
Journal of Computer Science 7 (11): 1679-1684, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: J. Frank Vijay, Department of IT, Panimalar Engineering College, Chennai, Tamil Nadu, India
1679

An Analysis of Hybrid Tool Estimator:

An Integration of Risk with Software Estimation

1J. Frank Vijay and 2C. Manoharan
1Department of IT, Panimalar Engineering College, Chennai

2Annai Mathammal Sheela Engineering College, Namakkal Dt, Tamil Nadu, India

Abstract: Problem statement: One important problem with software development projects is to get
an early and nevertheless accurate estimation of the effort needed to complete the project within the
schedule. In the literature various methods have been developed for this purpose. The most popular
examples are Boehm’s COCOMO, Albrecht’s Function Point Method or Sneed’s object-point method.
The two last named methods are based on early results of an analysis phase; whereas COCOMO is
based on an a priori estimation of the software size in “Lines of Code”. Despite of the increasing needs
and available tools and methods, a satisfactory solution is still to be found. During the last two years,
has gained some interest in this community an approach based on hybrid technique of software
estimation. Approach: In this study, we discuss that traditional Function Point Method does not cover
the quality factors and the estimation is fully based on development of systems. Hence, the quality
assurance factors were discussed in this study. The comparative analysis of the existing software
estimations were also developed and compared with the developed model so that the efficiency of the
model can be analyzed with the existing methods. The classification of software system for which the
effort estimation is to be calculated is based on the COCOMO model classes. So, our aim is to develop
a hybrid method which combines all the important parameters from the various existing method for
effort estimation. Once the effort estimation has been found, the same have been extended to risk
assessment techniques by considering various risk parameters. So, the developed hybrid model is an
integrated model of estimation with risk assessment. Results: A software has been designed (Front
End-Java, Back End-MS-ACCESS) which shows the comparison between the traditional Function
point method and the proposed method. Conclusion: Detailed comparative analyses have been made
based on the result for all the estimation techniques.

Key words: COCOMO model classes, hybrid technique, effort estimation, quality parameters,

estimation techniques, traditional function, hybrid method, comparative analysis

INTRODUCTION

 There are two main dimensions in project metrics.
The first dimension main concentrates on the
development schedule so that we can avoid delay and
potential problems and risks. The second dimension
main focuses on the quality of the software so that the
developed software is of good quality and it satisfies
the customer. So, most of the organizations focuses on
the above said two dimensions. There are many effort
estimation techniques for software systems
developments are available (Vijay and Manoharan,
2009; 2010). But none of the models paid attention to
schedule and quality parameters. So, we have
developed a new hybrid estimation technique which is
fully focussed on assuring the quality in effort
estimation for software system development. In this

study, we have created a new hybrid model which
estimates the effort, schedule and quality parameters.
The entire results of the developed hybrid model have
been illustrated in the results section. An example
software system used to apply the proposed study is the
testing software. In the results comparisons section, the
effort (in terms of person-months) is used to compare
the various results of some available models with the
proposed result. In the conclusion section, the results
between proposed and existing scenario are compared
with the detailed graphs and performance chart.

MATERIALS AND METHODS

Function points: Function-oriented software metrics is
used to measure the functionality delivered by the
application as a normalization value. The most widely

J. Computer Sci., 7 (11): 1679-1684, 2011

1680

used function-oriented metric is Function Point (FP).
The traditional Functional Point metric method does
not take into account the quality parameters of the
software and moreover the values that been assigned to
the parameters will be decided by the project managers
experience. So, the values for the parameters will vary
depending upon the manager’s interest on the project.
As a net result, it is very difficult to estimate the
software by these varying parameters. So, we can’t use
this value for estimating, the schedule, effort needed,
project time, cost estimation etc. So, we have made a
vast literature survey by means of questionnaire to
various software companies. The questionnaires were
given only to the project managers who are familiar in
their projects. From their ideas and suggestions, we
have derived the parameter values and by using those
values the effort will be calculated automatically. This
effort estimated value also covers some of the
important quality parameter values. So, we have also
made a comparative analysis of the existing functional
point model with the developed model which covers the
quality aspects of the software. The detailed output of the
derived model is shown below in the form of snapshots.

Analysis of the model: In this derived hybrid model,
the effort estimation for particular software has been
calculated by using the following methods:

• Automated Hybrid Model (New Model) (Vijay and

Manoharan, 2009)
• Use Case Point Method Model (Developed to suit

for English Statements) (Keung et al., 2004)
• COCOMO Model.
• Function point model (Manual-existing model)
• Revised Functional point model (New model)
• Lines of code

 Software estimation has been calculated (Fig. 1-10)
be using all these models.

Fig. 1: Parameters estimation chart

Fig. 2: Parameters calculation chart

Fig. 3: Total weight calculation chart

Fig. 4: Parameters calculation chart

Fig. 5: Total weight calculation chart

Fig. 6:Total weight calculation chart

J. Computer Sci., 7 (11): 1679-1684, 2011

1681

Fig. 7: Parameters estimation chart

Fig. 8: Total estimation calculation values

Fig. 9: Effort comparison chart

Fig. 10: Software tools estimation comparison chart

 By using the results that we got by using the above
said model, we have made a comparative study in the form
of a graph. The output of the result is given below.

Integration of software risk with estimation: Once the
effort has been found by using one of the above said
estimation methods. The User can select the method
needed for estimating the software manually using menu-
driven option from the tool. Once the effort has been
found, then the result has to be integrated with risk.

Software risk assessment: Large software projects
have a very high frequency of schedule overruns, cost
overruns, quality problems, and outright cancellations.
Although software cost estimating is a very difficult
intellectual problem, there are three fundamental
equations that are linked together for estimation. They
are given below:

Size of deliverable/assignment scope = staff
Size of deliverable/production rate = effort
Effort/staff = schedule

Functions of hybrid tool: Step 1: Sizing
specifications, source code, and test cases: The first
step in any software estimate is to predict the sizes of
the deliverables that must be constructed. Sizing must
include all deliverable such as specifications,
documents, and test cases as well as source code. As of
2008, sizing is a standard feature of commercial
software cost estimating tools, and a variety of sizing
methods are now included, such as:

• Sizing based on function point metrics
• Sizing based on Lines Of Code (LOC) metrics

 It should be noted that one very common risk with
estimates based on “lines of code” metrics is that such
estimates are not reliable for predicting user documents
or any non-coding activity such as quality assurance,
data base administration, and project management. LOC-
based estimates and function point-based estimates are of
approximately equal accuracy for predicting coding
activities but the LOC estimates usually are less accurate
for non-code activities. Since studystudy in all of its
forms is often the most expensive task for large defence
applications, this problem is fairly significant.

Step 2: Estimating defects and defect removal
efficiency levels: A key aspect of software cost
estimating is predicting the time and effort that will be
needed for design reviews, code inspections, and all
forms of testing. In order to estimate defect removal
costs and schedules, it is necessary to know about how

J. Computer Sci., 7 (11): 1679-1684, 2011

1682

many defects are likely to be encountered. Poor quality
control is another major risk that can lead to litigation.
Lack of early defect detection and removal via
inspections can lead to huge delays in testing schedules.
What happens is that testing might start on time, but due
to the unexpected volume of defects it cannot end on
time. Testing is the primary phase where schedules begin
to go out of control. The defect removal efficiency of
each step will also be estimated. The effort and costs for
preparation, execution, and defect repairs associated with
each removal activity will also be estimated.

Step 3: Selecting project activities: Once the size of
various deliverables has been approximated the next
step is to determine which specific activities will be
carried out for the project being estimated. This is one
of the major areas where software cost estimating tools
excel. Activity-based cost estimates with perhaps 20-25
activities are the level of precision offered by modern
cost estimating tools.

Step 4: Estimating staffing levels: Although staffing,
effort, costs, and schedules are all important for the
final estimate, the normal place to start estimating is
with staffing levels. The fundamental equation for
determining staff is:

Size of deliverable/assignment scope = staff
The UCP tool applies this fundamental staffing
equation in a wide variety of forms, including but not
limited to:

Pages of specifications / assignment scope = analysts
Lines of source code/assignment scope = programmers
Test cases/assignment scope = testers
Pages of user manuals/assignment scope = technical
writers
Number of employees / assignment scope = managers

Step 5: Estimating software effort: The term “effort”
defines the amount of human study associated with a
project. The amount of effort can be expressed in any
desired metric, such as study hours, study days, study
weeks, study months, or study years.
The general algorithm for predicting effort is:

Size of deliverable / production rate = staff effort
Here too this basic equation is used in a variety of
forms including but not limited to:

Pages of specifications / production rate = analyst
months
Lines of source code / production rate = programmer
months
Test cases/production rate = testing months
Defects found/production rate = restudy months

Pages of user manuals/production rate = writing months

Step 6: Estimating software costs: The fundamental
equation for estimating the cost of a software activity is
simple in concept, but very tricky in real life:

Effort * (salary + burden) = cost

Step 7: Estimating software schedules: The
fundamental equation for estimating the schedule of
any given software development activity is:

Effort / staff = time period

Step 8: Estimating requirements changes during
development: One important aspect of estimating is
dealing with the rate at which requirements “creep” and
hence makes projects grow larger during development.
Fortunately, function point metrics allow direct
measurement of the rate at which this phenomenon
occurs, since both the original requirements and
changed requirements will have function point counts.

Step 9: Software risk analysis: The software industry has
long been troubled by major schedule slippage, major cost
overruns, and a high incidence of outright failure. Of all
the troublesome factors associated with software,
schedule slips stand out as being the most frequent
source of litigation between out sources vendors and
their clients. Schedule slips are also the main reason for
executive frustration with software for internal projects.

RESULTS AND DISCUSSION

 The existing results for the Tested application in
the software industry are given below:

• Based on the automated hybrid model (Fig. 11)

estimate the effort as 63 persons per month
• Based on the use case point model, the estimated

effort is 64 persons per month
• Based on the COCOMO model estimate, the

estimated effort is 49 persons per month
• Based on the Function Point metric estimate, the

estimated effort is 62 persons per month
• Based on the derived Function point metric, the

estimated effort is 64 persons per month
• Based on the LOC estimate, the estimated effort is

61 persons per month

The average estimate (using all six approaches) is
63 person-months.

J. Computer Sci., 7 (11): 1679-1684, 2011

1683

Fig. 11: Hybrid model layout diagram

Fig. 12: Front end screen

Fig. 13: Login screen

Training of model: The Hybrid model has been trained
with a minimal set of keywords and parameters for a
specific project. But, the model can be trained with
more set of dataset so that it can suit a variety of
projects.

Sample screenshots of hybrid model: The Sample
Screenshots for the developed hybrid model is shown
below from Fig. 12-21.

Fig. 14: Effort estimation software screen

Fig. 15: Signup details

Fig. 16: Database file formats

Fig. 17: Database attribute screen

J. Computer Sci., 7 (11): 1679-1684, 2011

1684

Fig. 18: Company details form

Fig. 19: Software estimation tools menu

Fig. 20: Automated hybrid tool menu

Fig. 21: Parameters estimation table

Advantages of hybrid model: The main advantages of
this developed hybrid model are given below:

• This model uses six different cost estimation

techniques

• This model integrates the software estimation with
the risk assessment strategy

• This model gives a detailed explanation of the
obtained output with the relevant graphical
explanation

• The user can select the estimation technique which
he/she is interested

• The calculated effort from this hybrid method, has
been extended to various formulas for analyzing
the risk strategy of the software

• This model can be used for decision making
purposes

CONCLUSION

 Based on the above results, the proposed 64
person-months of effort is nearer value to the average
result of other estimation models. And hence this type
of estimation may be recommended for the software
development. The unique difference between the
proposed and existing estimation of effort for the
software system development is the level of quality
consideration. That is, existing estimations are using
only few quality factors for effort estimation, but the
proposed effort estimation covers the important quality
factors, which automatically reflects in the development
of software. Other metrics may be used to estimate the
effort and substituting other quality factors can be
explored as a future scope.

REFERENCES

Keung, J., R. Jeffery and B. Kitchenham, 2004. The

challenge of introducing a new software cost
estimation technology into a small software
organisation. Proceedings of the Software
Engineering Conference (SEC’04), IEEE Xplore
Press, USA., pp: 52-59. DOI:
10.1109/ASWEC.2004.1290457

Vijay, J.F. and C. Manoharan, 2009. Initial hybrid
method for analyzing software estimation,
benchmarking and risk assessment using design of
software. J. Comput. Sci., 5: 717-724. DOI:
10.3844/jcssp.2009.717.724

Vijay, J.F. Frank, V.J. and C. Manoharan, 2010. A
comparative analysis of software engineering with
knowledge engineering. J. Comput. Sci., 6: 1208-
1211. DOI: 10.3844/jcssp.2010.1208.1211

