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Abstract: Problem statement: With the demand for effective network security is increasing, it 
becomes necessary to find the strength and weaknesses of the existing cryptographic methods. 
Vigenere cipher, a classical cipher is analyzed for its strength against a cipher only attack. Approach: 
The cipher texts so selected were of various sizes up to 1 Kb. A biologically inspired algorithm, 
Particle Swarm Optimization (PSO) was applied to the problem of crypt analyzing the Vigenere 
cipher. PSO was an optimization technique and its used on the problem of optimizing the fitness 
function designed for Vigenere cipher was performed. Results: It was seen that PSO is able to find the 
keyword employed and the other possible combinations for the keyword. Conclusion: PSO is better 
than genetic algorithm to solve Vigenere cipher and can be used to find the keyword with lesser size. 
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INTRODUCTION 

 
 Cryptanalysis is the process of finding the 
Keyword employed for enciphering a plaintext and 
hence using the keyword found, finding the Plaintext of 
the given cipher text. Cryptanalysis is required to find 
the strengths and weaknesses of the cipher method 
employed and if the method is found to be vulnerable to 
cipher attacks. If the method employed is not strong 
against various attacks then it becomes necessary to 
reinforce the methodology employed (Al-Saidi and 
Said, 2009) or to find an alternate ciphering method. A 
symmetric cipher is the one which employs the same 
keyword for enciphering and deciphering. Such a 
simple classical symmetrical cipher is Vigenère cipher. 
Several methods have been employed for the 
cryptanalysis of classical ciphers. The application of 
Genetic Algorithm (GA) to Vigenère cipher 
(Purusothaman et al., 2009) was performed and it was 
shown that GA is capable of breaking the Vigenère 
cipher. A fitness function was employed to find the 
probable keyword and then dictionary analysis was 
performed to find the exact key. 
 Particle swarm optimization (Park et al., 2010; 
AlRashidi and El-Hawary 2009; Montes de Oca et al., 
2009, M. S. Ramli et al., 2009) has demonstrated its 

usefulness as a optimization tool in recent years. The 
advantage of PSO is that this can be effectively used for 
multimodal problems and hence all suitable candidates 
satisfying the fitness function can be obtained. Thus the 
problem is reduced in finding the candidate solution 
which is one among the probable candidates. This was 
applied to the problem of Vigenère cipher and the 
results were found  
 
Vigenère cipher: The Vigenère cipher proposed by 
Blaise de Vigenère from the court of Henry III of 
France in the sixteenth century is a progressive 
polyalphabetic substitution method. The set of related 
mono alphabetic substitution rules makes use of 26 
Caesar Ciphers with shifts 0-25. The table used for 
encryption can be created for simple alphabet A to E 
which can be extended to all letters from A- Z is shown 
in Table 1. Each row in a table can be created by a 
simple shift of the previous row. Thus a Vigenère 
cipher of keyword length one can be considered as a 
Caesar cipher as this involves only one shift of the 
alphabets and thus forming a Caesar cipher. 
 To derive the cipher text using the Table, for each 
letter in the plain text, one finds the intersection of the 
row given by the corresponding keyword letter and the 
column given by the plaintext letter.  
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Table 1: Vigenère table for alphabet A-E 
Plaintext key A B C D E 
A A B C D E 
B B C D E A 
C C D E A B 
D D E A B C 
E E A B C D 

 
 It can be modelled as C=(P +K) %26 where C is 
the cipher text and P,K are Plaintext and Key word 
letters respectively. Decipherment of an encrypted 
message is equally straightforward. This time one uses 
the keyword letter to pick a row of the Table and then 
traces down the row to the column containing the 
cipher text letter. The index of that column is the plain 
text letter. It can be modelled mathematically as, P = 
(C-K) % 26 .The main problem in breaking Vigenère 
ciphers is that the key length is unknown. Once the key 
length has been established, the cryptanalysis is reduced 
to analysing a number of Caesar ciphers, one for each 
character of the key. There are a few different 
approaches to finding the key length. The original 
method presented by Kasiski involves finding the 
distances between repeated patterns in the crypto text 
and factoring the most frequently occurring distances. 
Vigenère masks the frequency with which a character 
appears in a language: One letter in the cipher text 
corresponds to multiple letters in the plaintext and thus 
it makes the use of frequency analysis more difficult. It 
can be also seen that any message encrypted by a 
Vigenère cipher is a collection of as many Caesar shift 
ciphers as there are letters in the key. 
 
Particle swarm optimisation: The goal of an 
optimization task is to find the parameters in the search 
space that maximizes the profit or minimizes the cost of 
a function. Particle Swarm Optimisation (PSO) is an 
optimization technique used to explore the search space 
of a given problem to find the value of the parameters 
involved in the function. This method  described by 
Kennedy and Eberhart (1995)  originates from the 
swarm intelligence of some animals and evolutionary 
computation. The particles or members of the swarm 
fly through a multidimensional search space looking for 
a potential solution. Each particle adjusts its position in 
the search space from time to time according to the 
flying experience of its own and of its neighbours (or 
colleagues). For a D-dimensional search space the 
position of the ith particle is represented as Xi = (xi1, 
xi2, …, xiD). Each particle maintains a memory of its 
previous best position Pbesti = (pi1, pi2… piD). 

 The best one among all the particles in the 
population is represented as Pgbest = (pg1, pg2… pgD). The 
velocity of each particle is represented as Vi = (vi1, vi2, 
… viD). In every iteration, P vector of the particle with 
best fitness in the local neighbourhood, designated Pg 
and the P vector of the current particle are combined to 
adjust the velocity along each dimension and a new 
position of the particle is determined using that 
velocity. The two basic equations which govern the 
working of PSO are that of velocity vector and position 
vector given by: (Eq. 2) 
 

t 1 t 1 t t t t
id id 1 1 id id 2 2 gd gdv wv c r (p x ) c r (p x )+ += + − + −  (1) 

 
t 1 t t 1
id id idx x v+ += +  (2) 

 
 The first part of Eq. 1 represents the inertia of the 
previous velocity, the second part is the cognition part 
and it tells us about the personal thinking of the 
particle, the third part represents the cooperation 
among particles and is therefore named as the social 
component (Li, 2010; Kennedy et al., 2001). 
Acceleration constants c1, c2 (Kennedy, 1997; Eberhart 
and Shi, 2001) and inertia weight w (Shi and Eberhart, 
1998) are the predefined by the user and r1, r2 are the 
uniformly generated random numbers in the range of 
[0, 1]. Particle’s velocities on each dimension are 
clamped to a maximum velocity Vmax. The velocity in 
a dimension is limited to Vmax , if the sum of 
accelerations cause the velocity on that dimension to 
exceed Vmax, which is 26 (as 26 alphabets in English 
Language). This process is repeated for a 
predetermined number of iterations or till a desired 
fitness value is reached. 
 

MATERIALS AND METHODS 
 
 Plaintexts of various sizes up to 1Kb were taken for 
this experiment. These texts were taken mainly from 
different textbooks. Keywords of varying lengths up to 
thirty were used and the plain texts were converted into 
cipher texts using Vigenère method. To crack these 
cipher texts first we need to know the keyword length. 
These lengths were found using Coincidence test 
(Friedman, 1922; Ganesan and Sherman 1994). Once the 
keyword length is known then the problem is to find each 
character in the keyword. Frequency analysis (Friedman, 
1980) is a useful tool which gives the average number of 
each alphabet normally present in an English text and it 
was employed. Fitness function based on the frequency 
of the occurrence of each alphabet was designed by using 
monogram and bigram statistics of English alphabets. 
Code was written using MATlab R2008 and was run on 
dual core personal computer. 



J. Computer Sci., 7 (11): 1633-1638, 2011 
 

1635 

Coincidence test: Since there are 26 letters in English 
alphabet, the probability of randomly choosing any 
given alphabet is 1/26 for all 26 alphabets. Similarly the 
probability of having the same alphabet twice is 1/26 * 
1/26. If P(x) is the probability of ‘x’ occurring in any 
given plain text then P(a) = 0.32/400, P(b) = 0.6/400, 
P(c) = 0.12. Thus probability of ‘a’ followed by ‘a’ is 
0.32/400 *0.32/400 , P(cc) = 0.12/400 * 0.12/400 and 
P(zz) = 0.1/400 * 0.1/400. The sum of the square of the 
probabilities of each alphabet gives the value of 0.0683 
for plaintexts and 0.0385 for random texts. This gives 
us the coincidence count. These values can be used 
effectively to identify when two texts are likely to 
contain meaningful information in the same language 
using the same alphabet, to discover periods for 
repeating keys and to uncover many other kinds of 
nonrandom phenomena within or among cipher texts. 
 The same idea can be applied to a single text, 
where the sample is in effect compared with itself. 
Mathematically it can be computed the index of 
coincidence IC for a given letter-frequency 
distribution as: (Eq. 3) 

 
c

i ii 1
n (n 1)

IC
N(N 1) / c

=
−

=
−

∑  (3) 

 
where, N is the length of the text and n1 through nc are 
the frequencies (as integers) of the c letters of the 
alphabet (c = 26 for English). The sum of the ni is 
necessarily N. 
 The products n(n-1) count the number of 
combinations of n elements taken two at a time. Each of 
the ni occurrences of the i-th letter matches each of the 
remaining ni -1 occurrences of the same letter. There are 
a total of N(N-1) letter pairs in the entire text and 1 / c 
is the probability of a match for each pair, assuming a 
uniform random distribution of the characters. Thus, 
this formula gives the ratio of the total number of 
coincidences observed to the total number of 
coincidences that one would expect.  
 The expected average value for the I.C. can be 
computed from the relative letter frequencies fi of the 
source language: (Eq. 4) 
 

c 1
ii 1

exp ected

f
IC

1 / c
== ∑   (4) 

 
 If all c letters of an alphabet were equally 
distributed, the expected index would be 0.0683 for 
plaintext. So, this value can be calculated for every 
keyword length. The keyword length to which the given 
cipher text gives a coincidence value around 0.06 

corresponds to the original keyword length. For 
example if the keyword length is 4 then for keyword 
lengths of 4 ,8 and 12 etc will have IC count of 0.06 . 
The maximum length can be safely assumed to be the 
keyword length. 
 
Fitness function: To implement this fitness function, 
the frequency of each character in the decrypted text is 
calculated. This frequency is normalized by dividing it 
by the total number of characters in the file. This 
normalized frequency is then subtracted from the 
expected frequency of the character in normal English 
text. The absolute value of this difference is taken. The 
differences for all characters are added together. The 
normalization takes care that this value always lies 
between 0 and 1. The bigram is an extension of 
unigram to two characters. Now rather than calculating 
frequency of individual character, we calculate 
frequency of “pairs” of letters. For example, a pair “an” 
will always appear more frequently than pair “bt”. 
Again statistics for the frequencies of these pairs are 
also available. These statistics are compared with the 
statistics obtained from the decrypted text. To 
implement this fitness function, the frequency of each 
pair of letters in the decrypted text is calculated. This 
frequency is normalized by dividing it by the total 
number of pairs in the file. This normalized frequency 
is then subtracted from the expected frequency of the 
pair in normal English text. The absolute value of this 
difference is taken. The differences for all pairs are 
added together. The normalization takes care that this 
value always lies between 0 and 1. The fitness function 
based on monogram and bigram is given by: (Eq. 5) 
 

zo

i 1

zo zo

i 1 j 2

fitness a * SF(1) DF(i)

b * SDF(1) DDF(1)

=

= =

= − +

−

∑

∑∑
 (5) 

   
 Here the letters A…Z are referenced by the indices 
1…26, SF(i) is the standard frequency of character i in 
English, DF(i) is the measured frequency of the character 
i in English. SDF is the standard bigram frequency and 
DDF is the decoded bigram frequency. If the 
experimental key is closer to the key employed then this 
difference will be less and if this difference is large then 
the experimental key is not closer to the key employed. 
Now this problem has been reduced to an optimisation 
problem where it is required to reduce the error or the 
difference in the fitness function to minimum.  
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Application of PSO: The objective is to minimize the 
error in the objective function which is the difference of 
the expected frequency count with the observed 
frequency count of the decrypted cipher text. Since we 
deal with statistical values it is possible to get exact 
keyword only if the cipher texts are large enough (say > 
50 Kb). With cipher texts which are less than 1Kb it is 
difficult to get the exact keyword or to put in other 
words, there may be multiple candidates satisfying the 
minimum fitness value and hence it is possible to have 
several alternate solutions. Mathematically we have a 
multimodal function which has several valleys. PSO is 
capable of solving multimodal objective functions and 
it was applied to this problem. Swarm size was selected 
as 100 and the number of iterations was limited to 25. 
Each character in the keyword is 26 dimensional since 
the character maybe any alphabet from A-Z.  
 PSO was applied and it was seen that the global 
minima in each character was intimated to other 
members in the swarm. The individual moved towards 
the global minima if necessary and found its local best 
solution. This process was repeated till the overall 
fitness of swarm reached a tolerance value or 100 
iterations whichever was earlier. 
 The parameters of the optimization function were: 
 
• Acceleration constants c1,c2 = 2.0 
• Inertia weight w = 0.9 
• Random weights r1,r2 = 0.4 
 

RESULTS 
 
 Sample plain texts were taken from different text 
books and keywords of varying length 5-30 were 
applied and their corresponding cipher texts were 
obtained. Thus the program was tested for different 
cipher texts with different keyword lengths. The search 
space size is calculated based on brute force attack. The 
results are tabulated in Table (2 and 3).  
 Normally, the keyword length will be around ten as 
it may be difficult to remember bigger length keywords. 
So, experiments were conducted to determine the 
minimum required size of the cipher text so that the 
keywords can be found without error. 
 

DISCUSSION 
 
 The solution space for each cipher text was 
performed with different weights to the digram 
frequency. The process was repeated with two different 
weights and the intersection of these spaces were 
selected and this provides the reduced search space.  

Table 2: Reduction in search space for different keyword lengths 
  Alternate  
  solutions Reduction 
Keyword Size of obtained in search 
length search space (average) space (%) 
5 11881376 2 100 
10 1.411E+14 2 100 
15 1.677E+21 6 100 
20 1.992E+28 8 100 
25 2.367E+35 8 100 

 
Table 3: Minimum size of cipher text required for different keyword 

lengths 
Keyword length Size of cipher text required (minimum) 
5 200 characters 
10 400 characters 
25  1024 characters (1 Kb) 

 
 From Table 2,It was seen that for smaller 
keyword lengths, the search space is so reduced that it 
provides one or two possible solutions, but as the 
keyword length increases then the possible solutions 
also increases , but by a small value. It can be seen 
that the maximum possible solutions obtained was 
only 8 and it was for keyword length of 25. Hence, the 
minimum number of cipher characters required for 
different keyword lengths was found and shown in 
Table 3. It can be safely stated that 1kb of cipher text 
is sufficient to cryptanalyse Vigenere cipher whose 
keyword length is less than or equal to 25. 
 When tested with keyword lengths greater than 25, 
it was found that one or two characters were 
erroneously identified. This was due to the fact that 
only 1024 cipher text characters were available and 
when they are distributed to 30 characters of keyword 
then for each character of the keyword we would get 
less than 35 characters (approx), which is not sufficient 
for applying frequency analysis. But it was seen that 
even with this lesser characters it was able to find most 
of the characters in the keyword. If the cipher text is 
>1Kb or if the keyword length is less than 30 then it is 
possible to find the keyword using reduced search space 
provided by the PSO with cipher text of size 1Kb. 
 It was also considered that a keyword length of 10 
was normally the length of keyword employed. When it 
becomes large people tend to forget the keyword and 
hence tests were carried out with cipher texts of size 100 
and 200 characters and with keyword lengths of 8 and 
10. It was already established that for keyword lengths 
greater than 5 we need at least 400 characters of cipher 
text to find the keyword. With the limitation of available 
cipher text size reduced to 100 and 200 characters it was 
not able to find the whole keyword but a portion of the 
keyword was found as shown in Fig. 1 and 2. 
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Fig. 1: Percentage of keyword found for keyword 

length of 8 with varying size of cipher text 
 

 
 
Fig. 2: Percentage of keyword found for fixed cipher 

text size with varying length of keyword 
 
 Minimum 30% of keyword was found when the 
cipher texts were of 100 characters and when the size of 
cipher texts were doubled the minimum keyword 
percentage found rose to 80%. It was also seen that for 
60% of the given cipher texts, all the keyword 
characters were found, where as it was only 20% for 
100 character cipher texts. 
 For a given cipher text of size 200 characters it was 
able to find minimum of 60% of keyword characters for 
a keyword length of 10 characters. But, when the 
keyword length got decreased to 8, nearly 90% of 
keyword characters were found. In both the cases, few 
100% keyword characters were also found. 
 

CONCLUSION 
 
 Experiments were conducted on Vigenère cipher 
with varying keyword and cipher text sizes. It was seen 
that the size of the reduced solution space using PSO is 
negligible as shown in Table 2. Further, from Table 3 we 

were able to calculate the minimum required size of 
cipher text required to find the keyword for different 
keyword sizes. It was also seen that even if the available 
cipher text is lesser than that the required size then more 
than 50% of the keyword can be found depending on 
the size of cipher text available. Thus it can be 
concluded that PSO performs better than Genetic 
algorithm with lesser amount of cipher text. The 
amount of cipher text required is only 25% of the 
cipher text required for genetic algorithm 
(Purusothaman et al., 2009). With 1Kb of available 
cipher text a keyword size of 25 was easily found. 
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