 4
2
4i 3 4i 3

4i 1

4i 2 4i

f (x) 100 x x 1 x

90 x x 1 x

10.1 x 1 x 1

19.8 x 1 x 1 ,

x 3,  -1,  -3,  -1,  ... ,  3,  -1,  -3,  -1,

−
=

−

− −

−

−

 = − + −
  

+ − + −

 + − + −
  

+ − −

= − −  

∑

 

Generalized Powell function: 
 

( ) ( )

( ) ( )

2 2

i 1

4 4

4i 2 4i 1 4i 3 4i

0

n 4

4i 3 4i 2 4i 1 4i

T

f (x) x 10x 5 x x

                          x 2x 10 x x ,

                       x 3,  1,  0,  1,  ... ,  3,  1,  0,  1,

=

− − −

− − −
= − + −


+ − + −


= − −  

∑

 

 
Generalized Miele Function: 
 

( )( ) ( )

( )( ) ( ) ( )

n 4
2 6

4i 3 4i 2 4i 2 4i 1
i 1

4 8 2

4i 1 4i 4i 3 4i

T

0

f (x) exp x 10x 100 x x

                     tan x x x x 1 ,

                            x 1,  2,  2,  2,  ... ,  1, 2, 2,  2

− − − −
=

− −

= + + +

+ − + + −

=   

∑

 

 
Non-diagonal function: 
 

( ) ( )2 2
2

1 i i

T

0

n

i 1

f (x) 100 x x 1 x ,

                      x 1,  ... ,   1 .

=

 = − + −
  

= − −  

∑
 

 
Oren and Spedicato OSP Function: 
 

( )
2n

2

i
i 1

T
0

f (x) i x ,

    x [1,  ... ,  1]

=

 =  
 

=

∑  

 
DISCUSSION 

 
 In this study, we have introduced a new non-
quadratic CG-algorithm which is based on log of two 
rational functions. The new algorithm is compared with 
three well-known algorithms; namely FRCG; TS, 
(Tassopoulos and Storey, 1984) and B; (Al-Bayati, 
1993) algorithms using seven well-known non-linear 
test  functions with different dimensions taken from 
(Al-Bayati, 2007). Our numerical results indicate that 
the new technique has an improvements of about (-15-
98%) in NOI against the others, while it saves about (6-
93%) in NOF against the others. 
 

CONCLUSION 
 

 In this research, a new fast extended CG algorithm 
is introduced. The proposed algorithm improved the 
standard FRCG; TS and B algorithms by adaptively 
modifying the search direction. The new proposed 
algorithm is generic and easy to implement in all 
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gradient based optimization process. The simulation 
results showed that it is robust and has a potential 
significantly enhance the computational efficiency of 
iterations and function evaluations.  
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