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Abstract: Problem statement: Typically, the accuracy metric is often applied for optimizing the 
heuristic or stochastic classification models. However, the use of accuracy metric might lead the 
searching process to the sub-optimal solutions due to its less discriminating values and it is also not 
robust to the changes of class distribution. Approach: To solve these detrimental effects, we propose a 
novel performance metric which combines the beneficial properties of accuracy metric with the 
extended recall and precision metrics. We call this new performance metric as Optimized Accuracy 
with Recall-Precision (OARP). Results: In this study, we demonstrate that the OARP metric is 
theoretically better than the accuracy metric using four generated examples. We also demonstrate 
empirically that a naïve stochastic classification algorithm, which is Monte Carlo Sampling (MCS) 
algorithm trained with the OARP metric, is able to obtain better predictive results than the one trained 
with the conventional accuracy metric. Additionally, the t-test analysis also shows a clear advantage of 
the MCS model trained with the OARP metric over the accuracy metric alone for all binary data sets. 
Conclusion: The experiments have proved that the OARP metric leads stochastic classifiers such as 
the MCS towards a better training model, which in turn will improve the predictive results of any 
heuristic or stochastic classification models. 
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INTRODUCTION 

 
 To date, many efforts have been carried out to 
design more advanced algorithms to solve classification 
problems. At the same time, the development of 
appropriate performance metrics to evaluate the 
classification performance are at least as importance as 
algorithm. In fact, it is a key point to produce a 
successful classification model. In other words, the 
performance metric plays a significant role in guiding 
the design of better classifier. 
 From the previous studies, the performance metric 
is normally employed in two stages (i.e., the training 
stage and the testing stage). The use of performance 
metric during the training stage is to optimize the 
classifier (Ferri et al., 2002; Ranawana and Palade, 
2006). In other words, in this particular stage, the 

performance metric is used to discriminate and to select 
the optimal solution which can produce a more accurate 
prediction of future performance. Meanwhile, in the 
testing stage, the performance metric is usually 
employed for comparing and evaluating the 
classification models (Bradley, 1997; Caruana and 
Niculescu-Mizil, 2004; Kononenko and Bratko, 
1991; Provost and Domingos, 2003; Seliya et al., 
2009). 
 In this study, we are interested about the use of 
performance metric in evaluating and building an 
optimized classifier for any heuristic and stochastic 
classification algorithms. In general, these algorithms 
use the training stage learns from the data and at the 
same time attempt to optimize the solution by 
discriminating the optimal solution from the large space 
of solutions. In order to find the optimal solution, the 
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selection of suitable performance metric is essential. 
Traditionally, most of the heuristic and stochastic 
classification models employ the accuracy rate or the 
error rate (1-accuracy) to discriminate and to select the 
optimal solution. However, using the accuracy metric 
as a benchmark measurement has a number of 
limitations, which have been verified by many works 
(Ferri et al., 2002; Ranawana and Palade, 2006; Wilson, 
2001). In those studies, they have demonstrated that the 
simplicity of this accuracy metric could lead to the sub-
optimal solutions especially when dealing with 
imbalanced class distribution. Furthermore, the 
accuracy metric also exhibits poor discriminating 
values to discriminate better solution in order to build 
an optimized classifier (Huang and Ling, 2005). 
 Instead of the accuracy metric, there are few other 
metrics which have been designed purposely to build an 
optimized classifier. A Mean Squared Error (MSE) is 
one of the popular error function metric that are used by 
many neural network classifiers such as back-
propagation network (Al-Bayati et al., 2009; Pandya 
and Macy, 1996) and supervised Learning Vector 
Quantization (LVQ) (Kohonen, 2001) for evaluating 
neural network performance during the training period. 
In general, MSE measures the difference between the 
predicted solutions and desired solutions. By employing 
this metric, the smaller MSE value is required in order 
to obtain a better neural network classifier.  
 Meanwhile, Lingras and Butz (2007) proposed the 
used of extended precision and recall values to identify 
the boundary region for the Rough Support Vector 
Machines (RVSM). In this study, the notion of 
conventional precision and recall metrics are extended 
by defining separate values of precision and recall for 
each class. However, both of these performance metrics 
could not be employed by other heuristic and stochastic 
classification algorithms due to different learning 
paradigm or objective function being used. 
 On top of that, Ranawana and Palade (2006) 
introduced a new hybridized performance metric called 
the Optimized Precision (OP) for evaluating and 
discriminating the solutions. This performance metric is 
derived from a combination of three performance 
metrics, which are accuracy, sensitivity and specificity. 
In this study, they have demonstrated that the OP metric 
is able to select an optimized generated solution and is 
able to increase the classification performance of 
ensemble learners and Multi-Classifier Systems for 
solving Human DNA Sequences data set. Area under 
the ROC curve (AUC) is another popular performance 
metric used to construct optimized learning models 
(Ferri et al., 2002). In general, the AUC provides a 
single value for discriminating which solution is better 

on average. This performance metric is proven 
theoretically and empirically better than the accuracy 
metric in optimizing the classifier models (Huang and 
Ling, 2005).  
 Similar to the above-mentioned performance 
metrics, the main purpose of this study is trying to 
improve the problem of accuracy metric in 
discriminating an optimal solution in order to build an 
optimized classifier for heuristic and stochastic 
classification algorithms. This study introduces a new 
hybridized performance metric that is derived from the 
combination of accuracy metric with the extended 
precision and recall metrics. The new performance 
metric is known as an Optimized Accuracy with Recall-
Precision (OARP) metric. We believe that the benefits 
of the accuracy and extended precision and recall can 
be best exploited to construct a new performance metric 
that is able to optimize the classifier for heuristic and 
stochastic classification algorithms. In this study, we 
limit our study scope by comparing the new 
performance metric against the conventional accuracy 
metric. Moreover, the two-class classification problem 
is used for comparing both metrics. 
 Further, we will show that our proposed 
performance metric is better than the conventional 
accuracy metric by constructions of examples from 
different types of class distribution in discriminating the 
optimal solution. Next, with more discriminating 
features and finer measure, we will show that any 
heuristic or stochastic classification algorithm would 
search better and later obtain better optimal solution. A 
series of experiment using nine real data sets will be 
used to demonstrate that the Monte Carlo Sampling 
(MCS) algorithm optimized by the OARP metric 
produce better predictive result as compared to the 
algorithm optimized by the accuracy metric alone. 
  

MATERIALS AND METHODS 
 
Related performance metrics: The performance 
evaluation for binary classification model is based on 
the count of correctly and incorrectly predicted 
instances. These counts can be tabulated in a specific 
table known as a confusion matrix. In the confusion 
matrix, the counts of predicted instances can be 
categorized into four categories. Table 1 shows the four 
categories of results of confusion matrix.  
 As indicated in Table 1, tp represents the positive 
patterns that are correctly classified as positive class. 
Meanwhile, fp represents the negative patterns that are 
misclassified as positive class. On the other hand, tn 
represents the negative patterns that are correctly 
predicted   as   negative   class   and   fn   represents the  
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Table 1:  Confusion matrix 
 Actual positive Actual negative 
Predicted positive tp fp 
Predicted negative fn tn 
 
positive patterns that are misclassified as negative class. 
Through these four categories of results, few 
performance metrics have been derived from the 
literature as below. 
 
Accuracy (Acc): Accuracy measures the fraction of 
positive and negative patterns which are correctly 
classified by the classifier: 
 

tpAcc
tp fp tn fn

=
+ + +

 (1) 

 
Sensitivity (Sn): Sensitivity measures the fraction of 
positive patterns being correctly classified as positive 
class: 
 

tpSn
tp fn

=
+

 (2) 

 
Specificity (Sp): Specificity measures the fraction of 
negative patterns being correctly classified as negative 
class: 
 

tnSp
tn fp

=
+

 (3) 

 
Recall (r): The function of this metric is similar to 
sensitivity metric: 
 

tpr
tp fn

=
+

 (4) 

 
Precision (p): Precision is used to determine the 
fraction of patterns that predicted to be positive in a 
positive class: 
 

tpp
tp fp

=
+

 (5) 

 
On top of the above-mentioned metrics, few advanced 
metrics are also proposed based on the confusion matrix 
as a reference. Below we discussed two advanced 
metrics which are related to our study. 
 
Optimized Precision (OP): Ranawana and Palade 
(2006) proposed a new hybridized metric called the 
Optimized Precision (OP). This new metric is a 
combination of three performance metrics which are 
accuracy, sensitivity and specificity. In order to 
construct this hybridized metric, a new measurement 

called Relationship Index (RI) is introduced with the 
objective to minimize the value of |Sp-Sn| and at the 
same time to maximize the value of Sp+Sn. The RI is 
defined as in Equation 6. A high value of RI would 
entail a low |Sp-Sn| value and a high value of Sp+Sn: 
 

Sp Sn
RI

Sp Sn
−

=
+

 (6) 

 
 In order to apply Equation 6 in the performance of 
optimization algorithms, Ranawana and Palade (2006) 
combine the beneficial properties of accuracy and RI as 
shown in Eq. 7 to reduce the detrimental effect of data 
split during training of the classifier. Through this 
combination, the value of OP remains relatively stable 
even when presented with large imbalanced class 
distribution: 
 

Sp Sn
OP Acc RI Acc

Sp Sn
−

= − = −
+

 (7) 

 
 In the case of RI = 0 when Sp = Sn, an alternative 
definition of OP was proposed as given in Eq. 8: 
 

Sp Sn

Sp Sn

Sn Sp

Sn Sp

Acc ;if Sn Sp

OP Acc ;if Sp Sn

Acc ;if Sn Sp

−

+

−

+

⎧
⎪ =⎪
⎪= − >⎨
⎪
⎪

− >⎪
⎩

 (8) 

 
Extended version of precision and recall: 
Nonetheless, binary classifier only deals with ‘yes’ and 
‘no’ answers for a single class. In other words, the 
classifier is trying to separate the instances into two 
different classes, which are either class 1 or class 2. 
Through this concept, Lingras and Butz (2007) propose 
an extended version of precision and recall by defining 
precision and recall for each class. 
 Let assume for two-class problem every class has 
their own precision and recall value C1= {p1, r1}, 
C2={p2, r2}, a set of instances that belongs to each class 
C1= {R1}, C2={R2}, as well as a set of predicted 
instances C1= {A1}, C2={A2}. Having these properties, 
the extended precision and recall for two-class problem 
can be defined as in Eq. 9 and 10 respectively: 
 

i i
i

i

R A
p

A

∩
=  (9) 

 
i i

i
i

R A
r

R

∩
=  (10) 
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where, 1≤i≤c and c is the maximum number of class. 
 Lingras and Butz, (2007), they have theoretically 
proved that for two-class problem the precision of one 
class is correlated to the recall of other class for two-
class problem. This correlation can be defined as p1 is 
proportional to r2 (p1∝r2) and p2 is proportional to r1 
(p2∝r1). Through this correlation, they demonstrated 
that these extended precision and recall values can be 
used to identify the boundary region (lower bound for 
both classes) for the Rough Support Vector Machines 
(RVSMs) instead of using conventional hyper plane. 
 
The optimized accuracy with recall-precision: The 
aim of most classification model is to maximize the 
total number of correct predicted instances in every 
class. In certain situation, it is hard to produce a 
classifier which can obtain the maximal value for every 
class. For instance, when dealing with imbalanced class 
instances, it is often happen where the classification 
model is able to perform extremely well on a large class 
instances but unfortunately perform poorly on the small 
class instances. Clearly, this indicates that the main 
objective of any classification model should be 
maximizing all class instances in order to build an 
optimized classifier. 
 As mentioned earlier, the accuracy metric is often 
used to build and to evaluate an optimized classifier. 
However, the use of accuracy value could lead the 
searching and discriminating processes to the sub-
optimal solutions due to its poor discriminating feature. 
Moreover, the metric is also not robust when dealing 
with imbalanced class instances. This observation will 
be experimentally demonstrated in the next sub-section.  
 In contrast, precision and recall are two 
performance metrics that are used as alternative metrics 
to measure the binary classifier performance from two 
different aspects. In any binary classification problem, 
it is possible that for the classifier to produce higher 
training accuracy with higher precision value but lower 
recall value or with lower precision value but higher 
recall value. As a result, building a classifier that 
maximizes both precision and recall values is the key 
challenge for many binary classifiers. However, it is 
difficult to apply both of these metrics separately. By 
applying these metrics separately, it will cause the 
selection and discrimination processes become difficult 
due to multiple comparisons. 
 We believe that the beneficial properties of 
accuracy, precision and recall metrics can be exploited 
to construct a new performance metric that is more 
discriminating, stable and robust to the changes of class 
distribution. In order to transform these metrics into a 
singular form of metric, we will adopt two important 

formulas from (Ranawana and Palade, 2006), which are 
the Relationship Index (RI) and OP. This is a two-step 
effort, whereby first we have to find a suitable way to 
employ the RI formula and next to identify the best 
approach to adopt the OP formula in order to construct 
the new performance metric. 
 From our point of view, the conventional precision 
and recall metrics are not suitable for the integration 
process. This is because both metrics only measure one 
class of instances (positive class). This is somewhat 
against the earlier objective which attempts to 
maximize every class instances in order to build an 
optimized classifier. To resolve this limitation, the 
extended precision and recall metrics proposed by 
(Lingras and Butz, 2007) were suggested for the 
integration. The main justification is that every class 
instance should be able to be measured individually 
using both metrics as defined in Equation 9 and 
Equation 10. 
 As proved by (Lingras and Butz, 2007), for two-
class problem, the extended precision value in a 
particular class is proportional to the extended recall 
values of the other class and vice versa. From this 
correlation, the RI formula can be implemented. To 
employ the RI formula, the precision and recall from 
different classes were paired together (p1, r2), (p2, r1) 
based on the correlation given in (Lingras and Butz, 
2007). At this point, the aim is to minimize the value of 
|p1-r2| and |p2-r1| and maximize the value of p1+r2 and 
p2+r1. Hence, we define the RI for both correlations as 
stated in Eq. 11 and 12: 
 

1 2
1

1 2

p rRI
p r
−

=
+

 (11) 

 
2 1

2
2 1

p rRI
p r

−
=

+
 (12) 

  
 However, these individual RI values are still 
pointless and could not be applied directly to calculate 
the value of new performance metric. Thus, to resolve 
this problem, we compute the average of total RI 
(AVRI) as shown in Eq. 13 to formulate the new 
performance metric: 
 

c

i
i 1

1AVRI RI
c =

= ∑  (13) 

 
where, c indicates the maximum number of class.  
 However, the use of accuracy value alone could 
lead the searching process to the sub-optimal solutions 
mainly due to its less discriminative power and inability 
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to deal with imbalanced class distribution. Such 
drawbacks motivate us to combine the beneficial 
properties of AVRI with the accuracy metric. With this 
combination, we expect the new performance metric is 
able to produce better value (more discriminating) than 
the accuracy metric and at the same time remain 
relatively stable when dealing with imbalanced class 
distribution.  
 The new performance metric is called the 
Optimized Accuracy with Recall-Precision (OARP) 
metric. The computation of this OARP metric is 
defined in Eq. 14: 
 
OARP = Acc-AVRI (14) 
 
 However, during the computation of this new 
metric, we noticed that the value of OARP may deviate 
too far from the accuracy value especially when the 
value of AVRI is larger than accuracy value. Therefore, 
we proposed to resize the AVRI value into a small 
value before computing the OARP metric. To resize the 
AVRI value, we employed the decimal scaling method 
to normalize the AVRI value as shown in Eq. 15: 
 

old _ val
new _ val x

AVRI
AVRI

10
=  (15) 

 
where, x is the smallest integer such that max 
(|AVRInew_val|) < 1.  
 In this study, we set the x=1 for the entire 
experiments. By resizing the AVRI value, we found 
that the OARP value is comparatively close to the 
accuracy value as shown in the next sub-section.  
 At the end, the objective of OARP metric is to 
optimize the classifier performance. A high OARP 
value entails a low value of AVRI which indicates a 
better generated solution has been produced. We also 
noticed that via this new performance metric, the 
OARP value is always less than the accuracy value 
(OARP < Acc). The OARP value will only equal to the 
accuracy value (OARP = Acc) when the AVRI value is 
equivalent to 0 (AVRI = 0), which indicates a perfect 
training classification result (100%).  
 
OARP vs. accuracy: Analysis on discriminating an 
optimized solution: In this study, we also attempt to 
demonstrate that the new performance metric is better 
than the conventional accuracy metric through three 
criteria. The first criterion is that the metric has to be 
more discriminative. The second criterion is that the 
metric favors the minority class instances when 
majority class instances always dominate the selection 
process. The third criterion is that the metric is robust to 
the changes of class distribution. To prove these 
criteria, four different examples have been used to 
demonstrate the capability of this new performance 

metric in selecting and discriminating the optimized 
solution based on different types of class distributions. 
However, in this study, we restricted our attention to 
the two-class classification problem suitable with the 
proposed metric. We also restricted our discussion to 
the solutions that are indistinguishable according to 
accuracy value (Example 1-3). On top of that, we also 
included one special example that shows the drawback 
of accuracy in discriminating the solution that has poor 
results on the minority class of instances but produce 
higher accuracy rate with the other solution that has 
slightly lower accuracy value but able to predict 
correctly all minority class of instances (Example 4). 
  
Example 1: Given balanced data set containing 50 
positive and 50 negative instances (domain Ψ) and two 
performance metrics, Acc and OARP are used to 
discriminate two similar solutions a and b, 
Acc={(a,b)|a,b  Ψ} and OARP={(a,b)|a,b  Ψ}. 
Assume that a and b obtained the same total correct 
predicted instances (TC) as given in Table 2a. 
 From this example, we can intuitively say that b is 
better than a. This is proved by evaluating the 
misclassification instances for both classes, the fp and 
fn for b, which are comparatively balanced as compared 
to a. For this case, the OARP metric showed a decision 
value that similar to intuitive decision, while the 
accuracy metric unable to decide which solution is 
better due to poor discriminative value. 
 
Example 2: Given an imbalanced data set containing 
70 positive and 30 negative instances (domain Ψ) and 
two performance metrics, Acc and OARP are used to 
discriminate two similar solutions a and b, 
Acc={(a,b)|a,b  Ψ} and OARP={(a,b)|a,b  Ψ}. 
Assume that a and b obtained the same total correct 
predicted instances (TC) as given in Table 2b. 
 
Table 2a: Accuracy Vs. OARP for balanced data set 
s tp fp  tn fn TC Acc OARP 
a 49 4 46 1 95 0.950000 0.949845 
b 48 3 47 2 95 0.950000 0.949947 
 
Table 2b: Accuracy Vs. OARP for imbalanced data set 
s tp fp  tn fn TC Acc OARP 
a 69 4 26 1 95 0.950000 0.947249 
b 68 3 27 2 95 0.950000 0.947384 
 
Table 2c: Accuracy Vs. OARP for extremely imbalanced data set 
s tp fp  tn fn TC Acc OARP 
a 94 4 1 1 95 0.950000 0.900822 
b 93 3 2 2 95 0.950000 0.913032 
 
Table 2(d): Accuracy vs. OARP: Special case 
s tp fp  tn fn TC Acc OARP 
a 89 0 5 6 94 0.940000 0.922669 
b 95 5 0 0 95 0.950000 0.850000 



J. Computer Sci., 7 (4): 582-590, 2011 
 

587 

 Similar to Example 1, intuitively b is better than a 
in terms of the fp and fn values. In this example, the 
OARP metric demonstrated better value and produced 
decision similar to intuitive decision. Meanwhile, the 
accuracy metric could not tell the difference between a 
and b.  
 
Example 3: Given an extremely imbalanced data set 
containing 95 positive and 5 negative instances (domain 
Ψ) and two performance metrics, Acc and OARP are 
used to discriminate two similar solutions a and b, 
Acc={(a,b)|a,b  Ψ} and OARP={(a,b)|a,b  Ψ}. 
Assume that a and b obtained the same total correct 
predicted instances (TC) as given in Table 2c. 
 Similar to the two examples earlier, intuitively b is 
better than a in terms of fp and fn. As indicated in the 
table, the OARP metric once again able to produced 
decision similar to intuitive decision. However, the 
value of accuracy metric is unvarying and could not 
distinguish which solution is better.  
 
Example 4: Given two special cases of solutions a and 
b and added into an extremely imbalanced data set 
containing 95 positive and 5 negative instances(domain 
Ψ)  and discriminated by two performance metrics, Acc 
and OARP, Acc={(a,b)|a,b  Ψ} and OARP={(a,b)|a,b  
Ψ}. Assume that a and b obtained the same total correct 
predicted instances (TC) as given in Table 2d. 
 In this special case, two contradictory results are 
obtained. The accuracy metric distinguished that b is 
better than a, but the OARP metric resulted otherwise. 
Intuitively, we can conclude that a is better than b. This 
is because, a able to predict correctly all the minority 
class instances as compared to b. Clearly, b is poor since 
no single instance from minority class instances is 
correctly predicted by b. Hence, we can conclude that the 
result obtained by OARP metric is similar to intuitive 
decision and clearly better than the accuracy metric. 
 From the four examples given, three conclusions 
can be drawn from the results. First, the value of the 
OARP metric is more discriminating than the value of 
accuracy metric because the OARP metric is able to tell 
the difference between both solutions through the 
values obtained, while the accuracy metric could not.  
 Second, these examples showed that the accuracy 
metric is not robust to the changes of class distribution 
because the size of instances changes the value of 
accuracy metric is no longer able to perform optimally 
(Example 2-4). This indicates that the accuracy metric 
is not a good evaluator and optimizer to be used for 
discriminating the optimal solution. In contrast, the 
OARP metric is sensitive to the changes of class 
distribution. Although the OARP metric is sensitive, the 
value produced by the OARP metric is robust and able 
to perform optimally by producing a clear optimal 
solution.  

 Third, when dealing with the imbalanced or 
extremely imbalanced class distribution, the OARP 
metric favored to the minority class distribution instead 
of majority class distribution as shown in Example 4. 
This criterion is really important to prove that the 
chosen generated solution is capable to classify 
minority class instances correctly. In contrast, the 
accuracy metric is neutral to the changes due to poor 
informative feature about the proportion of instances in 
both classes. Neutral is used here to indicate that the 
accuracy metric only cares with the total of correct 
predicted instances. The dangerous of this situation is 
(Example 4) it could lead the selection process of any 
classifier to the sub-optimal solutions. 
 
Experimental setup: We have theoretically showed 
that the new performance metric, OARP was better than 
the accuracy metric in selecting and discriminating 
better solutions using four examples. Next, we are 
going to demonstrate the generalization capability of 
the OARP metric against the accuracy metric using real 
world application data sets. 
 For the purpose of comparison and evaluation on 
the generalization capability of OARP metric against 
the accuracy metric, nine binary data sets from UCI 
Machine Learning Repository were selected. All of 
these selected data sets are imbalanced class 
distribution. The brief descriptions about the selected 
data sets are summarized in Table 3.  
 In pre-processing data, all data sets have been 
normalized within the range of [0, 1] using min-max 
normalization. Normalized data is essential to speed up 
the matching process for each attribute and prevent any 
attribute variables from dominating the analysis (Al-
Shalabi et al., 2006). All missing attribute values in 
several data sets were simply replaced with median 
value for numeric value and mode value for symbolic 
value of that particular attribute across all instances.  
 In this study, all data sets were divided into ten 
approximately equal subsets using 10-fold cross 
validation method similar to (Garcia-Pedrajas et al., 
2010) where k-1 is used for training and the remaining 
one for testing. These training and testing folders have 
been run for 10 times.  
 
Experimental evaluation: In this study, all data sets 
were trained using a naïve stochastic classification 
algorithm which is Monte Carlo Sampling algorithm 
(Skalak, 1994). This algorithm combines simple 
stochastic method (random search) and instance 
selection strategy. There are two main reasons this 
algorithm is selected. Firstly, this algorithm simply 
applies  accuracy  metric  to  discriminate  the   optimal  
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Table 3: Brief description of each data set. 
Dataset NoI NoA MV CD  
Breast-cancer 699 9 Yes IM 
Card-Aus 690 14 No IM 
Card_Ger 1000 24 No IM 
Heart270 270 13 No IM 
Hepatitis 155 19 Yes IM 
Ionosphere 351 34 No IM 
Liver 345 6 No IM 
Pima-diabetes 768 8 No IM 
Sonar 208 60 No IM 
Note: NoI-# of instances, NoA-# of instances, MV-missing value, 
CD-class distribution, IM-imbalanced class distribution 
 
solution during the training phase. Secondly, this 
algorithm is aligned with the purpose of this study 
which is to optimize the heuristic or stochastic 
classification algorithm.  
 To compute the similarity distance between each 
instance and prototype solution, the Euclidean distance 
measurement is employed. The MCS algorithm was re-
implemented using MATLAB Script version 2009b. To 
ensure fair experiment, the MCS algorithm was trained 
simultaneously using the accuracy and OARP metrics 
for selecting and discriminating the optimized 
generated solution. For simplicity, we refer these two 
MCS models as MCSAcc and MCSOARP respectively. 
All  parameters  used  for  this  experiment are 
similar to (Skalak, 1994) except in the number of 
generated solution, n. In this experiment, we employed 
n  =  500  similar  to   (Bezdek   and  Kuncheva,  2001).  
 From this experiment, the expectation is to see that 
the MCSOARP is able to predict better than the model 
optimized by the MCSAcc. For evaluation purposes, the 
average of testing accuracy (TestAcc) will be used for 
further analysis and comparison. 
 

RESULTS 
 
 Table 4 shows the results from the experiment. 
From Table 4, we can see that the average testing 
accuracy obtained by MCSOARP is better than the 
MCSAcc model. The average testing accuracy obtained 
by MCSOARP model is 0.8439 while 0.8119 for the 
MCSAcc model for all nine binary data sets. Overall, the 
MCSOARP model shows an outstanding performance 
against the MCSAcc model, whereby the MCSOARP 
model has improved the classification performance in 
all binary data sets.  
 To verify this outstanding performance, we 
performed a paired t-test with 95% confidence level on 
each binary data set by using ten trial records for each 
data set. The summary result of this t-test analysis is 
listed in Table 5. As indicated in Table 5, the MCSOARP 
model obtained six significant wins, while the other 
three data sets show no significant differences between  

Table 4: Average testing accuracy for both MCS models. 
Data set Use MCSAcc Use MCSOARP 
 TestAcc TestAcc 
Breast-Cancer  0.9700 0.9814 
Card-Aus 0.8406 0.8681 
Card-Ger 0.7260 0.7630 
Heart270 0.8704 0.8778 
Hepatitis 0.8454 0.8900 
Ionosphere 0.8579 0.8719 
Liver 0.6468 0.7160 
Pima-diabetes 0.7513 0.8060 
Sonar 0.7990 0.8181 
Average 0.8119 0.8436 
 
Table 5: Statistical analysis for nine binary data sets. 
Data set MCSAcc SD MCSOARP SD p-value S? 
Breast-Cancer  0.0218 0.0151 0.0365 ssw 
Card-Aus 0.0246 0.0364 0.0324 ssw 
Card-Ger 0.0375 0.0330 0.0260 ssw 
Heart270 0.0531 0.0495 0.1679 ns 
Hepatitis 0.0891 0.0671 0.0423 ssw 
Ionosphere 0.0588 0.0357 0.1760 ns 
Liver 0.0736 0.0447 0.0338 ssw 
Pima-diabetes 0.0550 0.0328 0.0110 ssw 
Sonar 0.0793 0.0575 0.2229 ns 
Note: SSW: Statistically Significant Win; SSL: Statistically 
Significant Loss; NS: Not Significant 
 
the MCSOARP and MCSAcc. On top of that, we also 
performed a t-test analysis on the average testing 
accuracy obtained by both models over nine binary data 
sets (Table 4). From this analysis, the MCSOARP metric 
shows a significant difference with the MCSAcc model 
at confidence level of 95% and even 99% where p-
value is 0.0021. 
 

DISCUSSION 
 
 The experimental results have shown that the 
MCSOARP model has outstandingly outperformed if 
compared to the MCSAcc model for all binary data sets 
in terms of predictive accuracy. Empirically, we have 
proved that the OARP metric is more discriminating 
than the accuracy metric in selecting and discriminating 
the optimized solution for stochastic classification 
algorithm, which in turn produced a higher accuracy of 
predictive results. This somewhat against a common 
intuition in machine learning that a classification model 
should be optimized by a performance metric that it 
will be measured on. This finding is also consistent 
with reports from studies in (Huang and Ling, 2005; 
Rosset, 2004).  
 Furthermore, the OARP metric demonstrated is 
also robust to the changes of class distribution. This is 
proved by empirical results where the OARP metric 
was able to optimize and improve their predicted results 
over all nine imbalanced data sets. 
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 We believe that the OARP metric works effectively 
with the stochastic classification model in leading 
towards a better training model. In this particular paper, 
the MCS model optimized by the OARP metric was 
able to select and discriminate better solution as 
compared to its performance with the conventional 
accuracy metric alone. This indicates that the OARP 
metric is more likely to choose an optimal solution in 
order to build an optimized classifier for stochastic 
classification algorithm.  
 

CONCLUSION 
 
 In this study, we proposed a new performance 
metric called the Optimized Accuracy with Recall-
Precision (OARP) based on three existing metrics, 
which are the accuracy and the extended recall and 
precision metrics. Theoretically, we proved that our 
newly constructed performance metric satisfied the 
above criteria using four analysis examples with 
different types of class distribution. To support our 
theoretical evidence, we compared experimentally the 
new metric against the accuracy metric using nine real 
binary data sets. Interestingly, the MCS model optimized 
by the OARP metric has outperformed and statistically 
significant than the MCS model optimized by the accuracy 
metric. The new OARP metric is proven to be more 
discriminative, robust to the changes of class distribution 
and also favored the small class distribution. 
 For the future study, we are planning to extend this 
new performance metric, OARP for solving multi-class 
problems. Moreover, we are also interested to conduct 
an extensive comparison between the OARP metric 
against different performance metrics in optimizing the 
heuristic or stochastic classification models.  
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