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Abstract: Problem statement: Although it is very important to test any system extensively it is 
usually too expensive to do so owing to the cost and the resources that are involved in it. Software 
testing is a very important phase of software development to ensure that the developed system is 
reliable. Some systematic approach for testing is essential to test any system and make it acceptable. 
Combinatorial software interaction testing is one which tests all possible software interactions. This 
interaction could be at various levels such as two way interaction (pairwise) or three or four or five or 
six way interactions. Combinatorial interaction testing had been used in several fields. It was reported 
in literature that pairwise combinatorial interaction testing had identified most of the software faults. 
Approach: In this study we proposed a new strategy for test suite generation, a tree generation 
strategy for pairwise combinatorial software testing, with parameters of equal values. The algorithm 
considered one parameter at a time systematically to generate the tree until all the parameters were 
considered. This strategy used a cost calculation technique iteratively for each of the leaf nodes to 
generate the test suite until all the combinations were covered. Results: The experimental data showed 
that we had achieved about 88% (or more in some cases) of reduction in the number of test cases needed 
for a complete pairwise combinatorial software interaction testing. Conclusion: Thus, the strategy 
proposed had achieved a significant reduction in minimizing the number of test cases that was generated.  
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INTRODUCTION 

 
 Software testing is a very important phase of the 
software development cycle (Bryce et al., 2005; Tsui 
and Karam, 2007). A testing criterion is a rule or 
collection of rules that imposes requirements on a set of 
test cases. Test engineers measure the extent to which a 
criterion is satisfied in terms of coverage; a test set 
achieves 100% coverage if it completely satisfies the 
criterion. Coverage is measured in terms of the 
requirements that are imposed. Partial coverage is 
defined to be the percent of requirements that are 
satisfied. Test requirements are specific things that must 
be satisfied or covered. Example: In case of ‘for 
statement’ coverage, each statement within the ‘for’ is a 
requirement. In mutation, each mutant is a requirement. 
In combinatorial testing the covering array is a 
requirement.  
 Software testing is any activity aimed at evaluating 
an attribute or capability of a program or system and 
determining that it meets its requirements. Although 
crucial to software quality and widely deployed by 

programmers and testers, software testing still remains 
an art, due to limited understanding of the principles of 
software. The difficulty in software testing stems from 
the complexity of software. Testing is more than just 
debugging. The purpose of testing can be quality 
assurance, verification and validation, or reliability 
estimation.  
 What is Combinatorial Explosion? Combinatorial 
Explosion (Grindal, 2007; Zamli et al., 2007a; 2007b) 
describes the effect of functions that grow very rapidly 
as a result of combinatorial considerations. Consider for 
instance testing the addition functionality of simple 
calculator. Restricting the input space to only positive 
integers still yields a large number of possible test 
cases, (1+1; 1+2; 1+3; :::; 1+N; 2+1; 2+2; :::;N+N), 
where N is the largest integer that the calculator can 
represent. The example stated above highlights the 
combinatorial explosion problem.  
 To be more clear on how the problem of 
combinatorial explosion could be resource and time 
consuming, consider for instance testing the customize 
dialog in the tools menu of Microsoft Word as shown in 
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Fig. 1. Even if only the toolbar tab is considered, there 
are 31 checkboxes to be tested. Therefore there are 231 
(i.e., 2147483648) combinations of test cases to be 
evaluated. If the time required for one test case to be 
evaluated is 5 min, then it would require nearly 20428 
years for a complete test of the toolbar tab alone! 
Therefore, it is very clear that combinatorial explosion 
is a serious issue which has to be considered and 
software testing always faces the problem of 
combinatorial explosion. 
 Although it is important to test any software 
exhaustively, it is not practically possible to do so in 
reality owing to the cost and resources (Chaudhuri and 
Zhu, 1992; Klaib et al., 2008; Copeland, 2004) that are 
needed for the tests to be conducted. Therefore, one 
good solution is to construct a test suite with an 
acceptable number of test cases for any t-way testing 
(Burr and Young, 1998; Cohen et al., 1997; 2008; 
Zamli et al., 2007c; Lei et al., 2009). There have been 
some solutions already proposed (Cohen et al., 1994; 
Cohen, 2004; Lei and Tai, 1998; Shiba et al., 2004), 
however the problem of constructing the minimum test 
set for t-way testing is NP-complete (Shiba et al., 2004; 
Tai and Lei, 2002) and the challenges in this field still 
remain. 
 Pairwise testing (Dalal et al., 1999; Kuhn and 
Reilly, 2002; Kuhn and Okum, 2006; Kuhn et al., 
2004; Yan and Zhang, 2008; Bryce and Colbourn, 
2006) is an approach whereby every combination of 
valid  values of all the parameters should be covered by 
 

 
 
Fig. 1: Customize tab of the Microsoft word software 

at least one test case. Combinatorial pairwise 
approaches (Grindal et al., 2005) to testing are used in 
several fields and have recently gained momentum in 
the field of software testing through software 
interaction testing. Pairwise testing provides a 
systematic approach to identify and isolate faults, 
since many faults are caused by unexpected 2-way 
interactions among system factors. Empirical results 
show that 50-97% of the software faults could be 
identified by pairwise interaction testing (Klaib et al., 
2008; Cohen et al., 1997; Lei and Tai, 1998; Dalal et al., 
1999; Kuhn et al., 2008). This study proposes an 
efficient tree generation and cost calculation strategy 
for constructing a test suite with minimum number of 
test cases. 
 

MATERIALS AND METHODS 
 
The proposed strategy: This strategy proposed 
constructs the tree based on the parameters and the 
values given to it. It considers one parameter at a time 
to construct the tree until all the values of all the 
parameters are considered. To illustrate the concept 
consider a system with parameters and values as shown 
below: 

 
• Parameter A has values A1 and A2 
• Parameter B has values B1 and B2 
• Parameter C has values C1 and C2 

 
 The algorithm first uses all the values of the first 
parameter to construct the tree. Then it uses all the 
values of the second parameter and then the third. Thus, 
the tree is constructed iteratively until all the parameters 
are considered. As a result we get all possible test cases 
generated for all the parameters by considering all its 
values. Figure 2 shows how the tree would be 
constructed.  
 Once the tree construction is over we have all the 
test cases generated and the cost calculation can begin. 
The cost calculation algorithm calculates the cost of 
each of the leaf nodes or test cases. The cost of any leaf 
node or test case is equal to the number of pairs that it 
covers in the covering array. The algorithm first 
calculates the maximum cost or maximum number of 
pairs that can be covered by any test case for the given 
set of parameters and values. Then it starts the 
calculation of the cost of each and every leaf node in 
order. Once it reaches a leaf node with the maximum 
cost it includes this node or test case into the test suite 
and also deletes all the pairs that the test case has 
covered in the covering array.  
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Fig. 2: Test tree  
 
Table 1: Test generation process 
Test cases Costs Test suite 
A1,B1,C1 3 T1 
A1,B1,C2 2 - 
A1,B2,C1 2 - 
A1,B2,C2 3 T2 
A2,B1,C1 2 - 
A2,B1,C2 3 T3 
A2,B2,C1 3 T4 
A2,B2,C2 0 - 
 
 Thus in the first iteration all the test cases included 
in the test suite are said to have the maximum cost. If 
all the pairs in the covering array are covered then the 
algorithm stops else it goes to the second iteration. Now 
the maximum cost value (Wmax) is decreased by one 
and the next best test cases i.e. test cases that can cover 
the next maximum number of pairs are chosen and 
included in the test suite and the corresponding pairs 
covered by these test cases deleted from the covering 
array. Thus the algorithm continues until all the pairs 
are covered. For the example in Fig. 2 all the test cases 
which are included in the test suite are identified in a 
single iteration as shown in Table 1. There are four test 
cases included in the test suite that covers all the 
pairwise interactions. 
 Table 1 explains how the cost calculation is done 
iteratively for Figure 2. This example is an exception 
where all the test cases needed for pairwise interaction 
have been included in a single iteration. However, it 
takes more iteration for other samples. The strategies 
work very efficiently in identifying the minimum 
number of test cases for any given parameters with 
uniform values for pairwise combinatorial testing. 
 
The tree generation strategy for test case 
generation: 
 
Strategy tree generation: 
 
Begin 
 {for the first parameter p1 } 

 T = {(v1), (v2)…… (vj) / v1, v2 and vj are values of 
p1 and are sequentially connected}  

 If n=1 then stop; 
 
 {For the remaining parameters} 
 
 For parameter pi, i =2, 3 ….n do 
 Begin 
 
 For each Test (v1, v2, ……, vi-1) in T do 
  Begin 
 
  Replicate the Test as many times as (the number 

of values of pi-1)  
  
  Add all the replicated nodes sequentially after the 

current original Test node and before the other 
Test nodes 

 
  For each value in pi do 
   Begin 
 
  Replace the original with v1 and all the replicated 

tests with (v2, v3…….vi-1, vi etc. respectively) 
Where vi is a value of pi and each of which is 
considered in order  

 
  End 
 End 
 End 
End 
 
 The tree generation strategy thus provides the 
following advantages: 
 
• A systematic method whereby all possible test 

cases are generated in order 
• The above procedure works fine with the 

parameters having any number of values. Therefore 
all parameters can have different or same values as 
any real time system to be tested would have 

• The procedure appears to generate the full tree by 
using all the values of the parameters but at every 
iteration only a set of leaf nodes are left thus 
having a list of leaf nodes ( or test cases) when the 
procedure ends 

 
 The example tree shown in Fig. 2 explains how the 
test cases are constructed manually. In reality we may 
need only the leaf nodes and all the intermediate nodes 
are not used. Therefore in order to increase the 
efficiency of the implementation we have constructed 
the same tree as in Fig. 2 using the proposed tree 
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generation algorithm. This proposed algorithm 
constructs the tree by minimizing the number of nodes. 
Minimization of the number of nodes is achieved by 
giving importance only to the leaf nodes at every stage.  
 Therefore, at each stage or iteration we look at the 
leaf nodes of the tree and generate the next level nodes 
by considering all the values of the current parameter, 
to generate the new set of nodes. The new set of leaf 
nodes from an already existing set is calculated using a 
replication strategy. The existing set of leaf nodes be 
Esoln, new set of leaf nodes be Nsoln and the number 
of values of the parameter under consideration be n. 
Then: 
 

Nsoln = Esoln * n 
 
 Let there be 4 leaf nodes and the next parameter to 
be considered has 2 values. Then the new list of nodes 
will have 8 new leaf nodes as a result. The algorithm 
considers every leaf node separately and calculates the 
number of times this particular node needs to be 
replicated with the formulae given below: 
 

The number of values of pi-1 
 
where, pi- is the ith parameter under consideration for 
constructing the new set of leaf nodes and i = 1,2,….N-
the number of parameters. In the Fig. 2 that is shown 
above consider the leaf nodes (A1, B1), (A1, B2), 
(A2, B1) and (A2, B2). To construct the next level of 
leaf nodes the parameter under consideration is C, 
which has values C1 and C2. Therefore, the node (A1, 
B1) needs to be replicated once. Now we will have 
two (A1, B1) nodes to which C1 is added to the first 
and C2 is added to the second and then the replicated 
node is included in the list of leaf nodes after the 
original node and before the node (A1, B2). The same 
is done to (A1, B2). It is replicated once and hence we 
have two of it (one original and one replicated node). 
Now C1 is added to the first (original node) and C2 is 
added to the second (replicated node). Thus we have 
(A1, B2, C1) and (A1, B2, C2). The same process is 
done for the nodes (A2, B1) and (A2, B2) and as a 
result we get (A2, B1, C1), (A2, B1, C2) and (A2, B2, 
C1), (A2,B2, C2) respectively. If there are more 
parameters the same is continued until all the 
parameters are considered. Thus, once the list of leaf 
nodes is generated we go to the next strategy of 
iterative cost calculation to construct the test suite. 
 
Test suite generation by iterative cost calculation 
strategy: Strategy test suite generation by iterative cost 
calculation: 

Begin 
 
Generate the pairwise covering array for the given 
parameters. 
 
Create a cost array corresponding to the T list.  
 
Initialize each element in the cost array to infinity 
(highest value).  
 
Let T’ be an empty set. 
 
Wmax = N(N-1)/2. // N-is the number of parameters 
 
While (covering array is not empty) do 
Begin 
 
 For each Test Tj in T do // j =1, 2,….n where there 

are n test cases in T 
Begin 
 
 Mark all the pairs that Tj covers in the covering 

array 
 
 Cost[Tj] = The number of pairs covered in the 

covering array 
 
 If (Cost[Tj] = = Wmax) 
   Begin  
 
    T’ = T’ U Tj 
 
   Delete Tj from T and its corresponding cost 

from the cost array 
 
   Delete all the marked pairs from the covering 

array 
 
  End 
 
 Unmark all the pairs marked in the covering array 
End 
 
  Wmax--; 
End 
End 
 
Table 2: Covering array 
A with B A with C B with C 
A1,B1 A1,C1 B1,C1 
A1,B2 A1,C2 B1,C2 
A2,B1 A2,C1 B2,C1 
A2,B2 A2,C2 B2,C2 
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Table 3: Experimental results 
 Exhaustive No.  Reduction 
System of test cases TBGCC (%) 
S1 8 4 50.00 
S2 27 10 62.96 
S3 81 9 88.88 
S4 32 6 81.25 
S5 64 17 73.40 
S6 16 6 62.50 

 
 The above algorithm starts by constructing the 
covering array as shown in Table 2. Table 2 shows the 
covering array for the example shown in Fig. 2. In the 
second step it creates and initializes a cost array 
corresponding to the T List. Then the algorithm iterates 
through the list of test cases T to generate the test suite 
T’ until all the pairs of the covering array are covered. 
At each iteration all the test cases with the maximum 
cost (Wmax) for that particular iteration are included in 
the test suite. Thus the algorithm guarantees identifying 
a minimum set of test cases for parameters with same 
number of values. 
 

RESULTS 
 
 We have implemented a Tree Based Test Case 
Generation and Cost Calculation Tool called TBGCC 
that includes the above strategies. We have presented 
the result for six system configurations as shown in 
Table 3. Thus, the strategies proposed works well in 
constructing a minimum number of test cases which 
covers all pairwise interactions. Table 3 shows the 
exhaustive number of test cases and the percentage of 
reduction achieved. We observe that as the number of 
parameters and its values increases there is a significant 
reduction in the number of test cases included into the 
test suite.  
 The six system configurations used are as follows: 
 
S1: 3 2-valued parameters 
S2: 3 3-valued parameters 
S3: 4 3-valued parameters 
S4: 5 2-valued parameters 
S5: 3 4-valued parameters 
S6: 4 2-valued parameters 
 

DISCUSSION 
 
 In this study we have proposed the tree based test 
case generation and iterative cost calculation strategy 
for pairwise testing. Both the strategies proposed have 
been implemented. Both the algorithms presented have 
worked well for 2-way testing with uniform parametric 
values. However the algorithms could be extended for 

non uniform values. These algorithms could also be 
extended further and used for higher t-way interaction 
testing.  
 

CONCLUSION 
 
   Both the strategies implemented in this study works 
well for uniform parametric values.  The tree generation 
strategy works well in generating the test tree. The 
iterative cost calculation strategy works well in 
achieving a good amount of reduction in the test size (in 
some cases more than 88%). Therefore, the above 
strategies proposed have generated an efficient number 
of test cases that covers all combinatorial pairwise 
interactions for uniform parametric values. 
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