
Journal of Computer Science 7 (11): 1659-1666, 2011 
ISSN 1549-3636 
© 2011 Science Publications 

Corresponding Author: Kamsuriah Ahmad, Strategic Information System Research Group, Faculty of Information Science and Technology, 
 University Kebangsaan Malaysia, Malaysia 

 1659 

 
Normalized Relational Storage for Extensible  

Markup Language (XML) Schema 
 

1Kamsuriah Ahmad and 2Reduan Samad 
1Strategic Information System Research Group 

Faculty of Information Science and Technology,  
University Kebangsaan Malaysia 

2School of ICT, Asia e-University, Malaysia 
 

Abstract: Problem statement: The use of XML as the common formats for representing, exchanging, 
storing, integrating and accessing data posses many new challenges to database systems. Most of 
application data are stored in relational databases due to its popularity and rich development 
experiences over it. Therefore, how to provide a proper mapping approach from XML model to 
relational model become the major research problems. Current techniques for managing XML in 
relational technology consider only the structure of an XML document and ignore its semantics as 
expressed by keys and functional dependencies. Approach: In this study we present an algorithm for 
generating an optimal design for XML in relational setting. The algorithm is based on computing a set 
of minimum covers for all functional dependencies on a universal relation when given XML 
Functional Dependencies (XFDs) and the schema information. However we need to deal with the 
hierarchical nature of XML and to define XFDs in this structure. Results: We show that our algorithm 
is efficient in terms of reducing data redundancy and preserving semantic expression. 
Conclusion/Recommendations: Being able to infer XML functional dependencies constraints to 
relational views of XML data is a first step towards establishing a connection between XML and its 
relational representation at the semantic level. 
 
Key words: XML Functional Dependencies (XFDs), schema mapping, semantic constraints, 

functional dependencies, relational databases, decision problems 

 
INTRODUCTION 

 
 Extensible Markup Language (XML) is fast 
emerging as the dominant standard for data interchange 
and data representation on the web (Amirian and 
Alesheikh, 2008; Ahmad, 2011). It’s nested; self-
describing structure provides a simple yet flexible 
means for application to model and exchange data. Data 
exchange involves transformations of data and therefore 
the “transformed” data can be seen as a view of its 
source. Thus, the problem we investigate is how 
constraints are propagated to views. Even though XML 
can exist as a database but the capability is very limited 
when compared with sophisticated relational database 
storage (Fadda et al., 2008; Alfred et al., 2010). We 
expect that the needs to convert data formats between 
XML and relational models will grow substantially 
(Ahmad, 2011). But the problem with XML is that it is 
only syntax and does not carry the semantics of the 
data. Recently, keys (Hartmann et al., 2008), foreign 

keys (Hartmann et al., 2010) and functional 
dependencies (Shahriar and Liu, 2009) have been 
proposed to capture semantic constraints and various 
aspects of these proposals have found their way into 
XML-Data and XML Schema. Among these proposals, 
functional dependencies for XML are important to 
capture the semantics of XML data. However, in 
relational databases, the semantic constraints have been 
proved useful in recognizing keys, normalizing to make 
a good design, preventing update anomaly, reduced 
redundancy and etc. Functional Dependencies (FDs) are 
critical part of its semantics and FDs for XML, called 
XFDs are the counterpart of those for relational data. 
They must be taken advantage of in the process of 
mapping. A natural question to ask, therefore, is how 
information about constraints in FDs can be used to 
generate a good database schema. In this study, we 
analyze constraints for XML as expressed in functional 
dependenciesand proposed an algorithm on how to 
preserve these constraints in relational setting. 



J. Computer Sci., 7 (11): 1659-1666, 2011 
 

1660 

 
 
Fig. 1: An XML document about faculty 
 
 Our motivations of mapping XML to relational are 
based on two aspects: (i) Data redundancies and (ii) 
Preserving semantic constraints. Data redundancies are 
usually due to some form of dependencies among the data, 
such as functional dependencies and multi-valued 
dependencies as expressed in relational databases. 
Traditional functional dependencies are not suited for 
XML data because of the structural difference between the 
two types of database. On the other hand, dependencies 
naturally exist among data no matter what format the data 
is in. An array of researches has addressed the issues on 
storage strategy (Chen et al., 2003; Lv and Yan, 2006; 
Xing et al., 2007; Patel and Atay, 2007; Ferraggine et al., 
2009; Kim and Peng, 2011; Huiling and Feng, 2010; Feng 
and Jingsheng, 2009) unfortunately the resulting relational 
applications do not offer the required guarantee for the 
preservation of data integrity and reduced data 
redundancy. 
 In this study we illustrate how in the presence of 
functional dependencies, data redundancy can be 
detected in XML documentsand how to produce 
redundancy free relational schema, based on the 
information given. At the same time, the semantic 
constraints, as well as the content and the structure 
of XML will be preserved. As an example, consider 
the XML tree representation of a faculty document 
shown in Fig. 1. Given this document and our 
understanding of its semantics, we may wish to state 
the following constraints: 
 
C1: In the context of the whole document, each 

course is uniquely identified by CNO 
C2: If two students with the same SNO, then they 

must have the same SNAME 
C3: Each student will get their GRADE for every 

course they enrolled 

 The first constraint is an example of an absolute 
key, where the key is defined over the whole document 
and the third is an example of relative key, where the 
key is defined within the same context, in the 
terminology used by Hartmann et al. (2008). The 
second constraint is an example of a functional 
dependency (Hartmann et al., 2010; Shahriar and Liu, 
2009) and cannot be expressed as a key constraint. 
Even though attempts to define functional dependencies 
have been made by several groups of researcher, they 
have different expressive power and some cannot 
express the constraint that the student number 
determines the student name for all Student nodes in the 
entire document as shown in Fig. 1. This is because 
Student nodes are located in different paths (under both 
Course and Faculty nodes). Even though the algorithm 
proposed in Chen et al. (2003); Lv and Yan (2006); 
Xing et al. (2007) and Kim and Peng (2011) tried to 
map XML to relational schema in the presence of 
functional dependencies by using redundancy reducing 
strategies, but they ignored the redundancy that cause 
by the redundant nodes as in Courses and Students. 
Also, the Student nodes by the value of “Adam” were 
stored twice in the trees; inability to detect these 
redundancies will caused redundancies to occur in the 
relational views. It is important to check for these 
redundancies before the mapping process to take place 
and without the semantic knowledge the same data will 
be stored multiple times. With the information about 
constraint in the schema, we can generate an optimal 
relational database and this is the basis of our study. So 
the objectives of the study are as follows: 

 
• To propose a more general definition of functional 

dependencies that will detect data 
• redundancy in XML documents efficiently 
• To propose an algorithm for generating a good 

relational view of an XML data 
• To prove that the algorithm is able to reduce data 

redundancy and preserve semantic constraints. 
 

MATERIALS AND METHODS 
 
 The methodologies used in this study are as the 
following: 
 
• Capture the structure of XML data by reading the 

DTD file, which is the formal description of XML 
and then generate the DTD schema 

• By using the reduced-redundancy and constraint-
preserving algorithm (i) remove redundant node 



J. Computer Sci., 7 (11): 1659-1666, 2011 
 

1661 

that caused by the redundant elements, (ii) remove 
system generated IDs if there exist value-based 
keysand preserved the Parent-child relationship 

• By mapping paths in XFDs to relational attributes, 
we will get a set of minimum covers and produce a 
relational storage for the XML data which 
preserves the content and the information structure 
of the original XML document, removes 
redundancy as indicated by the XFDsand enforced 
efficiency by using relational primary key and 
foreign key constraints 

 
 In relational databases, the normalization process 
reduces or eliminates data redundancies in generating a 
good relational database designs. Similar to relational 
databases, updates in an XML structure may cause 
anomalies if the XML data is redundant. A schema (or 
data definition) language is used to specify structures 
and constraints for a model. We study the publication of 
relational data in XML documents, the propagation of 
its constraints and the associated decision problems. 
Constraints are fundamental importance in databases 
and is also important to many forms of hierarchically 
structured data including XML documents, particularly 
in the data mapping. In our algorithm, semantic 
information in keys and functional dependencies were 
used to guide the schema design. We ignored the 
ordered features provided by XML in our mapping 
algorithm. If the features are so important, we can 
simply add another parameter to our schema to capture 
the ordered structures. We omit them, as it is not the 
focus of our study. Before the mapping algorithm is 
proposed, the notations used in this study will be 
defined, which are similar with the one in Kim and 
Peng (2011); Lv and Yan (2006) and Shahriar and Liu 
(2009) but with minor modification to suit our mapping 
strategies. The definition are as follows. 
 
XML Tree: As well known, an XML document can be 
represented by a tree. We call elements that have sub-
elements and/or attribute as a complex element and 
denote it as E1. And element that only have a single 
value as a simple element and denote as E2. Let E1 and 
E2 be disjoint sets of element names, A be a set of 
attribute names, E = E1 union E2, and E and A be 
disjoint. Element names and attribute names are called 
labels. An XML tree is defined to be T = (V, lab, ele, 
att, val, root), where (1)V is a set of nodes; (2) Lab is a 
mapping V -> E uA which assigns a label to each node 
in V; a node v in V is called a complex element node if 
lab(v)∈E1, a simple element node if lab(v)∈E 2 and an 
attribute node of lab(v)∈A. (3) Ele and att are functions 
from the set of complex elements in V: for every v ∈ V, 

if lab(v)∈1, then ele(v) is a set of element nodesand 
att(v)is a set of attribute nodes with distinct labels. (4) 
val is a function that assigns a values to each attribute 
or simple element. (5) Root is the unique root node 
labeled with complex element name r. (6) if v’∈ ele(v) 
union att(v), then we call v’ a child of v. The parent-
child relationships defined by ele and att will form a 
tree rooted at root. 
 
XML DTD: DTD describes the structure of XML 
documents and are considered as the schemata for XML 
documents. A DTD schema is denoted by 6 tuple = (E1, 
E2, A, P, R, r) where (1) E1 ⊆E1 is a finite set of 
complex element names, (2) E2⊆E2 Is a finite set of 
simple element names, (3) A⊆A is a finite set of 
attribute, disjoint from E, (4) P is a mapping function 
from E1 to element type definitions:  ∀τ ∈E1, P(τ) is a 
regular expression, α ::= ε | τ’ | α |α | α,α | α* | where ε 
is the empty word,’ τ, E1 union E2 and “|”, “,”, “*”, 
denote union, concatenation and the Kleene closure, 
respectively; (5) R is a mapping function from E1 to 
sets of attributes in A (6) r is the element type of the 
root, which is distinct from all other symbols. A path in 
D is a string l1,…, lm, where l1is in the alphabet of P(r), 
li is in the alphabet of P(li-1) for i∈[2, m-1], l m is in the 
alphabet of P(l m−1) or in R(l m−1). 
 
Paths in XML trees: The path language we adopt is a 
common fragment of XPath: Q::= ε | l | Q/Q | // where ε 
is the empty path, l is a node label, “/” denotes 
concatenation of two path expressions (child in 
XPath)and “//” means descendant-or-self in XPath. A 
path P is a sequence of labels l1/…/ln. A path expression 
Q defines a set of paths, while “//” can match any path. 
We use p∈Q to denote that p is in the set of paths 
defined by Q. For example, 
//course/students/student/name ∈//name.  
 
Value equality and node identity: To reduce data 
redundancy, all the nodes in a tree need to be compared. 
When comparing two nodes n1 and n2 in an XML tree 
T, we need to define the equality between them. 
Obviously, if n1and n2 are the same node (denoted 
n1=n2), they should be considered equal, but this kind of 
node equality is not sufficient because there are cases 
where two distinct nodes have equal values. So we 
need to define value equality between nodes. Since 
we consider the ordering of child elements 
insignificant, our definition of value equality is 
different from those published previously. The value 
of equality is defined as follows: 



J. Computer Sci., 7 (11): 1659-1666, 2011 
 

1662 

• Let n1and n2 be two nodes in T. We say n1and n2 
are value equal, denoted n1=v n2, if n1and n2 areof 
the same label  

• N1and n2 are both attribute nodes or simple element 
nodes and the two nodes have the same value 

• N1and n2 are both complex elementsand for every 
child node m1of n1, there is a child node m2 of n2 
such that m 1=vm2 and vice versa 

 
Functional dependencies for XML: First, we should 
emphasize that semantic constraints (Shahriar and Liu, 
2009; Hartmann et al., 2010) are not part of XML 
specifications. They can be regarded as the extension of 
XML schema to make XML documents more 
significant. In this study, we mainly discuss functional 
dependencies constraints. Functional Dependencies 
(FDs) were introduced in the context of the relational 
data model by Codd in 1972. As in relational databases, 
functional dependencies for XML (XFDs) are used to 
describe the property that the values of some attributes 
of a tuple uniquely determine the values of other 
attributes of the tuple. The difference lies in that 
attributes and tuples are basic units in relational 
databases, whereas in XML data, they must be defined 
using path expressions. We also show how to use this 
constraint to detect data redundancies in XML 
documents before mapping to relational. So the resulted 
relational schema is redundancy free and update 
anomaly can be avoided. Functional dependency that 
we adopt is an expression of the form: 
 
(Q, [Px1, Px2,…, Pxn-> Py] )  
 
where, Q is the FD header path which is defined by an 
XPath expression from the root of the XML document. 
Pxi (1 ≤ i≤n) is an LHS (Left-Hand- Side) entity type 
which consists of an element name with optional 
attributes(s) and Py is an RHS (Right- Hand-Side) entity 
type which consists of an element name with an 
optional attribute name. An XML FD (Q, [Px1, Px2,…, 
Pxn-> Py]) specifies as follows: For any two subtrees 
identified by Q, if they agree on Px1, Px2,…, Pxn, they 
must agree on Py, if it exists. From Fig. 1, the 
constraints exist in the XML document can be 
expressed as: 
 
FD1://course (CNO->course) 
FD2://student (SNO->student) 
FD3://course (/CNO,/students/student/SNO->grade) 
 
 The constraint path can be achieved through 
definition of value equality and node equality. If the 
value of the path is equal then violation occurred. 

RESULTS 
 
 Since XML functional dependencies are used to 
guide the relational design, we now turn to the 
implication problem: Given a set of XFDs, what others 
can infer and how? 
 
Implication approach: Implication is defined as 
follows: An XFD φ: X -> Y is logically implied by a set 
of functional dependencies F, written F |= φ, if and only if 
j holds on every instance that satisfies all dependencies in 
F, that is, φ hold whenever all XFDs in F hold. 
 This problem is typically addressed by finding a set of 
inference rules, e.g. Armstrong’s Axioms for functional 
dependencies in relational databasesand proved that they 
are sound and complete (Yan and Ma, 2011; Shahriar and 
Liu, 2009; Hartmann et al., 2010). Compared to the 
relational counterpart, however, the task of finding such a 
set of inference rules for XFDs is much more difficult. 
This is because XFDs are based on path expressions while 
relational FDs are defined on attribute names. 
 
Constraint preserving mapping algorithm: In this 
approach, we extend Armstrong’s Axioms (reflexivity, 
augmentation and transitivity) to use path expressions 
instead of simple attributes. DTDs and XML Schema 
documents can be used to restrict the structure of XML 
documents (Siau, 2011; Feng and Jingsheng, 2009). For 
simplicity DTD is used in this study, but the ideas 
presented here also apply to any schema file including 
XML Schemas documents. In Fig. 2 is the DTD schema 
that conforms to the diagram in Fig 1. 
 
The generated DTD schema will be: 
 
• E1= {faculty, courses, course, students, student} 
• E2= {cname, sname, address, sname, address, 

grade} 
• A = {SNO, CNO} 
• P(faculty) = {courses} 
• P(courses) = {course*} 
• P(course) = {cname, 0073tudents} 
• P(students) = {student*} 
 

 
 
Fig. 2: DTD file for faculty 



J. Computer Sci., 7 (11): 1659-1666, 2011 
 

1663 

 
 
Fig. 3: DTD structure 
 
• P(student) = {sname,grade} 
• P(sname)=P(grade)=P(grade)=P(cname)=S 
• R(course) = {CNO} 
• R(student) = {SNO} 
• R(courses)=R(students)=R(CNO)=R(SNO)=_ 
• r = {faculty} 
 
 From the contents above we can see there are some 
repeated elements because they are repeated in DTD. 
These are redundant data and should be avoided during 
the mapping. While traversing the DTD structure, the 
information that was stored for each of the nodes are: 
 
• EName-element name 
• ChildElem-a list of child for the element 
• NoChild-the number of child for the element 
• parent- the parent of the element 
• indegree -the number of nodes point to the element 
• cardinality- the relationship of the element 
• visited-Boolean function to indicate that the 

element has been visited 
 The DTD structure that conforms to the XML 
document in Fig. 1 is at Fig. 3, where the symbol “*” 
denotes zero or many occurrence. 
 To achieve optimization, a redundant node, which 
satisfies the following condition, needs to be removed: 
 
• Indegree = 1 
• Node cardinality = 1, which is a singleton element 
• Node child cardinality = 1 and 
• A complex element 

 Through this step, nodes Courses under node 
Faculty and node Students under node COURSE will be 
removed. The mapping algorithm relies on an input set 
of XFDs and DTD file. An inferring function, which 
given an XDF φ : X –>Y and a schema D, determines 
whether or not φ can be inferred from D. The algorithm 
studys as follows: Traverses D top-down starting from 
the root of D, P(e) = rand generates a set F of FDs that 
is a cover of F+, i.e., a superset of Fm. More specifically, 
at each e ∈ P(e) encountered, it expands F by including 
certain FDs propagated from Σ. It then removes 
redundant FDs from F to produce a minimum cover Fm. 
But in the presence of DTD information, finding 
minimum covers should be much easier. First, we need 
to consider the relationship between elements. The 
relationships that may appear between one elemente 
and its sub-element ei in DTD are: 
 
1: 1 = One element e has one and only one subelement ei 

1: N = Meaning that one element e has one or more sub-
elements ei “N:M” – meaning that one element e 
can have at least one sub-element ei and these 
sub-elements are to belong to one or more 
different parent elements 

1: 0 = Meaning that the sub-element possess an 
optional operator 

1:0 = N-Meaning that the sub-element is an element 
with star operator 

 
 The XFDs will be read according to the syntax, the 
header, the determinant (LHS) and determine (RHS). 
The rules of implication applied here, i.e., given certain 
XFD what other XFDs can be implied. We extend the 
standard Armstrong rules (Reflexivity, Augmentation 
and Transitivity). But in the existence of DTD, the 
process can be simplified. For every singleton element 
(we treat simple elements and attributes are the same), 
it is true to say that: 
 
• Student/sno -> student/sno/S 
• Student/sname -> student/sname/S 
• Student/grade -> student/grade/S 
• Course/cno -> course/cno/S 
• Course/cname ->course/cname/S 
 
 The element S is to indicate the values that contain 
in every element. If two elements have the same values 
they are considered as an identical element and the 
concept of value equality applied here. We are not 
using the forms of key provided in DTD, because the 
known limitation, the key in the form of XFDs will be 
input instead. The following proposition is proposed. 



J. Computer Sci., 7 (11): 1659-1666, 2011 
 

1664 

Proposition: Every element has at least one key. We 
assume that in every relation there exists a unique key, 
so that every relation is unique. If two elements have 
exactly the same DTD expression and values, then they 
are considered as identical and denote a key for on 
element e as e. key. Then the basic functional 
dependencies exist. 
  If the XFD is in the form of e.key -> e, where 
key is a unique sub-element of e then e.key is a key 
for the element.  
 Normally the LHS of the XFDs will become the 
key for the relation. Referring to this form, CNO and 
SNO are keyed for course and student nodes 
respectively. When considered e. key is a key for the 
relation, then this rule can be deduced. 
 
Proposition: If ei. key -> ei then ei. Key will determine 
every ei∈P (E1) u R(E1) by using procedure. The constraint 
preserving mapping algorithm studys as follows: 
 
• Every complex element in E1 will be the root of the 

relations 
• Map every e.key to the attribute of the elements 
• Consider the relationship between the elements, if 

exist M:N relationship then create a new elements 
• To maintain the parent-child relationship, every child 

element node needs to refer to the parent node 
 
Example: If given/student/sno/S -> student, can we 
implied that student/sno/S -> student/sname/S? Since 
each STUDENT has exactly one SNAME element as a 
child (1:1 relationship) and nodes have unique identifiers, 
then it is true to say that /student -> student/sname then 
using singleton element, this XFDs is trivially satisfied 
/student/sname->student/sname/S Finally based on 
transitivity rule, the following can be derived:  
 
• /student/sno/S -> student  
• /student -> student/sname 
• /student/sno/S -> student/sname 
• student/sname -> student/sname/S 
 
 Therefore by transitivity rule, /student/sno/S-> 
student/sname/S. 
 This will generate the minimum covers for the 
relation rules. The elements that are in the same set or 
rules will group into the same classes; we called this as 
Equivalence class. At the end of this step we will get 
(Rule (R1),…, Rule (Rn)) that will form the schema 
relation. From the example above we called Enew as 
course-student node. Since there exist other element 
(course-student node) associate with Grade therefore 

this node is dropped from Student. Then we have 
/course/cno/S, /student/sno/S -> course-student course-
student -> course-student/grade/S by transitivity rule 
/course/cno/S, /student/sno/S -> coursestudent/ grade/S 
 Based on the basic Armstrong inference rules, the 
following can be deduced. 
 
• Two complex elements Ei, Ej where Ei, Ej∈ E1, Ei, 

Ej has a 1:N relationship and Ei is a prefix of Ej, 
then Ei. key -> Ei, then Ei. key -> Ej 

• Two complex elements Ei, Ej where Ei, Ej∈ E1, Ei, 
Ej has a M:N relationship and E I is a prefix of Ej, 
then Ei.key, Ej. Key ->Enew,where Enewis a new 
node 

 
 A transformation from the above XML data to R 
can be specified as: 
 
σ = (Rule (student), Rule (course), Rule (CS)) 
 
 The set of equivalence classes according to the 
rules are: 
 
• Rule(student) = {SNO, sname, grade} 
• Rule(course) = {CNO, cname} 
• Rule(CS) = {CNO,SNO} 
 
Where, the minimum covers for the relations are: 
 
• /student/sno/S -> student 
• /student/sno/S -> /student/sname/S 
• /course/cno/S -> course 
• /course/cno/S -> /course/cnameS 
• CS/cno/S,course-student/sno/S -> CS 
• CS/cno/S,course-student/sno/S->CS/grade/S 
 
 At the end, the following schema will be generated: 
 
• Student(sno, sname) PRIMARY KEY SNO 
• Course(cno, cname) PRIMARY KEY CNO 
• CS(cno, sno, grade) 
• Primary Key SNO, SNO 
• Reference Key SNO Refer to student(SNO) 
• Reference Key CNO Refer to course(CNO) 

 
DISCUSSION 

 
 To  evaluate the algorithm, the resulted schema 
is  compared  with  the  one  that  has  been 
generated using Inlining (Patel and Atay, 2011; 
Huiling and Feng, 2010; Feng and Jingsheng, 2009)  
because  this technique also considers set-value nodes.  



J. Computer Sci., 7 (11): 1659-1666, 2011 
 

1665 

Table 1: Student 
SNO  Name 
A100  Siti 
A200  Amin 
A300  Mary 
 
Table 2: Course 
CNO Cname 
TS2923 Networking 
TS1913 Database  
 
Table 3: Course-student 
CNO SNO Grade 
TS2923 A100 A 
TS2923 A200 B 
TS1913 A100 C 
TS1913 A300 D 
 
Table 4: Courses 
CID CNO Cname 
1 TS2923 Networking 
2 TS1913 Database 
 
Table 5: Student 
SID Parent ID Parent code SNO Name Grade 
1 TS2923 course A100 Adam A 
2 TS2923 course A200 Amber B 
3 TS1913 course A100 Adam C 
4 TS1913 course A300 Adam B 
 
We do not compare our technique with that of Xing 
et al. (2007); Kim and Peng (2011) since our 
definition of functional dependencies is not 
expressible in their technique. Our resulted relational 
schema is appeared as in Table 1-3. Using Patel and 
Atay (2011); Huiling and Feng (2010); Feng and 
Jingsheng (2009) the resulted schema is appeared as 
in Table 4 and 5.  
 Even though our algorithm will produce more 
tables if compared with the algorithm proposed by other 
researchers (Patel and Atay, 2011; Kim and Peng, 
2011; Feng and Jingsheng 2009) but we reduced the 
number of attributes in the relation. Some node ids (ID, 
parentID and parentCODE) are removed; this is 
possible as each instance node can be uniquely 
identified using key-based value information. In our 
method, which is based on traditional database theory, 
records can be extracted efficiently by using keys to 
join relations between parent and child. As the result, 
our method is able to produce resulting tables with less 
data redundancies. The generated schema in our 
algorithm is correct with respect to keys and functional 
dependencies. In fact, our schema is in 3NF (Xing et 
al., 2007), as proved by the following proposition. 
 
Proposition: Given a mapping, an XML document T 
conforming to DTD D and a set ∑ of XML FDs that 

generated from keys over D, if T|= ∑, then each relation 
in (T) is in Third Normal Form (3NF).  
 
Proof: To satisfy the Third Normal Form, we need to 
prove that each relation is in First and Second Normal 
Form. Since attributes of all relations in σ (T) are 
extracted from attributes or text nodes in a document, 
attributes of all relations are atomic. That is, all 
relations are in First Normal Form (1NF). Because of 
XML FDs are all in the set of ∑, the semantics is in Σ.  
All FDs on relational data are in the correspondence 
Γof Σ. We can conclude that each non key attribute in 
each relation is functionally dependent upon the 
primary key of the relation. That is, all relations are in 
Second Normal Form (2NF). According to the process 
of mapping, a relation is created for each FD. Therefore, 
the relations created in step 2 are in 3NF. Additionally, 
the relations created in other steps used FD to describe 
the property that the values of some attributes of a tuple 
(keys) uniquely determine the values of other attributes 
of the tuple and the attributes that are not dependent upon 
the primary key have been eliminated. That is, these 
relations are in 3NF. So, all the relations σ(T) are in 3NF. 
 

CONCLUSION 
 
 We have investigated the problem of how to design 
a normalized relational schema for XML data and how 
to automate the instance mapping. We have developed 
a new approach where, with given functional 
dependencies and DTD, we can detect redundancy in 
XML document. This approach able to improve the 
mapping of XML to relational by reducing data 
redundancy and at the same time preserve the 
constraints as expressed in functional dependencies. 
It can be efficiently operated, automated and 
eliminates unnecessary ID. As an immediate task, we 
would like to address implication problem in 
functional dependencies as defined above. We hope 
this study will able to give some contributions to the  
database community. 
 

REFERENCES 
 
Ahmad, K., 2011. A comparative analysis of managing 

XML data in relational database. Intell. Inform. 
Database Syst., 6591: 100-108. DOI: 10.1007/978-
3-642-20039-7_10 

Alfred, R., K.P. Hue, L. S. Khee and R. Alfred, 2010. 
The importance of maintaining a proper database 
on forest restoration program for orangutans in 
Borneo. Am. J. Environ. Sci., 6: 137-151. DOI: 
10.3844/ajessp.2010.137.151 



J. Computer Sci., 7 (11): 1659-1666, 2011 
 

1666 

Amirian, P. and A.A. Alesheikh, 2008. publishing 
geospatial data through geospatial web service and 
XML database system. Am. J. Applied Sci., 5: 
1358-1368. DOI: 10.3844/ajassp.2008.1358.1368 

Chen, Y., S. Davidson, C.S. Hara and Y. Zheng, 2003. 
RRXS: Redundancy reducing XML storage in 
relations. Proceedings of 29th International 
Conference on Very Large Data Base 
(ICVLDB’03), ACM, pp: 189-200. 
portal.acm.org/ft_gateway.cfm?id=1315469&type
=pdf 

 Fadda, E.H.R., M. Kakish and E.J. Akawwib, 2008. 
Relational GIS and remote sensing database system 
for al-salt area, Jordan. Am. J. Eng. Applied Sci., 
1: 241-247. DOI: 10.3844/ajeassp.2008.241.247 

Feng, Y. and X. Jingsheng, 2009. Mapping XML DTD 
to relational schema. Proceedings of the 1st 
International Workshop on Database Technology 
and Applications, Apr. 25-26, IEEE Xplore Press, 
Wuhan, Hubei, pp: 557-560. DOI: 
10.1109/DBTA.2009.85 

Ferraggine, V.E., J.H. Doorn and L.C. Rivero, 2009. 
Handbook of Research on Innovations in Database 
Technologies and Applications: Current and Future 
Trends. 1st Edn., IGI Global snippet, Hershey, Pa., 
ISBN: 1605662429, pp: 1124.  

Hartmann, S, S. Link and T. Trinh, 2010. Solving the 
Implication Problem for XML Functional 
Dependencies with Properties. Proceedings of the 
17th International Workshop, Logic, Language, 
Information and Computation (WoLLIC'10), 
Springer-Verlag Berlin, Heidelberg, pp: 161-175. 
http://dl.acm.org/citation.cfm?id=1886804 

Hartmann, S., S. Link, H. Köhler, T. Trinh and J. 
Wang, 2008. On the notion of an XML key. 
Semantics Data Knowl. Bases Lecture Notes 
Comput. Sci., 4925: 103-122. DOI: 10.1007/978-3-
540-88594-8_5  

Huiling, L. and Y. Feng, 2010. Research of Mapping 
XML DTD to Relational Schema. Proceedings of 
the 2nd Pacific-Asia Conference on Circuits, 
Communications and System, Aug. 1-2, IEEE 
Xplore Press, Beijing,  pp: 129-132. DOI: 
10.1109/PACCS.2010.5627006 

 
 
 
 
 
 
 
 

Kim, J. and Y. Peng, 2011. A semantic similarity 
analysis for data mappings between heterogeneous 
XML schemas. IGI Global, pp: 37-52. DOI: 
10.4018/978-1-60960-485-1.ch003 http://www.igi-
global.com/viewtitlesample.aspx?id=52148 

Lv, T. and P. Yan, 2006. Mapping DTDs to relational 
schemas with semantic constraints. Inform. 
Software Technol., 48: 245-252. DOI: 
10.1016/j.infsof.2005.05.001 

Patel, J. and M. Atay. 2011. An efficient access control 
model for schema-based relational storage of XML 
documents. Proceedings of the 49th Annual 
Southeast Regional Conference, Mar. 24-26, 
Kennesaw, GA, USA.,  pp:  97-102. DOI: 
10.1145/2016039.2016070  

Shahriar, S. and J. Liu, 2009. On defining functional 
dependency for XML. Proceedings of the 
International Conference on Semantic Computing, 
Sept. 14-16, IEEE Xplore Press, Berkeley, CA., pp: 
595-600. DOI: 10.1109/ICSC.2009.20 

Siau, K., 2011. Theoretical and Practical Advances in 
Information Systems Development: Emerging 
Trends and Approaches. 1st Edn., Information 
Science Pub., Hershey, ISBN: 1609605217, pp: 
350.  

Xing, G., X. Zhonghang and A. Douglas, 2007. X2R: A 
system for managing XML documents and key 
constraints using RDBMS. Proceedings of ACM 
Southeast Regional Conference, Mar. 23-24, 
Winston-Salem, USA., pp: 215-220. DOI: 
10.1145/1233341.1233380 

Yan, L. and Z. Ma, 2011. Advanced Database Query 
Systems: Techniques, Applications and 
Technologies. 1st Edn., IGI Global snippet, 
Hershey, PA, ISBN: 160960475X, pp: 392.  

 


