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Abstract: Problem statement: This study evaluated two different Bayesian classifiers; tree 
augmented Naive Bayes and Markov blanket estimation networks in order to build an ensemble model 
for prediction the severity of breast masses. The objective of the proposed algorithm was to help 
physicians in their decisions to perform a breast biopsy on a suspicious lesion seen in a mammogram 
image or to perform a short term follow-up examination instead. While, mammography is the most 
effective and available tool for breast cancer screening, mammograms do not detect all breast cancers. 
Also, a small portion of mammograms show that a cancer could probably be present when it is not 
(called a false-positive result). Approach: Apply ensemble of Bayesian classifiers to predict the 
severity of breast masses. Bayesian classifiers had been selected as they were able to produce 
probability estimates rather than predictions. These estimated allow predictions to be ranked and their 
expected costs to be minimized. The proposed ensemble used the confidence scores where the highest 
confidence wins to combine the predictions of individual classifiers. Results: The prediction 
accuracies of Bayesian ensemble was benchmarked against the well-known multilayer perceptron 
neural network and the ensemble had achieved a remarkable performance with 91.83%  accuracy 
on training subset and 90.63% of test one and outperformed the neural network model. 
Conclusion: Experimental results showed that the Bayesian classifiers are competitive techniques in 
the problem of prediction the severity of breast masses.  
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INTRODUCTION 

 
Importance of machine learning in breast cancer 
diagnosis: Breast cancer is a very common and serious 
cancer for women. It is the second largest cause of 
cancer deaths among women. Mammography is one of 
the most used methods to detect this kind of cancer 
(Choua et al., 2004; Singh and Al-Mansoori, 2000). 
The value of mammography is that it can identify breast 
abnormalities with 85-90% accuracy. In literature, 
radiologists show considerable variation in interpreting 
a mammography. In such cases, Fine Needle Aspiration 
Cytology (FNAC) is adopted. But, the average correct 
identification rate of FNAC is only 90% (Elmore et al., 
1994). It is necessary to develop better identification 
method to recognize the breast cancer. Computer aided 
diagnosis can help to reduce the number of false 
positives and therefore reduce the number of 
unnecessary biopsies. Statistical techniques and 
artificial intelligence methods have been successfully 
used to predict the breast cancer by several researchers 
(Kovalerchuck et al., 1997; Pendharkar et al., 1999). 
The objective of these identification techniques is to 

assign a patient to either a benign group that does not 
have breast cancer or a malignant group who has strong 
evidence of having breast cancer. These diagnostic 
problems are widely discussed as classification 
problems (Han and Kamber, 2006; Larose, 2006; 
Nisbet et al., 2009; Johnson and Wichern, 2002). 
However, there is a strong argument to treat such 
problems as tasks of learning class probability estimates 
from data.  
 
Probability estimation classifiers: A probability 
estimation classifier estimates the conditional 
probability distribution of the values of the class 
attribute given the values of the predictive attributes. 
Such classification models which represent conditional 
distribution will be concise and easy to comprehend. 
They include Naive Bayes, logistic regression, decision 
tree and Bayesian network. Naive Bayes and logistic 
regression models can only represent simple 
distributions, whereas decision tree models can 
represent arbitrary distributions, but they fragment the 
training dataset into smaller and smaller pieces, which 
unavoidably yield less reliable probability estimates. 
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Bayesian Network (BN) is the best-known classifier 
that able to provide the probability distributions 
concisely and comprehensibly (Witten and Frank, 
2005). BN is a probabilistic model that consists of 
dependency structure and local probability. BN is 
drawn as a network of nodes, one for each attribute, 
connected by directed edges in such a way that there 
are no cycles; a directed acyclic graph. The major 
advantage of BN is the ability to represent and hence 
understand knowledge. Recently, there is increasing 
attention regarding the application of BN in medical 
contexts (Linda et al., 2008). BN classifiers have been 
evaluated as potential tools for the diagnosis of breast 
cancer using two real-world databases in (Cruz-
Ramirez et al., 2007; 2009). In this study, two different 
implementations of BN have been investigated for the 
prediction of severity of breast masses; Tree 
Augmented Naive Bayes (TAN) and Markov Blanket 
Estimation (MBE) learning algorithms. Both algorithms 
use Naive Bayes classifier as a starting point for the 
learning procedure. The class attribute is the single 
parent of each node of a Naive Bayes network: TAN 
considers adding a second parent to each node. While 
MBE ensures that every attribute in the data is in the 
Markov blanket of the node that represents the class 
attribute. This study proposes an ensemble of three BN 
networks to efficiently predict the severity of breast 
masses. Ensemble based methods enable an increase in 
generalization performance by combining individual 
BN networks train on the same dataset. The idea is to 
employ multiple models to do better than a single on 
often even the retrospective best of the individual 
models. The performances of these BNs and their 
ensemble are benchmarked against the Multilayer 
Perceptron Neural Network (MLPNN). The 
mammographic mass dataset contains BI-RADS 
assessment, attributes, the patient’s age and type of 
severity (Elter et al., 2007; American College of 
Radiology, 1998). Each mass sample has to be classified 
into a benign or a malignant group.  
 

MATERIALS AND METHODS 
 
About the dataset: A radiologist is a physician who 
analyzes the radiograph to decide if there is a tumor or 
just normal tissue and whither the existing tumor is 
malignant (cancerous) or benign (gentle). Due to the 
variations in mammography interpretations, the 
problem is gotten ahead to the pathologist. A 
pathologist is a physician who analyzes cells and tissues 
under a microscope to determine whether they are 
malignant or benign. The pathologist’s report helps 
characterize specimens taken during biopsy or other 
surgical procedures and helps determine treatment. To 

determine a tumor’s histologic grade, a sample of breast 
cells must be taken from a breast biopsy, lumpectomy 
or mastectomy. The purpose of this study is to increase 
the ability of physicians to determine the severity 
(benign or malignant) of a mammographic mass lesion 
from BI-RADS attributes and the patient’s age. The 
objective is to reduce the high number of unnecessary 
breast biopsies. The six BI-RADS reporting categories 
represent gradations of the likelihood that a cancer exists, 
from lowest to highest probability. The mammographic 
mass dataset used here has been collected at the 
Institute of Radiology of the University Erlangen-
Nuremberg between 2003 and 2006 (Elter et al., 2007). 
BI-RADS stands for the Breast Imaging and Reporting 
Data System and was developed by the American 
College of Radiology (ACR), in collaboration with 
multiple other organizations in 1991 to present answers 
concern about ambiguous mammography reports with 
indecisive conclusions from radiologists (American 
College of Radiology, 1998). The data set is available 
by http access of the University of California at Irvine 
(UCI) machine learning repository (Asuncion and 
Newman, 2007; Blake and Merz, 1998). Table 1 shows 
the mammographic mass dataset which contains the BI-
RADS assessment, the patient’s age and three BI-
RADS attributes together with the ground truth (the 
severity attribute) for 516 benign and 445 malignant 
masses that have been identified on full field digital 
mammograms. The values of ordinal attribute represent 
categories with some intrinsic ranking while they 
nominal attribute represent categories with no intrinsic 
ranking in nominal type. 
 
Table 1: Attributes of mammographic mass dataset 
 Type Values and labels No. of 
  --------------------------------------- missing 
Attribute  Value Label values 
BI-RADS Ordinal 0 Assessment incomplete 2 
assessment  1 Negative 
(non-predictive)  2 Benign findings 
  3 Probably benign 
  4 Suspicious abnormality 
  5 Highly suggestive of 
   malignancy 
Ages Integer  Patient’s age in years 5 
Mass shape Nominal 1 Round 31 
  2 Oval 
  3 Lobular 
  4 Irregular 
Mass margin Nominal 1 Circumscribed 48 
  2 Microlobulated 
  3 Obscured 
  4 Ill-defined 
  5 Speculated 
Mass density Ordinal 1 High 76 
  2 Iso 
  3 Low 
  4 Fat-containing 
Severity Binominal 0 Benign 
(target class)  1 Malignant 
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Bayesian networks: Several classification algorithms 
have been developed in the field of data mining 
information systems. Some of these algorithms are able 
to produce probability estimates rather than predictions. 
That is for each class label, they estimate the 
probability that a given sample belongs to that class. 
Probability estimates are often more useful than plain 
predictions. They allow predictions to be ranked and 
their expected costs to be minimized. BNs among other 
models are ones of these classification approaches. The 
benefits of BNs are that they present well-founded 
methods to represent any arbitrary probability class 
distributions concisely and comprehensibly in a 
graphical manner. BN model is drawn as a network of 
nodes, one for each attribute, connected by directed 
edges in such a way that there are no cycles. In other 
words, a BN is a directed acyclic graph consisting of 
(Cheng et al., 1998): 
 
• Nodes (or small circles), that stand for random 

attributes; edges (or arrows), which represent 
probabilistic relationships among these attributes 

• For each node, there exists a local probability 
distribution attached to it that depends on the state 
of its parents 

 
 BN consists of a qualitative part (structural model) 
that presents a visual representation of the interactions 
among attributes and a quantitative part (set of local 
probability distributions), which provides probabilistic 
inference and numerically measures the effect of 
attributes on each other. The qualitative and 
quantitative parts mutually determine a unique joint 
probability distribution over the attributes in a specific 
problem (Cooper, 1999). The main idea within the 
structure of BN is that of independence. This idea refers 
to the case where the instantiation of a specific attribute 
leaves other two attributes independent of each other. 
BN model allows the representation of a joint 
probability distribution in a compact and economical 
way by making extensive use of conditional 
independence, as shown in Eq. 1: 
 

n

1 2 n i a i
i 1

P(X ,X ,...,X ) P(X | P (X ))
=

= ∏  (1) 

 
Where: 
P(X1, X2, ..., Xn) = The joint probabilities of attributes 

X1, X2, ..., Xn 

Pa(X i) = The set of parent nodes of Xi; i.e., 
nodes with edges pointing to Xi 

P(Xi|Pa(X i)|)) = The conditional probability of Xi 
given its parents 

 Equation 1 shows how to pick up a joint 
probability from a product of local conditional 
probability distributions; such representation may be 
used to solve classification problems (Linda et al., 
2008; Cruz-Ramirez et al., 2007; 2009; Cheng et al., 
1998). The learning algorithm for BN has to contain 
two components:  
 
• A function for evaluating a given network 

(goodness of fit measure)  
• A method for searching through the space of 

possible networks  
 
 Normally, the learning algorithm starts with a 
given ranking of the attributes (i.e., nodes). Then it 
processes each node in turn and greedily adds edges 
from previously processed nodes to the current one. In 
each step it selects the edge that maximizes the 
network’s score. If there is no additional enhancement, 
attention goes to the next node. The Naive Bayes (NB) 
classifier is one of the most effective methods to build 
BNs (Friedman et al., 1997). However, it works well 
only for simple distributions. Usually, NB network is 
used as a starting point for the search. In this study, two 
learning algorithms have been used to build the BN 
classifiers starting NB network; Tree Augmented Naive 
Bayes (TAN) and Markov Blanket Estimation (MBE) 
learning algorithms. 
 
Markov Blanket Estimation (MBE): MBE is a 
learning algorithm to create BN model by identifying 
the conditional independence relationships among the 
attributes. This algorithm ensures that every attribute in 
the dataset is in the Markov blanket of the node that 
represents the class attribute (Witten and Frank, 2005). 
A node’s Markov blanket includes all its parents, 
children and children’s parents. Hence, if a node is 
absent from the class attribute’s Markov blanket, its 
value is completely irrelevant to the classification. 
Using statistical tests, this algorithm finds the conditional 
independence relationships among the nodes and uses 
these relationships as constraints to construct a BN 
structure (Baesens et al., 2002; Frey et al., 2003). This 
algorithm is referred to as a dependency-analysis-based 
or constraint-based algorithm. The Conditional 
Independence (CI) test investigates whether two 
attributes are conditionally independent. There are two 
common methods to compute the CI test; Pearson chi-
square test and log likelihood ratio test (Witten and 
Frank, 2005). The Likelihood Ratio (LR) tests for 
target-predictor independence by calculating a ratio 
between the maximum probability of a result under two 
different hypotheses. While the Pearson Chi-square 
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(CHI) asses for target-predictor independence by using 
a null hypothesis that the relative frequencies of 
occurrence of observed events follow a specified 
frequency distribution. MBE explores not only the 
relations between the class target and predictive 
attributes, but also the relations among these predictive 
attributes themselves. Both independence tests; 
Likelihood ratio and Chi-square have been used to 
predict and contribute to the proposed ensemble. 
 
Tree Augmented Naive Bayes (TAN): TAN is an 
improvement over the naive Bayes model as it allows 
for each attribute to depend on another attribute in 
addition to the target attribute. The class attribute is the 
single parent of each node of a NB network: TAN 
considers adding a second parent to each attribute; the 
predictive attributes are allowed to point to each other 
(as long as no cycles are introduced). The decision to 
add these edges between attributes is made on the 
basis of a specific goodness of fit measure, such as 
Maximum Likelihood (ML), Bayesian Dirichlet (BD) 
(Heckerman et al., 1995), Bayesian Information 
Criterion (BIC) (Grunwald et al., 2005), or Akaike 
Information Criterion (AIC) (Bozdogan, 2000), among 
others. If the class node and all corresponding edges are 
excluded from consideration and assuming that there is 
exactly one node to which a second parent is not added, 
the resulting classifier has a tree structure rooted at the 
parentless node. There is an efficient algorithm for 
finding the set of edges that maximizes the network’s 
likelihood based on computing the network’s maximum 
weighted spanning tree (Witten and Frank, 2005). This 
method associates a weight to each edge corresponding 
to the mutual information between the two variables. 
The TAN learning procedure is as follows: 
 
• Assume the training dataset D, X, Y as input  

• Build the tree-like network structure over the 
predictive attribute X by using the maximum 
weighting spanning tree 

• Add Y as a parent of every Xi where 1≤i≤n 
• Estimate the parameter of TAN (conditional 

probability of each node given the value of its 
parents) using ML criterion 

 
 When the dataset is small it is preferable to use the 
BD criterion to prevent the overfitting of the model 
(Heckerman et al., 1995). The proposed ensemble 
acquires the contribution from TAN classifier with ML 
test to predict the severity of the breast masses. 
 
Ensemble of Bayesian classifiers: An ensemble of 
classifiers is a collection of models whose individual 
predictions are combined by weighted averaging or 
voting or other majority algorithm. Dietterich (2000) 
states that “A necessary and sufficient condition for an 
ensemble of classifiers to be more accurate than any of 
its individual members is if the classifiers are accurate 
and diverse”. Ensemble algorithms such as bagging, 
boosting, or random forests enhance the classification 
performance by combining multiple base classifiers to 
work as a “team-work” for decision-making (Bauer and 
Kohavi, 1999). Such team-work approaches not only 
increase the classification accuracy, but also reduce the 
chances of overtraining since the team avoids a biased 
decision by integrating the different predictions from 
the individual classifiers. The ensemble presented here 
combines the predictions of three Bayesian classifiers; 
TAN, MBE with Likelihood independence test and 
MBE with Pearson Chi-square. Figure 1 shows the 
component nodes of the proposed ensemble. The 
ensemble stream is implemented in SPSS Clementine 
data mining workbench using Intel core 2 Dup CPU 
with 2.00 GHz (SPSS Clementine 12.0, 2007). SPSS 
stands for Statistical Package for the Social Sciences.

 

 
 
Fig. 1: Data mining stream for the prediction of the severity of breast masses with ensemble of Bayesian networks 
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Clementine software uses client/server architecture to 
distribute requests for resource-intensive operations to 
powerful server software, resulting in faster 
performance on larger datasets. It is very appropriate as 
a mining engine with its interface and manipulating 
modules that allow data examination, manipulation and 
exploration   of   any   interesting   knowledge patterns. 
The software offers many modeling techniques, such as 
prediction, classification, segmentation and association 
detection algorithms. The brief description of each 
component is given in the following. 
 Mammographic mass dataset node is connected 
directly to SPSS file that contains the source data. The 
dataset was explored for incorrect, inconsistent. Only, 
the age attribute is normalized and no preprocessing for 
other attributes. They are ordinal and nominal data 
types.  
 Type node specifies the field metadata and 
properties that are important for modeling and other 
work in Clementine. These properties include 
specifying a usage type, setting options for handling 
missing values, as well as setting the role of an attribute 
for modeling purposes.  
 Select node is used to ensure that every sample has 
a specified class label and discard all samples with 
undefined ones.  
 Partition node is used to generate a partition field 
that splits the data into separate subsets for the training 
and test the models. In this study, the dataset was 
partitioned by the ratio 70:30% for training and test 
subsets respectively.  
 MBE_LR and MBE_CHI classifier nodes are used 
to train and test a Bayesian classifier with MBE 
learning algorithm and Likelihood Ratio (LR) and 
Pearson Chi-square tests respectively. MBE algorithm 
selects the set of nodes in the dataset that contain the 
target attribute’s parents, its children and its children’s 
parents. Essentially, MBE identifies all the attributes in 
the network that are needed to predict the target class. 
Figure 2a and b illustrate the network topologies with 
LR and CHI tests respectively. It is clear that there is no 
direct relation between the class attribute and the mass 
density in both topologies. It could be concluded that 
mass density attribute is out of the Markov blanket of 
the severity class. The MBE model with LR conditional 
probability test is assumed to be more accurate and 
experimental results presented here assure this 
assumption. The predicting accuracy of MBE with 
Likelihood ratio test is 91.54 and 90.63% of training 
and test samples respectively. While the same algorithm 
with Pearson Chi-square test achieves 89.45 and 
87.85% predicting success of the same datasets. 
However, with large datasets there exists may be a 

processing time-penalty due to the high number of 
attributes involved. Accuracies are computed as defined 
later by Eq. 2. 
 

 
(a) 
 

 
(b) 

 

 
(c) 

 
Fig. 2: Topology of the Bayesian networks. (a) MBE 

learning algorithms with Likelihood ratio test; 
(b) MBE learning algorithms with Pearson Chi-
Square test; (c) TAN learning algorithm 
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 TAN classifier node is to train and test a BN model 
with TAN learning algorithm where each predictive 
attributes are allowed to depend on each other in 
addition to the target attribute, thereby increasing the 
classification accuracy. In order to prevent overfitting 
of the classifier, the maximum likelihood is used to 
control the estimation of the conditional probability for 
each node given the values of its parents. The TAN 
classifier achieves 87.07 and 84.72% success of 
classification the training and test samples respectively. 
 Ensemble node is used to combine the scored 
predictions of the three classification models to obtain 
more accurate results than can be gained from any of 
the individual models. The proposed system uses 
confidence scores and the highest confidence wins. 
However, SPSS Clementine provides variety of 
majority rules to combine individual predictions 
including: Voting, confidence-weighted voting and 
highest confidence wins.  
 Neural-MLPNN classifier node is trained using the 
well-known back propagation method with pruning 
(Thimm et al., 1996). It begins with a large network 
and removes the weakest neurons in the hidden and 
input layers as training proceeds. The stopping criterion 
is set based on time; maximum one minute is allowed 
and the algorithm saved only the network model with 
the best accuracy achieved. Training MLPNN with 
pruning method on the mammographic mass dataset for 
minute has achieved accuracy of 81.13 and 80.90% of 
training and test samples respectively. Prunning method 
attains structure of three layers; input, hidden and the 
output layers with 12, 2 and 1 neuron respectively. 
 Filter, analysis and evaluation nodes are used to 
select and rename the classifier outputs in order to 
compute the performance statistical measures and to 
graph the evaluation charts.  
 

RESULTS AND DISCUSSION 
 
 The performance of each classification model is 
evaluated using three statistical measures; classification 
accuracy, sensitivity and specificity. These measures 
are defined using True Positive (TP), True Negative 
(TN), False Positive (FP) and False Negative (FN). A 
true positive decision occurs when the positive 
prediction of the classifier coincided with a positive 
prediction of the physician. A true negative decision 
occurs when both the classifier and the physician 
suggest the absence of a positive prediction. False 
positive occurs when the system labels a benign case; a 
negative one as a positive one (malignant). Finally, 
false negative occurs when the system labels a positive 
case as negative (benign). Classification accuracy is 

defined as the ratio of the number of correctly classified 
cases and is equal to the sum of TP and TN divided by 
the total number of cases N: 
 

TP TN
Accuracy

N

+=  (2) 

 
 Sensitivity refers to the rate of correctly classified 
positive and is equal to TP divided by the sum of TP 
and FN. Sensitivity may be referred as a True Positive 
Rate: 
 

TP
Sensitivity

TP FN
=

+
 (3) 

 
 Specificity refers to the rate of correctly classified 
negative and is equal to the ratio of TN to the sum of 
TN and FP. False Positive Rate equals (100-
specificity): 
 

TN
Specificity

TN FP
=

+  
(4) 

 
 The mammographic mass dataset contains 961 
sample with class distribution: benign: 516; malignant: 
445. There are 162 missing values of different 
attributes. The whole dataset is divided for training the 
models and test them by the ratio of 70:30% 
respectively. The training set is used to estimate each 
model parameters, while the test set is used to 
independently assess the individual models. Three 
models have been trained to predict the severity of 
breast masses; MBE_LR, MBE_CHI and TAN. These 
models are applied again to the entire dataset and to any 
new data. The predictions are combined to build the 
Bayesian ensemble and compared with the original 
classes to identify true positives, true negatives, false 
positives and false negative values. These values have 
been computed to construct the confusion matrix. The 
performance is benchmarked with well-known multi-
layer neural network. 
 Table 2 shows the computed confusion matrix, 
each cell contains the raw number of samples classified 
for the corresponding combination of desired and actual 
model outputs. Table 3 presents the values of the 
statistical parameters (sensitivity, specificity and total 
classification accuracy) of the predictive models. 
Sensitivity and Specificity approximates the 
probability of the positive and negative labels being 
true. These results show that the sensitivity, specificity 
and classification accuracy of Bayesian network with 
MBE learning method and likelihood ratio test are 
better  than  those  of  the  other  individual classifiers. 
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Table 2: Confusion matrices of different models of training and test 
data partitions 

   Training data Test data 
 Desired ----------------------- ---------------------- 
Model output Benign Malignant Benign Malignant 
Bayesian-MBE_LR Benign 331 33 133 19 
 Malignant 24 285 8 128 
Bayesian-MBE_CHI Benign 327 37 133 19 
 Malignant 34 275 16 120 
Bayesian-TAN Benign 305 59 124 28 
 Benign 28 281 16 120 
Bayesian ensemble Benign 331 33 133 19 
(MBE_LR, Benign 22 287 8 128 
MBE_CHI, TAN) 
MLPNN Benign 286 78 117 35 
 Malignant 49 260 20 116 
 
Table 3: The values of the statistical measures for different models of 

training and test data partitions 
  Measures (%) 
  ------------------------------------------- 
Model Partition Accuracy Sensitivity Specificity 
Bayesian-MBE_LR Training 91.53 92.23 90.93 
 Test 90.63 94.12 87.50 
Bayesian-MBE_CHI Training 89.45 89.00 89.84 
 Test 87.85 88.24 87.50 
Bayesian-TAN Training 87.07 90.94 83.79 
 Test 84.72 88.24 81.58 
Bayesian ensemble Training 91.83 92.88 90.93 
 Test 90.63 94.12 87.50 
MLPNN Training 81.13 84.14 78.57 
 Test 80.90 85.29 76.97 
 
The ensemble classifier has achieved slightly better 
results for training samples and the same results for 
test ones. The enhancement in ensemble predictions 
comes from both MBE_CHI and TAN classifiers; both 
classifiers give the right prediction with higher 
confidence. 
 Gain and Receiver Operating Characteristic 
(ROC) curves have been used to compare the 
performances of different predictive models. The gain 
curves summarize the utility that can be expected by 
using the respective predictive models, as compared to 
using baseline information only. Figure 3a shows the 
cumulative gain curves of the Bayesian models, the 
proposed ensemble and the neural network for test 
samples. The higher lines indicate better models, 
especially on the left side of the chart. The higher 
curves are of the ensemble and the MBE_LR. ROC 
procedure is a common way to evaluate the 
performance of classification models in which the 
class attribute has two categories by which samples 
are classified. It is a plot of the sensitivity against one 
minus the specificity for different values of the 
threshold. Figure 3b shows the ROC curve of the 
experimental results. Comparison is usually in terms of 
the area under the curve, which gives a summary of 
performance over the whole range of values and is 
independent of the prevalence of the condition unlike 
the accuracy, which weights the sensitivity and 
specificity in proportion to their prevalence.  

Table 4: Area under the ROC curve 
Model Area 
MBE_LR 0.914 
MBE_CHI 0.890 
TAN 0.866 
Ensemble 0.916 
NN 0.813 

 

 
(a) 

 

 
(b) 

 
Fig. 3: ROC curve and gain chart for class severity = 1 

of all classifiers. (a) gain chart; (b) ROC curve 
 

ROC measures the probability that for any pair 
of patients, one of whom with an event and one 
without, the patient for whom the event has occurred 
will have a higher predicted probability of the event 
than the other. Table 4 shows the area under the ROC 
curve for each predicting model. The MBE_LR has 
the best value among individual models and ensemble 
has achieved slightly better with 0.916 of ROC area 
curve. 

 
CONCLUSION 

  
 Bayesian network classifiers have three major 
advantages; they have the ability to deal with missing 
values, they explicitly provide the conditional 
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probability distributions of the values of the class 
attribute given the values of the other input attributes 
and finally they are easy to comprehend. For these fine 
proprieties, the awareness to apply and use Bayesian 
network classifiers in the medical context is increasing. 
The main goal of this study is to show the effectiveness 
of these classifiers and their ensemble in the prediction 
of breast mass severity. Two different implementations 
of Bayesian network have been applied on the 
mammographic mass dataset; tree augmented Naive 
Bayes and Markov blanket estimation learning 
algorithms. The later may be adapted using the 
Likelihood ratio test or the Pearson chi-square one. The 
dataset contains BI-RADS assessment, age, three BI-
RADS attributes and type of severity. The dataset has a 
lot of missing values. The performances of Bayesian 
classifiers and their ensemble are benchmarked against 
the multilayer perceptron neural network using statistical 
measures, gain and ROC charts. Bayesian network 
classifiers outperformed the multilayer perceptron neural 
network on the prediction of the severity of breast masses 
and they provide an elegant way to rank the attributes 
that most significantly indicate the likelihood of default. 
On the basis of these results it can be concluded that 
Bayesian network classifiers may be a competitive 
alternative to other techniques in medical applications. 
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