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Abstract: Problem statement: Digital images play an important role both in daily life applications as 
well as in areas of research and technology. Due to the increasing traffic caused by multimedia 
information and digitized form of representation of images; image compression has become a 
necessity. Approach: Wavelet transform has demonstrated excellent image compression performance. 
New algorithms based on Lifting style implementation of wavelet transforms have been presented in 
this study. Adaptively is introduced in lifting by choosing the prediction operator based on the local 
properties of the image. The prediction filters are chosen based on the edge detection and the relative 
local variance. In regions where the image is locally smooth, we use higher order predictors and near 
edges we reduce the order and thus the length of the predictor. Results: We have applied the adaptive 
prediction algorithms to test images. The original image is transformed using adaptive lifting based 
wavelet transform and it is compressed using Set Partitioning In Hierarchical Tree algorithm (SPIHT) 
and the performance is compared with the popular 9/7 wavelet transform. The performance metric 
Peak Signal to Noise Ratio (PSNR) for the reconstructed image is computed. Conclusion: The 
proposed adaptive algorithms give better performance than 9/7 wavelet, the most popular wavelet 
transforms. Lifting allows us to incorporate adaptivity and nonlinear operators into the transform. The 
proposed methods efficiently represent the edges and appear promising for image compression. The 
proposed adaptive methods reduce edge artifacts and ringing and give improved PSNR for edge 
dominated images. 
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INTRODUCTION 
 
 An efficient way to implement Discrete Wavelet 
Transform (DWT) using filters was developed by 
(Mallat 1989). This very practical filtering algorithm, 
which is based on the theory of multiresolution 
analysis, yields a fast discrete wavelet transform. This 
original work focused on orthonormal systems where 
one set of basic functions was used for both analysis 
and synthesis. Due to its many advantages, such as 
multiresolution representation, good energy 
compaction and decorrelation, the DWT has become 
one of the most important techniques for image and 
video compression in the last decade and been adopted 
by Joint Photographic Experts Group (JPEG2000) 
standard (Taubman and Marcellin, 2002). The wavelet 
based JPEG2000 not only presents superior coding 
performance over the DCT (Discrete Cosine 
Transform) based JPEG but also provides scalabilities 
in rate, quality and resolution (Pennebaker and 
Mitchell, 1993; Ghrare et al., 2009). Cohen et al. 

(1992) developed the idea of biorthogonal wavelets 
where the analysis basis and the synthesis basis are 
different (Cohen et al., 1992). The advantage of this 
approach is increased flexibility in wavelet design. For 
example, it is possible to design the associated filter 
bank with linear filters.  
 Sweldens (1996) demonstrated a simple lifting 
scheme which provided a common framework for the 
design of biorthogonal filter banks (Daubechies and 
Sweldens, 1996; Sweldens, 1996). The lifting scheme 
is a way of generating a new set of biorthogonal filters 
from a known biorthogonal set. In addition to the extra 
flexibitiy offered by biorthogonal wavelets, it 
transpires that all biorthogonal filters can be generated 
using lifting schemes. Cohen-Daubechies-Feauveau 
wavelets are the historically first family of 
biorthogonal wavelets, which was made popular by 
Ingrid Daubechies. These are not the same as the 
orthogonal Daubechies wavelets and also not very 
similar in shape and properties. However their 
construction idea is the same. 
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 The JPEG 2000 compression standard uses the 
biorthogonal CDF 5/3 wavelet (also called the LeGall 
5/3 wavelet) for lossless compression and a CDF 9/7 
wavelet for lossy compression (Cohen et al., 1992). 
 Conventionally, two dimensional DWT (2-D 
DWT) is carried out as a separable transform by 
cascading two one Dimensional (1-D) transforms in the 
horizontal and vertical direction. The wavelet 
transform can be efficiently implemented by the lifting 
scheme where the Finite Impulse Response (FIR) 
wavelet filter can be factored into several lifting stages 
(Daubechies and Sweldens, 1996; Sweldens, 1996). 
 A lifting stage is comprised of the four steps 
namely Split, Predict, Update and Normalize. The 
lifting scheme proposed by Sweldens (Daubechies and 
Sweldens, 1993; Sweldens, 1996) is an efficient tool 
for constructing second generation wavelets and has 
advantages such as faster implementation, fully in-
place calculation, perfect reconstruction with low 
memory and low computational complexity 
(Daubechies and Sweldens, 1993). It can also be 
considered as an alternate implementation of the first 
generation classical wavelet transform.  
 In many applications it is desirable to have a filter 
bank that somehow determines how to shape itself 
according to the data that it analyzes. This can be 
achieved by allowing lifting scheme to adapt its update 
and prediction filters to the local properties of the 
signal. In this study adaptivity is introduced by 
choosing the prediction operator based on the local 
properties of the image.  
 

MATERIALS AND METHODS 
 
Lifting scheme: Each 1-D wavelet transform can be 
factored in to one or more lifting stages (Asamwar et 
al., 2010). A typical lifting stage is comprised of four 
steps: Split, Predict, Update and Normalize. 
 
Split: The signal x[n] is first split into even subset xe[n] 
and the odd subset  x0[n], where Eq. 1 and 2: 
  

ex [n] x[2n]=  (1) 
 
and: 
 

0x [n] x[2n 1]= +  (2) 
 
Predict: Then the odd subset x0[n] is predicted from 
the neighboring even subset xe[n]. The Predictor P(.) is 
a linear combination of the neighboring even subset 
Eq. 3:  

e i e
1

p(x )[n] p x [n i]= +∑  (3) 

 
where, pi is the prediction filter coefficient which is a 
high pass filter. This leads to the detail coefficient Eq. 4: 
 

0 ed[n] x [n] p(x )[n]= −  (4) 

 
 If the signal is locally smooth, the prediction 
residual d[n] will be small. Given the even subset xe[n] 
and the prediction residual d[n], the odd subset  x0[n] 
can be recovered by noting that Eq. 5: 
 

0 ex [n] d[n] p(x )[n]= +  (5) 

 
Update: The Update step transforms the even subset 
xe[n] into a low-pass filtered version of x[n]. This 
coarse approximation is obtained by updating with a 
linear combination of the prediction residual d[n].Then 
the approximation coefficients c[n] are Eq. 6: 
 

ec[n] x [n] U(d)[n]= +  (6) 

 
where, U(.) is a linear combination of neighboring d 
values given by Eq. 7: 
 

j
j

U(d)[n] u d[n j]= +∑  (7) 

 
where, uj is the low pass filter coefficient. The lifting 
construction guarantees perfect reconstruction for any 
Predict and Update filters. Given d[n] and c[n], we 
have Eq. 8: 
 

ex [n] c[n] U(d)[n]= −  (8) 

 
Normalize: The outputs of the lifting are weighted by 
ke and ko. These values serve to normalize the energy 
of the underlying scaling and wavelet functions, 
respectively. The normalization factor ke and ko are √2 
and 1/√2 respectively (Daubechies and Sweldens, 
1993). For 2D signals, upon the completion of the 1-D 
lifting based horizontal transform, the 1-D lifting based 
vertical transform is performed in the same way. The 
Forward and Inverse lifting is carried out as shown in 
Fig. 1. The four steps in Inverse lifting are: 
 
• Undo Normalize 
• Undo Update 
• Undo Predict 
• Merge 
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(a) 

 

 
(b) 

 
Fig. 1:  The Lifting Scheme. (a) Forward Transform (b) 

Inverse Transform 
 
 The lifting framework allows us to incorporate 
non-linearities while retaining control over the 
properties of the wavelet transform. The nonlinearity 
comes from adaptively choosing from a set of linear 
predictors. Such nonlinear wavelet transforms provide 
added flexibility for image representations. 
 
Adaptivity in wavelet transforms: Wavelet bases 
typically employed for image compression utilize 
smooth scaling and wavelet functions. Such bases can 
be easily constructed with the predict-then-update form 
of lifting as described above. Larger predictors that can 
exactly predict polynomials of higher degree 
correspond to smoother basis functions; these lifting 
predictors work well when the underlying signal is 
smooth. However, most of the images consist of 
regions of smoothness and texture separated by 
discontinuities (edges). These discontinuities cannot be 
well-represented by smooth basis functions. Since 
smooth basis functions correspond to lifting predictors 
with wide support, these predictors work poorly near 
edges, when the discontinuity is within the data that are  
used for prediction. 
 We introduce a mechanism that allows us to 
choose the prediction operator based on the local 
properties of the image. This makes the P operator 
data-dependent and thus the transform is nonlinear. 
However, lifting guarantees that the transform remains 
reversible. In regions where the image is locally 
smooth, we use higher order predictors. Near edges we 
reduce the order and thus the length of the predictor. 

Such an adaptation would allow us to exploit the 
spatial structure that exists in edges. In this study, 
prediction filters are chosen based on the edge 
detection and the Relative Local Variance.  
 
Adaptive prediction based on edge detection 
(Method1): An edge detection algorithm analyzes the 
data in the 2-D prediction window to determine the 
location and the orientation of the edge. When an edge 
pixel is detected then we use a lower order predictor.  
 In this study an edge detection algorithm using Sobel 
operator is considered (Gonzalez et al., 2004). The 
Sobel operator performs a 2-D spatial gradient 
measurement on an image. Typically it is used to find 
the approximate gradient magnitude at each point in an 
input grayscale image. The classical operator such as 
Sobel, which uses first derivative has very simple 
calculation to detect the edges and their orientations. It 
is easy to implement than the other operators. Sobel 
operator effectively highlights noise found in real 
world pictures as edges though the detected edges 
could be thick. Hence, Sobel operator is highly 
recommended in massive data communication found in 
image data transfer (Hafiz et al., 2011).  
 The Sobel edge detector uses a pair of 3x3 
convolution masks, one estimating the gradient in the 
x-direction and the other estimating the gradient in the 
y-direction A convolution mask is usually much 
smaller than the actual image. As a result, the mask is 
slid over the image, manipulating a square of pixels at a 
time. The actual Sobel masks are shown Eq. 9 and 10: 
 

X

1 0 1

G 2 0 2

1 0 1

− 
 = − 
 − 

 (9) 

 

Y

1 2 1

G 0 0 0

1 2 1

 
 =  
 − − − 

 (10) 

 
 At each point in the image the resulting gradient 
approximations can be combined to give the gradient 

magnitude using 2 2
X YG G G= +  and using this 

information we can also calculate the gradient direction: 
 

Y

X

G
arc tan

G

 
θ =  

 
 

 
 Thus we define a point in an image as an edge 
point if its two dimensional first order derivative is 
greater than the specified threshold.  



J. Computer Sci., 7 (11): 1704-1710, 2011 
 

1707 

 
 
Fig. 2 Update First Lifting Scheme 
 

 
 
Fig. 3: Predictor Selection Near Edges. Number 

indicates the order of the predictor used 
 
 In lossy compression the decoder has only the 
quantized even coefficients rather than the original 
coefficients. If we use locally adapted filters, then 
quantization errors in coarse scales could cascade 
across scale and cause a series of incorrect filter 
choices leading to serious reconstruction errors. The 
simple modification that solves this problem is to 
reverse the order of the predict and update lifting steps 
in the wavelet transform as shown in Fig. 2 (Claypoole 
et al., 2003). We first update the even samples based 
on the odd samples yielding the lowpass coefficients 
c[n]. We then reuse these lowpass coefficients to 
predict the odd samples, which gives the highpass 
coefficients d(n). When updating first, the prediction 
operator is outside the loop. The coarse coefficients can 
be iterated to the lowest scale, quantized and 
reconstructed prior to the predictions. We use a linear 
update filter and let only the choice of predictor depend 
on the data. 
 When we do update first, the transform is only 
iterated on low pass coefficients and all c(n) depend on 
data and are not affected by nonlinear prediction. Here 
we considered CDF(1,N) wavelets (Cohen-
Daubechies-Feauveau) for adaptive lifting 
(Uytterhoeven et al., 1997). The low pass coefficients 
are first computed using a Haar filter (one point update 
filter).We choose higher order predictors where the 
image is locally smooth, resulting in many negligible 
detail coefficients and near edges, lower order 
predictors are activated, resulting in large lifting detail 
coefficients for better image representation. Thus based 
on the gradient the prediction filters are chosen. 

 We choose N={1,3,5} point prediction. The 
prediction filters are represented as Eq. 10-13: 
 
P(1) = [0, 0, 1, 0, 0] for order N = 1  (11) 
 
P(2) = [0, -1,8, 1, 0]/8 for order N = 3  (12) 
 
P(3) = [-3, 22, 128,-22, 3] for order N = 5 (13) 
 
and the update filter is Eq. 14: 
 
U = [1,1]/2  (14) 
 
 The low pass coefficients are first computed using 
a Haar filter (one point update filter), where Eq. 15: 
 

x(n) x(2n 1)
c(n)

2

+ +=  (15) 

 
 First order Haar prediction leading to(1,1) wavelet 
gives Eq. 16: 
 
d(n) x(2n 1) c(n)= + −  (16) 
 
 The third order predictor leading to(1,3) wavelet 
gives Eq. 17: 
 

c(n 1) c(n 1)
d(n) x(2n 1) c(n)

8 8

− − + = + − + + 
 

 

 

 The Fifth order predictor leading to(1,5) wavelet 
gives Eq. 18: 
 

3c(n 2) 22c(n 1)

128 128d(n) x(2n 1)
22(n 1) 3c(n 2)

c(n)
128 128

− − − + 
 = + −

+ + + − − 
 

 (18) 

 
 Figure 3 shows the predictor selection. 
 
Adaptive prediction based on Relative Local 
Variance (Method 2): The smoothness of the image 
can also be determined by measuring the Relative 
Local Variance (RLV). The Relative Local Variance of 
an image I is given by Eq. 19 and 20: 
 

1 T j T 2
1,Jk i T 1 j T

(I(k, I) )
RLV[I](i.j)

var(I)

+ +

= − = −
− µ

=
∑ ∑  

 
With: 
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i T j T

1,J 2k i T 1 j T

I(k.I)

(2T 1)

+ +

= − = −
µ =

+∑ ∑  (20) 

 
 For the window size we take T=5, since with this 
choice all I (k, l) used for the prediction of I (i, j) 
contribute to the RLV for (i, j). var(I) is the variance of 
the image I. For all pixels (i, j) to be predicted, we first 
compute RLV[I] (i, j). Then quantizing the values of 
the Relative Local Variance yields a decision map 
indicating which prediction filters should be used at 
different positions. The Relative Local Variance for all 
subsequent pixels (i, j) to be predicted is computed and 
suitable predictors are chosen. Two thresholds are 
chosen preliminarily according to practical situations. 
Quantization levels can be taken as multiples of the 
mean (µ) of the rlv. Test results have shown that [µ(rlv) 
1.5µ(rlv) 2µ(rlv)] are the quantization levels that yield 
a good performance. The RLV value above the bigger 
threshold indicates that a lower order predictor namely 
P1 should be selected. When RLV value is below the 
smaller threshold, a higher order predictor, namely P3 

should be activated. Otherwise P2 is activated. Here 
also, we first update the even samples based on the odd 
samples. Then we reuse the low pass coefficients to 
predict odd samples which gives the high pass 
coefficients d(n). c(n) does not get affected and the 
choice of the predictor depends only on the data. 

RESULTS 
 

 We have applied the adaptive prediction 
algorithms to 256×256 8 bit images. The original 
image is transformed using adaptive prediction 
algorithms and it is compressed using Set Partitioning 
In Hierarchical Trees (SPIHT) algorithm and the 
performance is compared with the performance of 
popular 9/7 transform (Said and Pearlman, 1996). The 
performance metric PSNR for N×N image (Peak Signal 
to Noise Ratio) at different bit rates in bits per pixel 
(bpp) is computed as Eq. 21: 
 

2

10

255
PSNR 10log db

MSE

 
=  

 
 (21)  

 
where, MSE is the mean square error given by Eq. 22: 
 

N N 2
2 i j

1
MSE (X(i.j) Y(i.j))

N
= −∑ ∑  (22) 

 
taking X as the original image and Y as the 
reconstructed image.  

 
Table 1: PSNR in db for the test images at different bit rates 
Images Bit rate in bpp 9/7 Wavelet APM1* APM2**  
 0.1 23.59 24.01 22.56 
 0.2 26.01 26.80 26.02 
 0.4 30.01 32.21 30.96 
Circle 0.6 33.83 36.79 34.02 
 0.8 36.69 39.23 39.26 
 1.0 38.02 42.69 41.86 
 0.1 23.32 23.56 23.47 
 0.2 26.01 26.02 25.83 
 0.4 29.02 29.35 28.75 
Cameraman 0.6 31.02 31.54 30.57 
 0.8 32.83 32.86 32.43 
 1.0 34.60 34.96 33.83 
 0.1 24.02 18.60 19.05 
 0.2 25.02 21.02 22.36 
 0.4 26.38 22.34 23.89 
Lena 0.6 28.78 25.74 25.87 
 0.8 33.58 28.29 29.65 
 1.0 35.07 30.56 30.88 
 0.1 21.32 22.72 24.14  
 0.2 22.69 23.61 25.21 
 0.4 24.68 25.81 27.89  
Baboon 0.6 26.41 27.91 29.96  
 0.8 28.32 30.67 32.81 
 1.0 29.11 31.98 34.21 
 0.1 27.09 26.77 25.87 
 0.2 28.60 27.77 26.76 
 0.4 29.80 28.17 27.98 
Goldhill 0.6 31.82 29.37 29.04 
 0.8 33.20 31.77 31.09 
 1.0 34.89 33.77 32.89 
APM1*: Adaptive Prediction method; PM2** : Adaptive Prediction method  
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DISCUSSION 
 
 Table 1 gives the PSNR at different bitrates for 
images of different frequency distributions. The 
performance is compared for the test images circle, 
Lena and cameraman in Fig. 4-6 respectively. For the 
edge dominated circle image, we observe that the image 
transformed with the adaptive lifting has sharp edges as 
shown in Fig. 7. 
 

 
 
Fig 4: Bar chart for circle image 

 

 
 

Fig. 5: Bar chart for Lena Image 
 

 
 

Fig. 6: Bar chart for Cameraman image 

 The PSNR values and the visual quality of the 
cameraman image using the proposed algorithms are 
comparable with that of 9/7 wavelet transforms as 
shown in Fig. 8. Since Lena image is a smooth image, 
9/7 wavelet transform gives better PSNR and visual 
quality than the adaptive prediction methods as shown 
in Fig. 9. The proposed adaptive algorithms gives better 
performance than 9/7 wavelet for the Baboon image 
which contains a narrow range of luminance levels and 
a large number of details. The performance of the 
proposed algorithm is comparable with 9/7 wavelet for 
the Goldhill image.  
 

 
 (a) (b) 

 

 
 (c) (d) 

 

Fig. 7: Circle image compressed at the rate of 0.6 bpp 
 

 
 (a) (b) 

 

 
 (c) (d) 

 
Fig. 8: Cameraman image compressed at the rate of 0.6 

bpp  
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Fig. 9: Lena  image compressed at the rate of 0.6 bp (a) 
Original Image (b) 9/7 Lifting (c) Adaptive 
method 1 (d) Adaptive method 2 

 
CONCLUSION 

 
 Lifting allows us to incorporate adaptivity and 
nonlinear operators into the transform. The proposed 
methods efficiently represent the edges. These adaptive 
lifting transforms appear promising for image 
compression. These adaptive transforms reduce edge 
artifacts and ringing and give improved PSNR for edge 
dominated images like Circle and Baboon. The 
performance is comparable with 9/7 wavelet transform 
for images like Cameran and Goldhill with moderate 
frequency distributions. For smooth images like Lena, 
9/7 transform gives much better results. 
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