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Abstract: Problem statement: The evolution rules of membrane computing have been applied in a 
nondeterministic and maximally parallel way. In order to capture these characteristics, Gillespie’s 
algorithm has been used as simulation strategy of membrane computing in simulating biological 
systems. Approach: This study was carried to discuss the simulation strategy of membrane computing 
with Gillespie algorithm in comparison to the simulation approach of ordinary differential equation by 
analyzing two biological case studies: prey-predator population and signal processing in the Ligand-
Receptor Networks of protein TGF-β. Results: Gillespie simulation strategy able to confine the 
membrane computing formalism that used to represent the dynamics of prey-predator population by 
taking into consideration the discrete character of the quantity of species in the system. With Gillespie 
simulation of membrane computing model of TGF-β, the movement of objects from one compartment 
to another and the changes of concentration of objects in the specific compartments at each time step 
can be measured. Conclusion: The simulation strategy of membrane computing with Gillespie 
algorithm able to preserve the stochastic behavior of biological systems that absent in the deterministic 
approach of ordinary differential equation. However the performance of the Gillespie simulator should 
be improved to capture complex biological characteristics as well as to enhance the simulation 
processes represented by membrane computing model. 
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INTRODUCTION 

 
  Membrane computing enriches the model of 
molecular computing by providing a spatial structure 
for molecular computation, inspired by the hierarchical 
structure of living cells. In the structure and the 
functioning of cell, membranes play an essential role in 
which objects pass in a regulated fashion within and 
across the membranes. The cell is separated from its 
environment by means of the plasma membrane and it 
is internally compartmentalized by means of internal 
membranes. The membrane computing model 
formalizes this fundamental feature of the living cell, 
namely, membrane structure (Paun, 2000). Membrane 
computing is introduced as a class of parallel, 
distributed and nondeterministic computing devices 
(Paun, 1998). The fundamental features that are used in 
this computing model are a membrane structure where 
objects evolve according to specified evolution rules, 
which also determine the communication of objects 

between membranes. The evolution rules are applied in 
a nondeterministic and maximally parallel way, which 
means all the objects that can evolve, must evolve 
(Paun, 1998).  
 As a result of a membrane computing model, a 
computing device is obtained, starting from an initial 
configuration and letting the system evolve. A universal 
clock is assumed to exist which means at each step, all 
rules from all regions are simultaneously applied to all 
objects that can be the subject of an evolution rule. 
When no further rule can be applied, the computation 
halts and we get the result in a prescribed way. On the 
contrary, if there is at least one rule that can be applied 
forever, then the computation is unsuccessful and no 
output is obtained.  
 Since its establishment, membrane computing has 
been a branch of theoretical computer science, an area 
of mathematical investigations. However, the interest 
has increased in investigating membrane computing 
into practical computing applications. Since membrane 
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computing originated from biology, question of why we 
do not use membrane computing back into where it has 
originated has arisen (Muniyandi and Abdullah, 2009).  
Most of mathematical models of biological processes 
have been done by using continuous mathematics, 
especially system of Ordinary Differential Equations 
(ODE) in which the variation of concentration of each 
chemical substance or object is modeled as a global 
entity. In this respect, it is assumed that the number of 
objects of each type in the reaction mix is large so that 
the reactions are fast. Therefore, when the number of 
objects in reactions is small and the reactions are slow, 
which is common in most biological systems, the ODE 
assumption is questionable. The ODE approach also 
makes it difficult to develop a modular and scalable 
design for hierarchical system. The stochastic, discrete 
and hierarchical characteristics of membrane computing 
is being considered as an alternative to solve these 
limitations by taking into considerations its essential 
features that are of interest for biological applications.  
 Several programming paradigms and programming 
languages were selected for implementing membrane 
systems simulators: Lisp, Haskell, MzScheme as 
functional  programming languages (Suzuki and 
Tanaka, 2000; Arroyo et al., 2003; Noval et al., 2003; 
Baranda et al., 2002) prolog, CLIPS as declarative 
languages (Cordon-Franco et al., 2004; Perez-Jimenez 
and Romero-Campero, 2004), C, Visual C++, Java as 
imperative and object-oriented languages   (Ciobanu 
and Paraschiv,  2002).  Membrane computing was also 
described as executable specifications in Maude 
(Andrei et al., 2005). Therefore, there are many 
attempts to simulate membrane computing on the 
existing computers. They have both didactic and 
scientific values. However the membrane computing is 
inherently parallel and, in many variants, they also 
exhibit an intrinsic non-determinism, hard to be 
captured by sequential computers. By simulating 
parallelism and non-determinism on a sequential 
machine, one can lose the real power of parallelism and 
attractiveness of membrane computing. 
 On one hand, maximum parallelism could be 
obtained with an unbound number of processors, 
assuming no scheduling overheads.  Therefore there is 
special interest to implement membrane computing by 
simulations on multiple processors. Parallel and cluster 
implementation for membrane computing is presented 
using C++ and Massage Passing Interface (MPI) 
(Ciobanu and Guo, 2004). In the research by Ciobanu 
and Guo (2004) a simplest variant of membrane 
computing, the transition membrane computing is 
implemented. The program is implemented and tested 
on a Linux cluster consists of 64 dual processor nodes 

in which each node consists of two 1.4 GHz Intel PIII 
CPUs with 1 GB of memory and connected by Myrinet 
as well as gigabit Ethernet. This research implies that 
this implementation achieves better performance when 
such hardware is available (Ciobanu and Guo, 2004). 
Although this could be possible direction for membrane 
computing in future, the cost of establishing the 
hardware at this stage would be paramount if we 
considering testing huge amount of membrane systems 
by setting up a processor for each membrane. 
 On the other hand, it is important to underline the 
fact that implementing a membrane system on an 
existing electronic computer cannot be a real 
implementation, it is merely a simulation. However, the 
simulations already circulated in this area have at least 
three important merits: they have structure resemblance 
to membrane structure, they have a didactic value and 
they can be used for simulating membrane systems 
which model certain real-life phenomena, with 
relevance for other domains than computer science 
itself, such as artificial life, ecology and biochemistry 
(Paun, 2000).  
 In the P Systems webpage, there are some 
applications have been described. Some of them are: 
PSim is a Java Simulator for membrane computing 
based on the metabolic algorithm; SimCM is a Java 
simulator for transition membrane computing; SubLP-
Studio is a software simulator for the Sub LP-Systems 
model, a variant of L-Systems and membrane 
computing.  
 Furthermore, different simulation strategies have 
also been employed to investigate membrane 
computing such as dynamic probabilistic (Pescini et al., 
2006), metabolic algorithm (Manca, 2008) and 
Gillespie algorithm. Dynamic probabilistic and 
metabolic algorithm are using deterministic approach. 
Gillespie algorithm is using stochastic approach.  
 This study investigates and evaluates membrane 
computing simulation strategy based on Gillespie 
algorithm compared to deterministic approach of ODE 
with experiments with two biological case studies. The 
deterministic approach refers to no randomness that 
involved in the development of future states of the 
system in which the computation evolve under time 
when every action produces a reaction and every 
reaction, in turn, becomes the action of subsequent 
reactions. The stochastic approach refers to non-
deterministic behavior of reaction in which a system’s 
future evolution is described by probability 
distributions to determine its subsequent state.  
 This investigation has two purposes.   The first is to 
examine the consequence of number of objects in the 
reaction mix in the stochastic approach compared to 
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deterministic approach and to verify how this factor 
could influence the performance of the system. The 
second motive is to study the differences in simulation 
between deterministic and stochastic approaches in the 
hierarchical system and to find out how this could have 
an effect on the activities of objects. The prey-predator 
population is used as the case study to analyze the 
former and the signal processing in the Ligand-
Receptor Networks of protein TGF-β is used to analyze 
the latter.    
  
Gillespie algorithm:  Gillespie (2001; 2003) algorithm 
provides a method for the stochastic simulation of 
systems of bio-chemical reactions. The validity of the 
method is rigorously proved and it has been already 
successfully used to simulate various biochemical 
processes. As well as this, the Gillespie’s algorithm is 
used in the implementation of stochastic calculus 
(Philips and Cardelli, 2009) and in its application to the 
modeling of biological systems (Priami et al., 2001). 
Meanwhile, multi-compartmental Gillespie algorithm 
(Perez-Jimenez and Romero-Campero, 2006) is 
developed by taking into account the fact that, with 
respect to the original algorithm where only one volume 
is studied, in membrane computing where there are 
different regions or compartments, each one can be 
seen as a volume with its own set of rules, besides the 
application of a rule inside a compartment can also 
affect the content of another one; for example the 
application of a communication rule. 
 Gillespie algorithm proposed that at each time step, 
the chemical system is in exactly one state and to 
directly simulate the time evolution of the system. 
Basically, the algorithm determines the nature and 
occurrence of the next reaction, given that the system is 
in state s at time t.  
 Gillespie algorithm has been applied to many in 
silico biological simulation recently. Kastner and Fraser 
(2002) has applied the algorithm in simulation of 
Hoxcis-regulatory mechanisms. The simulation is 
successful in reproducing key features of the wild-type 
pattern of gene expression and in silico experiments 
yield results similar to that of in vivo experiments. 
Besides that, Kierzek et al. (2001) had applied the 
algorithm to simulation of LacZ gene expression and 
uncovered relationship between frequencies of 
transcription and translation initiation on random 
fluctuations in gene expression. McAdams and Arkin 
(1997) had also studied the transcript initiation and 
translation mechanism in the cellular regulatory 
network using the algorithm and concluded on several 
behavior of stochastic gene expression mechanisms. It 

has also been used to simulate the Quorum Sensing 
(Romero-Campero and Perez-Jimenez, 2008).  
 The algorithm and its attributes are described in 
detail in DT Gillespie (2001; 2003) research.  
 
Case studies: Two biological case studies, prey-
predator population and signal processing in ligand-
receptor network of protein TGF-β are chosen to model 
them by using membrane computing formalism and 
then evaluate them by Gillespie simulator. 
 
Prey-predator population:  The prey-predator 
population (Jones and Sleeman, 2003), also known as 
the Lotka-Volterra population, is frequently used to 
describe the dynamics of biological systems in which 
two species interact, one a predator and another one its 
prey. Primary example of a prey-predator system 
comprised a plant population and an herbivorous 
animal dependent on that plant for food. The predator 
species is totally dependent on the prey species as its 
only food supply. The prey species has an unlimited 
food supply and no threat to its growth other than the 
specific predator. If there were no predators, the prey 
species grows exponentially. But there are predators, 
which must account for a negative component in the 
prey growth rate. The assumptions for the model are the 
rate at which predators encounter prey is jointly 
proportional to the sizes of the two populations and a 
fixed proportion of encounters lead to the death of the 
prey.  
 The prey are assumed to have an unlimited food 
supply and to reproduce exponentially unless subject to 
predation. The rate of predation upon the prey is 
assumed to be proportional to the rate at which the 
predators and the prey meet. Therefore the rule over the 
prey can be interpreted as: The change in the prey’s 
numbers is given by its own growth minus the rate at 
which it is preyed upon. 
 The predator rule represents the growth of the 
predator population. However, the predator population 
growth is not necessarily equal to the rate at which it 
consumes the prey. There is another rule to represent 
the natural death of the predators which is an 
exponential decay. Hence the equation represents the 
change in the predator population as the growth of the 
predator population, minus natural death. 
 
ODE model of prey-predator: The prey-predator 
equations are modeled by a pair of first order, non-
linear, differential equations used to describe the 
dynamics of biological systems in which two species 
interact, the predator and the prey. It is modeled in 
differential equations (Roberts et al., 2009) as: 
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1 2 3 4

dx dy
x(k k y) and y(k k x)

dt dt
= − = − −  

 
Where: 
y = The number of some predator  
x  = The number of its prey  
dy/dt and dx/dt = Represents the growth of the two 

populations against time; t represents 
the time in seconds  

k1, k2, k3 and k4 = Parameters representing the 
interaction of the two species 

 
 The simulation using Scilab in Fig. 1 shows the 
oscillations of  the  prey-predator  model  simulated  
by  ODE for 60 sec for x = 200 and y = 80  with  
kinetic  constants k1 = 1, k2 = 0.01, k3 = 0.05 and k4 = 
0.005. This result established the oscillation behavior of 
prey-predator model.  

 
Signal processing in the ligand-receptor network of 
TGF-β: Transforming Growth Factor Beta (TGF-β) is a 
type of protein that functions in cells (Villar et al., 
2006). In signal transduction some cells secrete TGF-β 
and also generate receptors for TGF-β. The TGF-β 
signal transduction pathway plays a central role in 
tissue homeostasis and morphogenesis. It transduces a 
variety of extracellular signals into intracellular 
transcriptional responses that control the excesses of 
cellular processes such as cell growth, migration, 
adhesion, apoptosis and differentiation. At the 
molecular level, complex signal transduction machinery 
integrates signals from the 42 known ligands of the 
TGF-β superfamily of proteins. The elements of this 
machinery incorporate the members of the two main 
receptor  families  called  type  I  and  type  II receptors.  

 

 
 
Fig. 1: Oscillation of the prey-predator model simulated 

by ODE  

Each ligand induces the formation of a receptor 
complex with type I and type II receptors, which then 
signal through the channels. The capacity of most 
ligands to bind several type I and type II receptors lead 
to a complex ligand-receptor interaction network. 
 TGF-β has particular interest in cancer research. 
For instance, in epithelial cells, it suppresses cellular 
growth and its inactivation contributes to 
tumourigenesis. The versatility of the pathway in 
eliciting different types of behavior is perhaps best 
epitomized by the pervasive, rather paradoxical ability 
of TGF-β to change its function from suppressor to 
promoter of growth in epithelial cells during tumor 
progression. It has been suggested that TGF-β can 
suppress the growth of cells around the tumor, that it 
can shut down locally the immune system and that it 
can promote angiogenesis. All these paracrine effects 
would help the growth of the tumor in vivo, where it has 
to compete with neighboring cells.  
 
ODE model of ligand-receptor network of TGF-β: 
The model intends to study the signal processing 
potential of the ligand-receptor network and receptor 
trafficking (Villar et al., 2006). The essential elements 
of this model are: Ligands induce the formation of 
receptor complexes with type I and type II receptors; 
Receptors and ligand-receptor complexes can be 
present in two spatially distinct compartments: Plasma 
membrane and internalized endosomes; The signaling 
activity is proportional to the number of ligand-receptor 
complexes that are present in the internalized 
endosomes; Receptors and ligand-receptor complexes 
are continuously internalized into endosomes and 
recycled back to the plasma membrane; Receptor 
degradation has a constitutive contribution, which is the 
same for free receptors and ligand-receptor complexes; 
Receptor degradation has a ligand-induced contribution, 
which affects only receptors that have been complexed 
with ligands.  
 In this model the concentration of ligand is denoted 
by [l]. The numbers of type I and type II receptor and 
ligand-receptor complexes in the plasma membrane are 
represented by [RI], [RII] and [lRIRII]. The numbers of 
internalized type I and type II receptor and ligand-
receptor complexes in endosomes is represented by 
[RI] , [RII] and [lRIRII] . The other parameters are: ka is 
the rate constant of ligand-receptor complex formation; 
pRI and pRII are the rates of receptor production; ki, kr, 
kcd and klid are the internalization, recycling, 
constitutive degradation and ligand-induced 
degradation rate constants; α is the fraction of active 
receptors that are recycled back to the plasma 
membrane   and   can   interact   again  with  the  ligand. 
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Fig. 2: Simulation of ODE model of TGF-β (Villar et al., 2006) 

 
The ODE model of signal processing in the TGF-β

 is 
represented as: 
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 The signaling activity of the pathway is assumed to 
be proportional to the number of internalized ligand-
receptor complexes, [lRIRII] . The ODE model used to 
analyze how different parameters affect the behavior of 
the system: Fig. 2a shows behavior of the model for 
typical trafficking rates (ki = 1/3, kr = 1/30, kcd = 1/36, 
klid = 1/4, ka = 1, α = 1, pRI = 1/8, pRII = 1/4); Fig. 2b-e 
show the behavior of the model with same parameter 
values as in 2(a), with the exception of : 2(b) (ki = 1/10, 
kr = 1/100), 2(c) (ki = 1, kr= 1/10),  2(d)  (klid = 0, α = 
0.5) and 2(e) (α = 0.5). The results are analyzed and 
described in detail in the Villar et al. (2006) research. 

 
MATERIALS AND METHODS 

 
Reactions and parameters: The two biological case 
studies are taken from research (Jones and Sleeman, 
2003; Villar et al., 2006) in which both case studies are 
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modeled by using ODE approach. For each case study, 
the objects, reactions and parameters involved in the 
biological processes are extracted from the ODE model. 
 
Kinetic constants and initial multisets: The selection 
of initial multisets and the kinetic constants are required 
to determine the computation in membrane computing 
model. This basically is an attempt to gain similar 
simulation result as achieved with the ODE model of 
the biological system to subsequently analyze whether 
membrane computing model could preserve the 
biological characteristics of the biological system better 
than the ODE model. The initial multisets and kinetic 
constants extracted from the ODE model are taken as 
initial test cases with Gillespie simulator. Then these 
test cases are altered accordingly to determine the 
appropriate multisets and kinetic constants for 
membrane computing model. The kinetic constants for 
membrane computing model of prey-predator 
population are determined through simulation tests with 
Gillespie simulator. The best kinetic constants are 
chosen when the oscillation of prey-predator population 
is obtained. The chosen kinetic constants for k1, k2, k3 
are 10, 0.02 and 15, respectively, when the initial 
numbers of preys and predators are fixed at 1000 and 
200, respectively. The kinetic constants for membrane 
computing model of TGF-β are similar to that of the 
ODE model except for the constant of ligand-receptor 
complex formation rate (ka) and for ligand-induced 
degradation rate (klid). ka is adjusted from 1-0.01 to 
accommodate the ligand concentrations changes from 
3×10−5 to 0.01 at time 0.  klid which should be 0 in the 
ODE model are adjusted to 0.01 in the membrane 
computing model to obtain peak activity of lRIRII in 
endosomes. The initial concentrations of RI and RII in 
the plasma membrane are selected through simulation 
test. The initial concentration for both RI and RII in 
plasma membranes is fixed at 1130 units.  The initial 
concentration of lRIRII in endosomes is similar to the 
ODE model and it is 40 units.   
 
Modeling: The objects, reactions and parameters 
extracted from ODE model for the case studies are used 
in modeling them using membrane computing 
formalism (Muniyandi and Abdullah, 2009). 
 
Simulation:  Multicompartment Gillespie simulator in 
C (Romero-Campero and Gheorghe, 2007) is used to 
simulate the membrane computing model.  Firstly, the 
membrane computing model is converted into System 
Biology Markup Language (SBML) notations which 
describe the components of the biological system. 
Then, the simulator will specify the list of 

compartments and the structural hierarchy and the 
initial amounts of the objects from the SBML notations. 
This is the initial state of the system and is given to the 
simulator to produce an evolution of the objects over 
simulation steps. The membrane computing simulation 
results using Gillespie algorithm are compared to the 
results of ODE approach. 
 

RESULTS 
 
Membrane computing model of prey-predator 
population: A model for prey-predator population is 
obtained by considering a membrane computing with a 
compartment contains rules describing the reactions 
between preys and predators.  The Prey-Predator model 
(PP) is represented as:  
 

PP (V, , ,R)= µ ω  
 
 The objects are preys and predators represented as 
X and Y respectively. They are: 
          

V {X,Y}=  
 
 The initial multisets are: 
 

{nX,mY}ω =  
 
where, n and m are integer multiplicities. 
 Since the system has single compartment, it only 
able to perform transformation of objects. Therefore, 
the transformation rule has the form: kR :[u] [v]→ , 
where u, v are multisets in a compartment. k is a real 
number representing the kinetic constant, which 
represent the rate of reaction between objects. 
 The  prey-predator  population  dynamics  can  be 
described  by  a  simple  set   of  rewriting  rules 
(Manca, 2008): 
 

1kR1:[X] [X,X]→  
2kR2 :[X,Y] [Y,Y]→  

3kR3:[Y] []→   

  
 R1, R2 and R3 are prey reproduction, predator 
reproduction and predator death rules, respectively. 
  
Membrane computing model of ligand-receptor 
network of TGF-β: Ligand-Receptor network of TGF-
β

 is two compartments system with 5 objects and 14 
rules. The membrane system of Ligand Receptor 
Network of TGF-β (LRN) can be represented as: 
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P E P ELRN (V, , , ,R ,R )= µ ω ω  
 
 The system contains two compartments that are 
Plasma membrane (P) and Endosome (E). Therefore its 
membrane structure can be represented as: 
 

E P[[] ]µ =  
 
 The objects are receptors and complex of ligand 
and receptors. They are Receptor type I (RI), Receptor 
type II (RII) and ligand TGF-β. The ligand TGF-β 
formed complex with the receptors called ligand 
receptors complex (lRIRII). Two objects, D1 and D2 
are introduced to accommodate rules that produce RI 
and RII respectively. The roles of these objects are 
merely to determine the continuous production of those 
receptors. Therefore the objects can be listed as follow: 
 

V {RI,RII, lRIRII,D1,D2}=  
 
 The initial multisets are:  
 

P {RI,RII,D1,D2}ω =  and E {lRIRII}ω =  

 
 The evolution rule has the form:  
 

k ' '
a a aR : u[v] u [v ]→  

 
Where: 

' 'u,v,u ,v  = Multisets and a is compartment 
k = A real number representing the kinetic 

constant 
 
 There are transformation as well as communication 
rules in LRN system. The rules used in the LRN are: 
 
Ligand receptor complex formation:  
 

[ ] [ ]1k
P P P

R 1: RI,RII lRIRII→  

 
Ligand receptor complex constitutive degradation:  
 

[ ] [ ]2k
P P P

R 2 : lRIRII →  

 
Ligand independent complex degradation:  
 

[ ] [ ]3k
P P P

R 3: lRIRII →  

 
Ligand receptor complex internalization: 
 

[ ] [ ]4k
P E E

R 4 : lRIRII lRIRII→  

RI synthesis: 
 

[ ] [ ]5k
P P P

R 5 : D1 D1,RI→  

 
RI constitutive degradation: 
 

[ ] [ ]6k
P P P

R 6 : RI →  

 
RI internalization: 

[ ] [ ]7k
P E E

R 7 : RI RI→  

 
RI recycling:  
 

[ ] [ ]8k
E E E

R 1: RI RI→  

 
Ligand Receptor complex recycling: 
  

[ ] [ ]9k
E E E

R 2 : lRIRII lRIRII→
 

 

[ ] [ ]10k
P P P

R 8 : lRIRII RI,RII→  

 
RII synthesis:  
 

[ ] [ ]11k
P P P

R 9 : D2 D2,RII→  

 
RII constitutive degradation:  
 

[ ] [ ]12k
P P P

R 10 : RII →  

 
RII internalization:  
 

[ ] [ ]13k
P E E

R 11: RII RII→  

 
RII recycling: 
 

[ ] [ ]14k
E E E

R 3: RII RII→  

 
Simulation of prey-predator population:  The PP 
model of membrane computing is simulated with 
Gillespie simulator. Firstly, the information about the 
kinetic constants, initial objects in the population and 
the rules represented in the model are extracted into 
files respectively. The kinetic constants are obtained by 
considering the role of each rule in the system and its 
contribution to Gillespie algorithm. The kinetic 
constants k1, k2, k3 are adjusted to 10, 0.02 and 15, 
respectively. The initial multiset is ω = {1000X, 200Y}. 
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Fig. 3: Oscillation of the prey-predator model 

simulated   with  Gillespie algorithm (k1 = 10, 
k2 = 0.02, k3 = 15) 

 

 
 
Fig. 4: Behavior of the model for typical trafficking 

rates 
 

 
 
Fig. 5: Behavior of the model when rate constants for 

internalization and recycling are decreased 
 
 The simulation in Fig. 3 shows the oscillations of 
the prey-predator model simulated by Gillespie 
algorithm for 100000 simulation steps.  This result 
generated the oscillation behavior for the number of 
preys and predators in prey-predator model.  

 
 
Fig. 6: Behavior of the model when rate constants for 

internalization and recycling are increased 
 
Simulation of TGF-β: Membrane computing model of 
TGF-β is evaluated by using Gillespie algorithm. This 
experiment intended to analyze how different 
parameters affect the behavior of the TGF-β system by 
using multi-compartment Gillespie simulator. The 
signaling activity will peak or stop rising at certain 
steps according to the changes in the parameters.  The 
parameters are extracted from the mathematical model 
build by Villar et al. (2006). The chosen initial 
multisets are, ωP   = {1130RI, 1 130RII, 1D1, 1D2}   
and ωE  = {401RIRII}. 
 Figure 4 shows the behavior of the model for 
typical trafficking rates. In this model, internalization 
rate (ki) represented by k4, k7 and k13, is 1/3; recycling 
rate (kr) represented by k8, k9, k10 and k14 is 1/30; 
constitutive degradation rate (kcd) represented by k2, k6 
and k12 is 1/36; ligand-induced degradation rate (klid) 
represented by k3 is 1/4; complex formation rate (ka) 
represented by k1 is 0.01; synthesis rate (pRI and pRII) for 
k5 and k11 is 8 and 4, respectively. The efficiency of 
recycling of active receptors rate, α is 1. The results 
show that signaling activity is peaking when the 
concentration of IRIRII in Endosome is around 500. 
 When the rate constants for internalization and 
recycling are decreased to 1/10 and 1/100 respectively, 
the peak of  signaling   activity   is   also   decreased   as 
shown in Fig. 5. The concentration of IRIRII  in 
Endosome is around 300. Meanwhile, when rate 
constants for internalization and recycling are increased 
to 1 and 1/10, respectively, the peak of signaling 
activity is also increased as shown in Fig. 6. The 
concentration of IRIRII in Endosome is around 600. 
 The simulation in Fig. 7 and 8 show the behavior 
of the model when the efficiency of recycling of active 
receptors rate is decreased to 0.5. Figure 7 shows that 
when ligand-induced degradation rate is decreased to 
0.01, the signaling activity is peaking when the 
concentration  of  IRIRII  in  Endosome is around 800.  
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Fig. 7: Behavior of the model when rate constants for 

ligand-induced degradation and efficiency of 
recycling of active receptors are decreased 

 

 
 
Fig. 8: Behavior of the model when recycling of active 

receptors is decreased 
 
Meanwhile, with the same ligand-induced degradation 
rate as in Fig. 4, the signaling activity is peaking when 
the concentration of IRIRII in Endosome is around 500. 

 
DISCUSSION 

 
 The investigations above demonstrates that, the PP 
model that described using differential equations is able 
to be formalized in membrane computing and this 
formalism could be used to produce similar results. 
This shows that Gillespie simulation strategy able to 
confine the membrane computing formalism that used 
to represent the dynamics of prey-predator population. 
Differential equations in PP are used to model kinetics 
of the reactions of two species. It would continuously 
vary the concentration of species in deterministic 
dynamics. In contrast, membrane computing takes into 
consideration the discrete character of the quantity of 
species in PP system by using rewriting rules. The 
inherent randomness in PP system is captured by using 
stochastic simulation strategy of Gillespie algorithm. 
Nevertheless, there are differences in performance 
between these approaches. The ODE simulation with 

the ratio of initial objects is two predators to five preys, 
takes around 10 units time to complete a cycle in the 
oscillation. Meanwhile, the Gillespie simulation with a 
ratio of initial objects is one predator to five preys takes 
15000 steps to complete a similar cycle.  This shows 
that in the ODE approach, the large ratio in the mix of 
objects in the reaction and the deterministic feature 
make the reactions fast. And in the Gillespie simulation, 
more time are needed to measure the weight of each 
reaction based on the ratio in the mix of objects and to 
subsequently choose the appropriate reaction at each 
time step.    
 The simulation results of membrane computing 
model of TGF-β are compared to the simulation results 
of ODE model generated by Villar et al. (2006). The 
simulation of (a), (b), (c), (d) and (e) in Fig. 2 are 
compared to the simulation of membrane computing 
model in Fig. 4-8, respectively.  The results show that 
approximately similar simulation results of ODE model 
could also be obtained using membrane computing 
model. The peak reached in the membrane computing 
model is almost similar to the ODE model. However, 
since objects are modeled as a global entity in the ODE 
model, the concentration of objects in each of the 
compartments could not be verified. On the contrary, 
the membrane computing model could determine the 
movement of objects from one compartment to another 
and with this the changes of concentration of objects in 
the specific compartments at each time step can be 
measured. Meanwhile, the ODE simulation takes 
around 200 time units to reach a peak and the Gillespie 
simulation takes around 2500 steps to reach the similar 
peak with same initial concentration of IRIRII in 
Endosome. This shows that more time needed to select 
a reaction in the stochastic approach at each time step. 
In the membrane computing model the numbers of 
simulation steps are almost similar to each of the 
investigation and it could not be adjusted as in the ODE 
model due to the limitations of Gillespie simulator 
which could not accommodate event objects. Event 
objects trigger the state changes in model when a 
specific event or condition is invoked. In this model, 
ligand can be considered as the event object in which 
the event at time 0 should change the ligand 
concentration from 3×10−5 to 0.01. However this 
element is not accommodated in the Gillespie simulator 
and due to this limitation the ligand concentration is 
fixed at 0.01 at all the time.  
 

CONCLUSION 
 
 The experiments above show that Gillespie 
algorithm can capture the stochastic characteristics of 
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biological system represented by membrane computing. 
In the both case studies, the simulation of membrane 
computing model with Gillespie algorithm is able to 
produce the similar result as the ODE model. Moreover 
the membrane computing model is capable of 
preserving the stochastic elements of biological 
systems. This is not the case with the ODE which is 
deterministic in nature.  This reinforce that the elements 
of biological system can be represented in a better way 
by using membrane computing model in order to be 
interpreted straightforwardly by biologist. 
 Since prey-predator population is a system with 
only a compartment and the objects are modeled as a 
global entity, the computation involved in membrane 
computing model are approximately similar to ODE 
model. Nonetheless, due to the stochastic characteristics 
of membrane computing model, more time is required 
to complete the simulation with membrane computing 
model as shown by prey-predator population. 
Meanwhile, the investigation of hierarchical system of 
two compartments in protein TGF-β shows the 
membrane computing model preserve the element and 
characteristics of hierarchical system which is ignored 
in the ODE model. In order to reduce the computation 
time in the simulation of membrane computing model 
due to its stochastic characteristics, the enhancement of 
the simulator to increase its performance should be 
dealt with. The limitation in Gillespie simulator that 
unable to capture features like event handling has 
contributed to the inability to accommodate the event as 
required by TGF-β. This is because the Gillespie 
simulator only able to capture the basic structure of 
biological systems. In the future research this 
limitations should be addressed to enhance the 
membrane computing simulator to capture other 
complex characteristics of biological system such as 
event handling.   
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