
Journal of Computer Science 6 (5): 542-547, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Mohammad F.J. Klaib, School of Computer Systems and Software Engineering,
 University Malaysia Pahang, 26300 Gambang, Pahang, Malaysia

542

Tree Based Test Case Generation and Cost Calculation Strategy

for Uniform Parametric Pairwise Testing

Mohammad F.J. Klaib, Sangeetha Muthuraman, Noraziah Ahmad and Roslina Sidek
School of Computer Systems and Software Engineering,

University Malaysia Pahang, 26300 Gambang, Pahang, Malaysia

Abstract: Problem statement: Although it is very important to test any system extensively it is
usually too expensive to do so owing to the cost and the resources that are involved in it. Software
testing is a very important phase of software development to ensure that the developed system is
reliable. Some systematic approach for testing is essential to test any system and make it acceptable.
Combinatorial software interaction testing is one which tests all possible software interactions. This
interaction could be at various levels such as two way interaction (pairwise) or three or four or five or
six way interactions. Combinatorial interaction testing had been used in several fields. It was reported
in literature that pairwise combinatorial interaction testing had identified most of the software faults.
Approach: In this study we proposed a new strategy for test suite generation, a tree generation
strategy for pairwise combinatorial software testing, with parameters of equal values. The algorithm
considered one parameter at a time systematically to generate the tree until all the parameters were
considered. This strategy used a cost calculation technique iteratively for each of the leaf nodes to
generate the test suite until all the combinations were covered. Results: The experimental data showed
that we had achieved about 88% (or more in some cases) of reduction in the number of test cases needed
for a complete pairwise combinatorial software interaction testing. Conclusion: Thus, the strategy
proposed had achieved a significant reduction in minimizing the number of test cases that was generated.

Key words: Combinatorial testing, software testing, pairwise testing

INTRODUCTION

 Software testing is a very important phase of the
software development cycle (Bryce et al., 2005; Tsui
and Karam, 2007). A testing criterion is a rule or
collection of rules that imposes requirements on a set of
test cases. Test engineers measure the extent to which a
criterion is satisfied in terms of coverage; a test set
achieves 100% coverage if it completely satisfies the
criterion. Coverage is measured in terms of the
requirements that are imposed. Partial coverage is
defined to be the percent of requirements that are
satisfied. Test requirements are specific things that must
be satisfied or covered. Example: In case of ‘for
statement’ coverage, each statement within the ‘for’ is a
requirement. In mutation, each mutant is a requirement.
In combinatorial testing the covering array is a
requirement.
 Software testing is any activity aimed at evaluating
an attribute or capability of a program or system and
determining that it meets its requirements. Although
crucial to software quality and widely deployed by

programmers and testers, software testing still remains
an art, due to limited understanding of the principles of
software. The difficulty in software testing stems from
the complexity of software. Testing is more than just
debugging. The purpose of testing can be quality
assurance, verification and validation, or reliability
estimation.
 What is Combinatorial Explosion? Combinatorial
Explosion (Grindal, 2007; Zamli et al., 2007a; 2007b)
describes the effect of functions that grow very rapidly
as a result of combinatorial considerations. Consider for
instance testing the addition functionality of simple
calculator. Restricting the input space to only positive
integers still yields a large number of possible test
cases, (1+1; 1+2; 1+3; :::; 1+N; 2+1; 2+2; :::;N+N),
where N is the largest integer that the calculator can
represent. The example stated above highlights the
combinatorial explosion problem.
 To be more clear on how the problem of
combinatorial explosion could be resource and time
consuming, consider for instance testing the customize
dialog in the tools menu of Microsoft Word as shown in

J. Computer Sci., 6 (5): 542-547, 2010

543

Fig. 1. Even if only the toolbar tab is considered, there
are 31 checkboxes to be tested. Therefore there are 231
(i.e., 2147483648) combinations of test cases to be
evaluated. If the time required for one test case to be
evaluated is 5 min, then it would require nearly 20428
years for a complete test of the toolbar tab alone!
Therefore, it is very clear that combinatorial explosion
is a serious issue which has to be considered and
software testing always faces the problem of
combinatorial explosion.
 Although it is important to test any software
exhaustively, it is not practically possible to do so in
reality owing to the cost and resources (Chaudhuri and
Zhu, 1992; Klaib et al., 2008; Copeland, 2004) that are
needed for the tests to be conducted. Therefore, one
good solution is to construct a test suite with an
acceptable number of test cases for any t-way testing
(Burr and Young, 1998; Cohen et al., 1997; 2008;
Zamli et al., 2007c; Lei et al., 2009). There have been
some solutions already proposed (Cohen et al., 1994;
Cohen, 2004; Lei and Tai, 1998; Shiba et al., 2004),
however the problem of constructing the minimum test
set for t-way testing is NP-complete (Shiba et al., 2004;
Tai and Lei, 2002) and the challenges in this field still
remain.
 Pairwise testing (Dalal et al., 1999; Kuhn and
Reilly, 2002; Kuhn and Okum, 2006; Kuhn et al.,
2004; Yan and Zhang, 2008; Bryce and Colbourn,
2006) is an approach whereby every combination of
valid values of all the parameters should be covered by

Fig. 1: Customize tab of the Microsoft word software

at least one test case. Combinatorial pairwise
approaches (Grindal et al., 2005) to testing are used in
several fields and have recently gained momentum in
the field of software testing through software
interaction testing. Pairwise testing provides a
systematic approach to identify and isolate faults,
since many faults are caused by unexpected 2-way
interactions among system factors. Empirical results
show that 50-97% of the software faults could be
identified by pairwise interaction testing (Klaib et al.,
2008; Cohen et al., 1997; Lei and Tai, 1998; Dalal et al.,
1999; Kuhn et al., 2008). This study proposes an
efficient tree generation and cost calculation strategy
for constructing a test suite with minimum number of
test cases.

MATERIALS AND METHODS

The proposed strategy: This strategy proposed
constructs the tree based on the parameters and the
values given to it. It considers one parameter at a time
to construct the tree until all the values of all the
parameters are considered. To illustrate the concept
consider a system with parameters and values as shown
below:

• Parameter A has values A1 and A2
• Parameter B has values B1 and B2
• Parameter C has values C1 and C2

 The algorithm first uses all the values of the first
parameter to construct the tree. Then it uses all the
values of the second parameter and then the third. Thus,
the tree is constructed iteratively until all the parameters
are considered. As a result we get all possible test cases
generated for all the parameters by considering all its
values. Figure 2 shows how the tree would be
constructed.
 Once the tree construction is over we have all the
test cases generated and the cost calculation can begin.
The cost calculation algorithm calculates the cost of
each of the leaf nodes or test cases. The cost of any leaf
node or test case is equal to the number of pairs that it
covers in the covering array. The algorithm first
calculates the maximum cost or maximum number of
pairs that can be covered by any test case for the given
set of parameters and values. Then it starts the
calculation of the cost of each and every leaf node in
order. Once it reaches a leaf node with the maximum
cost it includes this node or test case into the test suite
and also deletes all the pairs that the test case has
covered in the covering array.

J. Computer Sci., 6 (5): 542-547, 2010

544

Fig. 2: Test tree

Table 1: Test generation process
Test cases Costs Test suite
A1,B1,C1 3 T1
A1,B1,C2 2 -
A1,B2,C1 2 -
A1,B2,C2 3 T2
A2,B1,C1 2 -
A2,B1,C2 3 T3
A2,B2,C1 3 T4
A2,B2,C2 0 -

 Thus in the first iteration all the test cases included
in the test suite are said to have the maximum cost. If
all the pairs in the covering array are covered then the
algorithm stops else it goes to the second iteration. Now
the maximum cost value (Wmax) is decreased by one
and the next best test cases i.e. test cases that can cover
the next maximum number of pairs are chosen and
included in the test suite and the corresponding pairs
covered by these test cases deleted from the covering
array. Thus the algorithm continues until all the pairs
are covered. For the example in Fig. 2 all the test cases
which are included in the test suite are identified in a
single iteration as shown in Table 1. There are four test
cases included in the test suite that covers all the
pairwise interactions.
 Table 1 explains how the cost calculation is done
iteratively for Figure 2. This example is an exception
where all the test cases needed for pairwise interaction
have been included in a single iteration. However, it
takes more iteration for other samples. The strategies
work very efficiently in identifying the minimum
number of test cases for any given parameters with
uniform values for pairwise combinatorial testing.

The tree generation strategy for test case
generation:

Strategy tree generation:

Begin
 {for the first parameter p1 }

 T = {(v1), (v2)…… (vj) / v1, v2 and vj are values of
p1 and are sequentially connected}

 If n=1 then stop;

 {For the remaining parameters}

 For parameter pi, i =2, 3 ….n do
 Begin

 For each Test (v1, v2, ……, vi-1) in T do
 Begin

 Replicate the Test as many times as (the number

of values of pi-1)

 Add all the replicated nodes sequentially after the

current original Test node and before the other
Test nodes

 For each value in pi do
 Begin

 Replace the original with v1 and all the replicated

tests with (v2, v3…….vi-1, vi etc. respectively)
Where vi is a value of pi and each of which is
considered in order

 End
 End
 End
End

 The tree generation strategy thus provides the
following advantages:

• A systematic method whereby all possible test

cases are generated in order
• The above procedure works fine with the

parameters having any number of values. Therefore
all parameters can have different or same values as
any real time system to be tested would have

• The procedure appears to generate the full tree by
using all the values of the parameters but at every
iteration only a set of leaf nodes are left thus
having a list of leaf nodes (or test cases) when the
procedure ends

 The example tree shown in Fig. 2 explains how the
test cases are constructed manually. In reality we may
need only the leaf nodes and all the intermediate nodes
are not used. Therefore in order to increase the
efficiency of the implementation we have constructed
the same tree as in Fig. 2 using the proposed tree

J. Computer Sci., 6 (5): 542-547, 2010

545

generation algorithm. This proposed algorithm
constructs the tree by minimizing the number of nodes.
Minimization of the number of nodes is achieved by
giving importance only to the leaf nodes at every stage.
 Therefore, at each stage or iteration we look at the
leaf nodes of the tree and generate the next level nodes
by considering all the values of the current parameter,
to generate the new set of nodes. The new set of leaf
nodes from an already existing set is calculated using a
replication strategy. The existing set of leaf nodes be
Esoln, new set of leaf nodes be Nsoln and the number
of values of the parameter under consideration be n.
Then:

Nsoln = Esoln * n

 Let there be 4 leaf nodes and the next parameter to
be considered has 2 values. Then the new list of nodes
will have 8 new leaf nodes as a result. The algorithm
considers every leaf node separately and calculates the
number of times this particular node needs to be
replicated with the formulae given below:

The number of values of pi-1

where, pi- is the ith parameter under consideration for
constructing the new set of leaf nodes and i = 1,2,….N-
the number of parameters. In the Fig. 2 that is shown
above consider the leaf nodes (A1, B1), (A1, B2),
(A2, B1) and (A2, B2). To construct the next level of
leaf nodes the parameter under consideration is C,
which has values C1 and C2. Therefore, the node (A1,
B1) needs to be replicated once. Now we will have
two (A1, B1) nodes to which C1 is added to the first
and C2 is added to the second and then the replicated
node is included in the list of leaf nodes after the
original node and before the node (A1, B2). The same
is done to (A1, B2). It is replicated once and hence we
have two of it (one original and one replicated node).
Now C1 is added to the first (original node) and C2 is
added to the second (replicated node). Thus we have
(A1, B2, C1) and (A1, B2, C2). The same process is
done for the nodes (A2, B1) and (A2, B2) and as a
result we get (A2, B1, C1), (A2, B1, C2) and (A2, B2,
C1), (A2,B2, C2) respectively. If there are more
parameters the same is continued until all the
parameters are considered. Thus, once the list of leaf
nodes is generated we go to the next strategy of
iterative cost calculation to construct the test suite.

Test suite generation by iterative cost calculation
strategy: Strategy test suite generation by iterative cost
calculation:

Begin

Generate the pairwise covering array for the given
parameters.

Create a cost array corresponding to the T list.

Initialize each element in the cost array to infinity
(highest value).

Let T’ be an empty set.

Wmax = N(N-1)/2. // N-is the number of parameters

While (covering array is not empty) do
Begin

 For each Test Tj in T do // j =1, 2,….n where there

are n test cases in T
Begin

 Mark all the pairs that Tj covers in the covering

array

 Cost[Tj] = The number of pairs covered in the

covering array

 If (Cost[Tj] = = Wmax)
 Begin

 T’ = T’ U Tj

 Delete Tj from T and its corresponding cost

from the cost array

 Delete all the marked pairs from the covering

array

 End

 Unmark all the pairs marked in the covering array
End

 Wmax--;
End
End

Table 2: Covering array
A with B A with C B with C
A1,B1 A1,C1 B1,C1
A1,B2 A1,C2 B1,C2
A2,B1 A2,C1 B2,C1
A2,B2 A2,C2 B2,C2

J. Computer Sci., 6 (5): 542-547, 2010

546

Table 3: Experimental results
 Exhaustive No. Reduction
System of test cases TBGCC (%)
S1 8 4 50.00
S2 27 10 62.96
S3 81 9 88.88
S4 32 6 81.25
S5 64 17 73.40
S6 16 6 62.50

 The above algorithm starts by constructing the
covering array as shown in Table 2. Table 2 shows the
covering array for the example shown in Fig. 2. In the
second step it creates and initializes a cost array
corresponding to the T List. Then the algorithm iterates
through the list of test cases T to generate the test suite
T’ until all the pairs of the covering array are covered.
At each iteration all the test cases with the maximum
cost (Wmax) for that particular iteration are included in
the test suite. Thus the algorithm guarantees identifying
a minimum set of test cases for parameters with same
number of values.

RESULTS

 We have implemented a Tree Based Test Case
Generation and Cost Calculation Tool called TBGCC
that includes the above strategies. We have presented
the result for six system configurations as shown in
Table 3. Thus, the strategies proposed works well in
constructing a minimum number of test cases which
covers all pairwise interactions. Table 3 shows the
exhaustive number of test cases and the percentage of
reduction achieved. We observe that as the number of
parameters and its values increases there is a significant
reduction in the number of test cases included into the
test suite.
 The six system configurations used are as follows:

S1: 3 2-valued parameters
S2: 3 3-valued parameters
S3: 4 3-valued parameters
S4: 5 2-valued parameters
S5: 3 4-valued parameters
S6: 4 2-valued parameters

DISCUSSION

 In this study we have proposed the tree based test
case generation and iterative cost calculation strategy
for pairwise testing. Both the strategies proposed have
been implemented. Both the algorithms presented have
worked well for 2-way testing with uniform parametric
values. However the algorithms could be extended for

non uniform values. These algorithms could also be
extended further and used for higher t-way interaction
testing.

CONCLUSION

 Both the strategies implemented in this study works
well for uniform parametric values. The tree generation
strategy works well in generating the test tree. The
iterative cost calculation strategy works well in
achieving a good amount of reduction in the test size (in
some cases more than 88%). Therefore, the above
strategies proposed have generated an efficient number
of test cases that covers all combinatorial pairwise
interactions for uniform parametric values.

REFERENCES

Bryce, R. and C.J. Colbourn, 2006. Prioritized

interaction testing for pairwise coverage with
seeding and avoids. Inform. Software Technol. J.,
48: 960-970.

Bryce, R., C.J. Colbourn and M.B. Cohen, 2005. A
framework of greedy methods for constructing
interaction tests. Proceeding of the 27th
International Conference on Software Engineering,
May 2005, ACM Press, St. Louis, MO., USA.,
pp: 146-155. DOI: 10.1145/1062455.1062495

Burr, K. and W. Young, 1998. Combinatorial test
techniques: Table-based automation, test
generation and code coverage. Proceeding of the
International Conference on Software Testing,
Analysis and Review, Oct. 1998, San Diego, CA.,
pp: 503-513.

Chaudhuri, D.K.R. and T. Zhu, 1992. A recursive
method for construction of designs. Discrete Math.,
106: 399-406.

Cohen, D.M., S.R. Dalal, A. Kajla and G.C. Patton,
1994. The Automatic Efficient Test Generator
(AETG) system. Proceeding of the 5th
International Symposium on Software Reliability
Engineering, Monterey, (SREM’94), CA., USA.,
pp: 303-309.

 http://aetgweb.argreenhouse.com/papers/1994-issre
Cohen, D.M., S.R. Dalal, M.L. Fredman and G.C.

Patton, 1997. The AETG system: An approach to
testing based on combinatorial design. IEEE Trans.
Software Eng., 23: 437-444. DOI:
10.1109/32.605761

Cohen, M.B., 2004. Designing test suites for software
interaction testing. Degree of Doctor of Philosophy
Thesis, Department of Computer Science, The
University of Auckland.
http://cse.unl.edu/~myra/papers/mbcdiss.pdf

J. Computer Sci., 6 (5): 542-547, 2010

547

Cohen, M.B., C.J. Colbourn and A.C.H. Ling, 2008.
Constructing strength three covering arrays with
augmented annealing. Discrete Math., 308: 2709-2722.

Copeland, L., 2004. A Practitioner’s Guide to Software
Test Design. Artech House, Boston, MA., ISBN:
9781580537919, pp: 294.

Dalal, S.R., A. Jain, N. Karunanithi, J.M. Leaton and
C.M. Lott et al., 1999. Model based testing in
practice. Proceeding of the International
Conference on Software Engineering, May 1999,
pp: 285-294.

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.41.4894&rep

Grindal, M., J. Offutt and S.F. Andler, 2005.
Combination testing strategies: A survey. Software
Test. Verific. Reliab., 15: 167-200.

Grindal, M., 2007. Handling combinatorial explosion in
software testing. Ph.D. Thesis, Dissertation No.
1073, Linkoping Studies in Science and
Technology, University of Skövde and Enea,
Sweden.
http://www.artes.uu.se/publications/Grindal.html

Klaib, M.F.J., K.Z. Zamli, N.A.M. Isa, M.I. Younis and
R. Abdullah, 2008. G2Way-a backtracking strategy
for pairwise test data generation. Proceeding of the
15th IEEE Conference on Asia-Pacific Software
Engineering, Dec. 3-5, IEEE Xplore Press, Beijing,
China, pp: 463-470. DOI: 10.1109/APSEC.2008.49

Kuhn, D.R. and M.J. Reilly, 2002. An investigation of
the applicability of design of experiments to
software testing. Proceeding of the 27th
NASA/IEEE Software Engineering Workshop,
Dec. 5-6, IEEE Computer Society, Washington
DC., USA., pp: 69-80. DOI:
10.1109/SEW.2002.1199454

Kuhn, D.R. and V. Okum, 2006. Pseudo-exhaustive
testing for software. Proceeding of the 30th Annual
IEEE/NASA Software Engineering Workshop,
Apr. 24-28, IEEE Computer Society, Washington
DC., USA., 2006, pp: 153-158.
http://portal.acm.org/citation.cfm?id=1264143

Kuhn, D.R., D.R. Wallace and A.M. Gallo, 2004.
Software fault interactions and implications for
software testing. IEEE Trans. Software Eng.,
30: 418-421.

Kuhn, D.R., Y. Lei and R. Kacker, 2008. Practical
combinatorial testing: beyond pairwise. IT
Profession. J., 10: 19-23.
http://csrc.nist.gov/groups/SNS/acts/itpro-final.pdf

Lei, Y. and K.C. Tai, 1998. In-parameter-order: A test
generation strategy for pairwise testing. Proceeding
of the 3rd IEEE International Symposium on High-
Assurance Systems Engineering, June 21-21,
Washington DC., USA., pp: 254-261. DOI:
10.1109/HASE.1998.731623

Lei, Y., R. Kacker, D. Kuhn, V. Okun and J. Lawrence,
2009. IPOG/IPOD: Efficient test generation for
multi-way software testing. J. Software Test.
Verific. Reliab., 18: 125-148. DOI: 10.1002/stvr

Shiba, T., T. Tsuchiya and T. Kikuno, 2004. Using
artificial life techniques to generate test cases for
combinatorial testing. Proceeding of the 28th
Annual International Conference on Computer
Software and Applications, Sept. 28-30, IEEE
Computer Society, Washington DC., USA., pp: 72-77.

 http://portal.acm.org/citation.cfm?id=1025478
Tai, K.C. and Y. Lei, 2002. A test generation strategy

for pairwise testing. IEEE Trans. Software Eng.,
28: 2004, 109-111.

Tsui, F.F. and O. Karam, 2007. Essentials of Software
Engineering. 2nd Edn., Jones and Bartlett
Publishers, Massachusetts, USA., ISBN:
9780763785345, pp: 416.

Yan, J. and J. Zhang, 2008. A backtracking search tool
for constructing combinatorial test suites. J. Syst.
Software, 81: 1681-1693.

Zamli, K.Z., M.F.J. Klaib and N.A.M. Isa, 2007a.
Combinatorial explosion problem in software
testing: Issues and practical remedies. Proceeding
of the 3rd Malaysian Software Engineering
Conference-Striving for High Quality Software,
(SHQS’07), Selangor, Malaysia, pp: 24-28.

Zamli, K.Z., N.A.M. Isa, M.F.J. Klaib, Z.H.C. Soh and
C.Z. Zulkifli, 2007b. On combinatorial explosion
problem for software configuration testing.
Proceeding of the International Conference on
Robotics, Vision, Information and Signal
Processing, July 20-22, Penang, Malaysia, pp: 442-446.

Zamli, K.Z., N.A.M. Isa, M.F.J. Klaib and S. Norbaya,
2007c. A tool for automated test data generation
(and execution) based on combinatorial approach.
Int. J. Software Eng. Appli., 1: 19-34.

