
Journal of Computer Science 7 (5): 619-628, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: R.V. Siva Balan, Department of Computer Applications, Narayanaguru College of Engineering,
Kanyakumari, India

619

Decision Based Development of Productline:

 A Quintessence Usability Approach

1R.V. Siva Balan and 2M. Punithavalli

1Department of Computer Applications,
Narayanaguru College of Engineering, Kanyakumari, India

2Department of Computer Applications,
SNS Raja Lakshmi Engineering College, Coimbatore, India

Abstract: Problem statement: A well designed user interface is comprehensible and controllable,
helping users to complete their work successfully and efficiently and to feel competent and satisfied.
To improve the usability of a software system, usability patterns can be applied. However, there are
short comes shows that the software architecture of a system restricts certain usability patterns from
being modified after implementation. Several of these usability patterns are “architecture sensitive”,
such modifications are costly to implement due through their structural impact on the system. So we
practice the pattern oriented usability design with considering the dependencies between the design
decisions relevant to the product line business objects which has its impact on the usability criterion.
Dependencies between the rationale decisions for the architecture sensitive usability patterns can be
maintained for future reference. Approach: While going for the usability patterns, the decisions
behind the pattern selection should be specified. We address the issues by analyzing the quality based
models that determines the design rationale and their dependencies. We use QDK methodology to
preserve the specifications of decisions and all their inter dependencies along with the knowledge
rule. Results: Preserving the specifications of decisions and all their inter dependencies with
knowledge rules will support the evolution and maintenance of such productline systems. Explicit
evaluation of usability during architectural design prevents part of the high costs incurred by
adaptive maintenance activities once the system has been implemented. Conclusion: Capturing
knowledge by this means provides the basis for justification, learning and re-uses of the knowledge
rules for further design decisions.

Key words: Usability patterns, coded into software, architectural design decisions, usability attribute,

comprehensive survey, architectural knowledge, complementary activities

INTRODUCTION

 In the Study by (Perry and Wolf, 1992) the
foundations for the study of software architecture
define software architecture as follows:

Software Architecture = {Elements, Form, Rationale}

 Thus, software architecture is a triplet of (1) the
elements present in the construction of the software
system, (2) the form of these elements as rules for how
the elements may be related and (3) the rationale for
why elements and the form were chosen. This
definition has been the basis for other researchers, but it
has also received some critique for the third item in the
triplet. Bass et al. (1998) the authors acknowledge that

the rationale is indeed important, but is in no way part
of the software architecture. The basis for their
objection is that when we accept that all software
systems have inherent software architecture, even
though it has not been explicitly designed to have one,
the architecture can be recovered. However, the
rationale is the line of reasoning and motivations for the
design decisions made by the design and to recover the
rationale we would have to seek information not coded
into software.
 The design rationale abstracts the emergence new
forces such as the controller object for the
corresponding business object and the impact of the
controller towards the usability. Design decision on the
controller object relevant to business object can be
accessed by the user through the interfaces (Fig. 1),

J. Computer Sci., 7 (5): 619-628, 2011

620

when the interface is of usability pattern; the impact of
design decision on this pattern is derived for
maintenance.
 Software architectures are typically described in
one or more software architecture documents.
Architecture documentation approaches provide
guidelines on which aspects of the architecture should
be documented and how this can be achieved (Clements
et al., 2003). However, these approaches document
only partially what an architecture is, as they lack
rationale, rules, constraints and a clear relationship to
the requirements (Tyree and Ackerman, 2005; Van Der
Ven et al., 2006). This information is valued by
practitioners (Tang et al., 2005) and helps in future
design decision making (Falessi et al., 2006). Software
architects have widely used architecture modeling tools
for producing and documenting the models of their
system’s architecture. At present, there is lack in the
documentation generated by typical architecting
processes as they never record the design decisions
relevant to the usability patterns that led to particular
architecture focusing on quality attributes. This
problem is referred in (Clements et al., 2003), which
states the importance for recording design rationale. In
the past, typical architecting tools don’t include design
rationale as a first class entity that has to be
documented and only one of the five tools discussed in
(Jansen and Bosch, 2004) provides limited support for
capturing first class architectural design decisions.

Patterns from nuggets: Software engineers have a
tendency to repeat their successful designs in new
projects and to avoid the less successful designs. In
fact, these different styles of designing software
systems could be common for distinct practitioners.
This has been observed in (Gamma, 2005) where a
number of systems were studied and common solutions
to similar design problems were documented as design
patterns. They were a catalyst that propelled object
oriented development into the mainstream. They helped
the developers to understand the real value of inheritance
and how to use it effectively. Patterns provided insight to
how to construct flexible and resilient software systems.
With nuggets of wisdom, such as “Favor object
composition over class inheritance” and “Program to an
interface, not an implementation”, patterns helped a
generation of software developers adopt a new adept
programming paradigm.
 Over the past several years, there have also been a
number of object oriented design principles that have
emerged. And many of these design principles are
embodied within design patterns. The design and use of
explicitly defined software architecture has received
increasing amounts of attention during the last decade.
Generally, three arguments for defining an architecture

Fig. 1: Tracing decision correspondence for usability

Fig. 2: Relationship between usability patterns,

properties and attributes (Folmer and Bosch,
2004; ICSE, 2003)

are used (Bass et al., 1998). First, it provides an artifact
that allows discussion by the stakeholders very early in
the design process. Second, it allows for early assessment
(Fig. 2) of quality attributes (Folmer and Bosch, 2004).
Finally, the design decisions captured in the software
architecture can be transferred to other systems.
 A variety of pattern categories are recognized in
software pattern community. Note, nevertheless, that a
design pattern can be seen as a unique or original
solution. Design patterns have become an increasingly
popular choice for addressing OOD’s limitations.
Design patterns have a very close intact with the
architectural design decisions. Abstracting the
definition of design pattern, an architectural pattern can
be defined as a description of the components of a
design and the communication between these
components to provide a solution for a usability pattern.
 A comprehensive survey of the literature (Folmer
and Bosch, 2004) revealed that different researchers
have different definitions for the term usability
attribute, but the generally accepted meaning is that a
usability attribute is a precise and measurable
component of the abstract concept that is usability. A
well designed user interface is comprehensible and
controllable, helping users to complete their work
successfully and efficiently and to feel competent and
satisfied. Effective user interfaces are designed based
on principles of human interface design. The principles
listed are consolidated from a wide range of published
sources (Constantine and Lockwood, 1999; Cooper and
Reimann, 2003; Jakob, 1994; Schneiderman, 1998) and
are based on a long history of human-computer
interaction research. Essentially, the usability properties

J. Computer Sci., 7 (5): 619-628, 2011

621

embody the heuristics and design principles that
researchers in the usability field have found to have a
direct influence on system usability. These properties
can be used as requirements at the design stage, for
instance by specifying: “the system must provide
feedback”. They are not strict requirements in a way
that they are requirements that should be fulfilled at all
costs. It is up to the software engineer to decide how
and at which levels these properties are implemented by
using usability patterns of which it is known they have
an effect on this usability property.
 If we consider a system’s architecture as a set of
architectural decisions, the most significant ones
concern the satisfaction of quality attributes (Jansen et
al., 2007). The process of architectural design has been
characterized as making a series of decisions that have
system wide impact. Bosch (2000) notes that a decision
may add components to the architecture, impose
functionality on existing components, add requirements
to components, or add constraints to part or all of the
software architecture. The Unified Modeling Language
is a very important standard for the development of
software systems. UML originated from its main
predecessor approaches (Booch, 1994; Jacobson, 1992).
It is a graphical modeling language supporting many
phases in the software development cycle by offering
diagrams and language features meeting the special
needs in respective phases. Many commercial tools for
UML are available. Knowledge Discovery Metamodel
(KDM) addresses in part the integration challenge by
offering a common language-independent intermediate
representation of the sources of decisions.

Architectural knowledge: The importance of design
rationale in software architecture was early stated in the
nineties by (Perry and Wolf, 1992), which consider the
rationale as a relevant piece for understanding the
design. More recently, (Kruchten et al., 2006) have
modernized this idea as they state that Architectural
Knowledge (AK) = Design Decisions + Design. Hence,
the importance of design rationale that has been
neglected in the past becomes now relevant for most
modern architecting processes. Therefore, recording,
using, managing and documenting architectural design
decisions are new complementary activities (e.g.:
capturing knowledge, sharing) that should be carried
out in parallel to typical architecture modeling tasks.
These new challenges need to deal with many obstacles
in order to overcome those barriers that try to impede
the transfer of implicit mental models from the
architect’s expertise to explicit and documented
knowledge. Along with those knowledge we need to
track and record the reference for the usability patterns

relevant with the decision objects made up for the
behavioral aspects of the decisive objects. The goal to
document implicit impact of decisions has an overhead
that should be taken into account if we want to estimate
the potential savings in typical maintenance, as the
users’ requirement changes. Design rationale captures
the reasons behind design decisions. They show how
the system design satisfies the requirements, why
certain design choices are selected over alternatives and
how environmental conditions influence the system
architecture.
 During the process of detail design, decisions are
made and justified but the justifications are often
unrecorded and are lost over time (Perry and Wolf,
1992; Tyree and Ackerman, 2005). System and
software architecture design often involves many
implicit assumptions (Roeller et al., 2005) and
convoluted decisions that cut across different parts of
the system. A change in one part of the architecture
design could affect the parts of the business objects,
controller objects (by decision) and the usability
pattern. A simple shift of an implicit assumption might
affect seemingly disparate design objects and such
change impacts could not be identified easily. This
intricacy is quite different from detailed software
design where usually the design or program
specifications are self-explanatory. At the system and
software architecture level, there are a multitude of
influences that can be implicit, complex and intractable.
In a survey on architecture design rationale (Tang et al.,
2006), that is found 85% of architects agreed that the
use of design rationale is important in justifying design
and 80% of the respondents said they fail to understand
the reasons of a design decision without design
rationale support. Furthermore, 74% of respondents
forget their own design decisions half the time or more
often. These results indicate the need to capture the
design rationale for system maintenance. The erosion of
architecture design rationale can result in ill-informed
decisions because the original design reasoning was
missing. As a result, it may lead to inconsistent design
and violations of design constraints. The impacts can be
serious because architecture design is fundamental to a
system. Consequently, the rectification of errors can be
very costly.

Usability oriented design specification: Software
system design consists of the activities needed to
specify a solution to one or more problems, such that a
balance in fulfillment of the requirements is achieved.
The architecture of a software system captures early
design decisions. In usability-oriented requirements
engineering, the relation between goals and

J. Computer Sci., 7 (5): 619-628, 2011

622

requirements is represented explicitly. Since quality
needs may conflict, this requires resolution strategies to
obtain a satisfactory compromise (Lamsweerde, 2000;
Mylopoulos et al., 2001). Representation schemas used
in usability-oriented requirements engineering have
also been used to represent dependencies between
quality goals and architectural styles.
 Unified Modeling Language (UML) is a
standardized general-purpose modeling language in the
field of software engineering. UML combines
techniques from data modeling, business modeling,
object modeling and component modeling. It can be
used with all processes, throughout the software
development life cycle and across different
implementation technologies. Model-Driven
Architecture (MDA) (Alti et al., 2007) is a software
design approach for the development of software
systems. It provides a set of guidelines for the
structuring of specifications, which are expressed as
models. Knowledge Discovery Metamodel (KDM)
addresses in part the integration challenge by offering a
common language-independent intermediate
representation. Knowledge Discovery Metamodel
defines the software development database format
which can be used for software asset management and
software asset tracking. Glossaries may also be used to
specify captured detail rules. KDM also allows
incremental multi-phase analysis of the same software
system by multiple tools, where for the advanced
analysis phases the KDM repository is both the input as
well as the output of the analysis.

Quintessence of SAAM, ATAM and six sigma: A
particular method (Fig. 3) for doing a scenario-based
architectural analysis is (Kazman et al., 1996) Software
Architecture Analysis Method (SAAM). SAAM was
originally developed to enable comparison of
competing architectural solutions. Once the scenarios
have been created, we then need to classify them as
direct (i.e., those that can be satisfied by executing the
system being developed) or indirect (i.e. those which
require a change to some of the components or
connections within the architecture). The direct/indirect
classification is a first indication of the fitness of an
architecture with respect to satisfying a set of scenarios.
When two or more indirect task scenarios necessitate
changes to some component of a system, they are said
to interact. Scenario interaction is an important
consideration because it exposes the allocation of
functionality to the product's design. In a very explicit
way it is capable of showing which modules of the
system are involved in tasks of different nature. High

scenario interaction reveals a poor isolation of
functionality in a particular component of a design,
giving a clear guideline on where to focus the designer's
subsequent attention (Table 1).
 Thus the SAAM reveals the dependencies between
the Usability Objects with the Business Objects. This
depicts the need for the traceability between those two
objects through the controller when it comes to the
specification of design decisions. Another method
(Fig. 4) ATAM (Kazman et al., 1998) depicts the
saturation degree for the tradeoffs between the quality
attributes. All design, in any discipline, involves
tradeoffs; this is well accepted. What is less well
understood is the means for making informed and
possibly even optimal tradeoffs. Design decisions are
often made for non-technical reasons: strategic business
concerns, meeting the constraints of cost and schedule,
using available personnel and so forth. The ATAM also
serves as a vehicle for the early clarification of
requirements. As a result of performing an architecture
tradeoff analysis an enhanced understanding of
systems’ ability to meet its requirements. ATAM also
have a documented rationale for the architectural
choices made, consisting of both the scenarios used to
motivate the attribute-specific analyses and the results
of those analyses.
 The international organization for standardization
and the international electro technical commission
ISO/IEC 9126-1 categorize software quality attributes
into six categories: functionality, reliability, usability,
efficiency, maintainability and portability. In the
standard, usability is defined as “the capability of the
software product to be understood, learned, used and
attractive to the user, when used under specified
conditions.” The Six Sigma Quality movement takes
this very much to heart. In fact, six sigma advocates
believe that for many processes, there should be six
sigma’s between the mean and the specification limits,
so that the process is only making a few bad “parts” in
every million. You can, of course, do that by relaxing
the specifications, but that isn't usually the way to
please customers. Instead, the variation in the process
needs to be driven towards zero, so that the histogram
gets narrower and fits more comfortably inside the spec
limits. Post-task satisfaction can be measured across
multiple dimensions using semantic distance scales
including the After Scenario Questionnaire. Apply the
Six Sigma Continuous Method when standardizing 5-
point satisfaction scale data. For example, assuming
that the average post-task satisfaction for a task
attempted by 20 participants is 3.6 and the standard
deviation is 1.1, we can calculate the defective rate for
task satisfaction as follows:

J. Computer Sci., 7 (5): 619-628, 2011

623

Fig. 3: SAAM method (Kazman et al., 1996)

Fig. 4: Steps of the architecture tradeoff analysis

method (Kazman et al., 1998)

(Sample Mean-Spec) / St. Dev = z-score→ (3.6 – 4)/1.1
= -0.364→ 36% on a standardized z-table = 36%
Quality Level (64% Defective Rate).

 Since the average of the sample was below the
goal, the z-score is negative. The process sigma is then
simply: -0.364 + 1.5 = 1.14 sigma. Now that disparate
usability metrics can be expressed in standardized terms
of sigma values or quality levels, there are two major
benefits. First, since the standardized metrics were
derived from the user-defined goals, the analyst can see
which metrics are falling short and which are exceeding
these goals. Second, the common scale makes reporting
and ranking much easier than with the raw data.

MATERIALS AND METHODS

Design decision and knowledge-rules specification:
The work in this Study is motivated by the fact that the
pattern work also applies to usability. Usability is
increasingly recognized as an important consideration
during software development; however, many well-
known software products suffer from usability issues
that cannot be repaired without major changes to the
software architecture of these products. Studies (Hana
and Huang, 2007) confirm that a significant large part
of the maintenance costs of software systems is spent
on dealing with usability issues. Generally, a
motivational reason can be a requirement, a goal, an

Fig. 5: Undo Command on STACK Decision

assumption, a constraint or a design object. It is
important to represent motivational reasons explicitly as
inputs to the decisions so that they are given proper
attention in the decision making process. A design
decision creates the knowledge Rules; and knowledge
rules are justified by the alternatives and tradeoffs. The
knowledge rule encapsulates the details of the
justification. It contains a description of the issues
addressed by the decision, the arguments for and
against an issue/risk and the different alternatives that
have been considered. Once a decision is made, the
result of a decision is a design outcome or solution. A
design outcome should be explicitly represented in the
architecture design as an architecture element.
 In our scenario, we intend to inculcate an undo
stack (Fig. 5) as pattern-usability concern. The design
decision, analytical information and the knowledge
rules should be specified for the future maintenance of
our software; in such context we can use the KDM
metamodel which is in compliance with most of the
analysis tools. But here we emphasize on the usability
quality attributes on the scenario oriented development.
Thus the definitions of domain specific, application-
specific, or implementation-specific knowledge are
specified as a comprehensive set of knowledge rules.
Glossaries are also be used to specify the captured
rules, constrains and context dependencies in detail as
necessity.
 In a study of architecture evaluations, (Bass et al.,
2006) report that most risks discovered during an
evaluation arise from the lack of an activity, not from
incorrect performance of an activity. Categories of risks
are dominated by oversight, including overlooking
consequences of decisions. Many of the overlooked
consequences are associated with quality attributes.

J. Computer Sci., 7 (5): 619-628, 2011

624

Table 1: Scenario evaluation from SAAM (Kazman et al., 1996)
Scenario Description Direct/indirect Changes
3 Port to another Indirect All components that call win31 must be
 operating system modified; specifically: main, visdiff and ctrls.
 If the target operating system does not support OWL then
 either OWL needs to be ported, or all components that
 call OWL, specifically: main and hook. If the
 new operating system is not supported by Novell’s
 software then WRCS will have to be modified
 to work with a new networking environment
4 Make minor Indirect This will require changes to one or more of those,
 modifications to the components which call the win31 API,
 user interface specifically: main diff and ctrls.
5 Change access permissions Direct
 for a project
6 Integrate with a new Indirect This requires changes to hook, as well as the addition of
 development environment a module along the lines of bcext, mcext,
 and cbext, which connects the new
 development enjoinment to hook

Fig. 6: Knowledge Rules conceptual model

Their top risk themes included availability, performance,
security and modifiability. The iterative refinement of
design decision (D), by means of the quality needs (Q)
leads to the specification of (K) knowledge.
 Most architectural decisions have multiple
consequences; result in additional requirements to be
satisfied by the architecture, which need to be
addressed by additional decisions (Jansen and Bosch,
2005). Some are intended, while others are side effects
of the decision. Some of the most significant
consequences of decisions are those that impact the
quality attributes of the system. Garlan (2000) calls
them key requirements. The activity (Fig.7), QDK
(Quality Needs Motivate Design decision to

Knowledge-rules Specification), explores the quality-
impact design decision for usability. The following
steps are undergone:

• Define Release the first step in the recovery method

is to define the current release of the system under
consideration. A release contains the artifacts of the
system at a specific moment at a time

• Specify Traceability Details to gain tacit
knowledge from the explicit knowledge
representation. Here tacit knowledge are the
motives and ideas still in the head of the developer
and the explicit knowledge are specified in various
documents during previous activities (like analysis)

J. Computer Sci., 7 (5): 619-628, 2011

625

Fig. 7: Quality Needs motivate Design decision to Knowledge-rules Specification’ process

• Specify Dependencies by Rules Identify the

dependencies among the decisions by the four-
dimensional rules.

• Rationale Decision Try out the best rationale from
the alternatives and specify it; quote the
alternatives.

• Specify Quality Needs Specify the quality needs
and the impact of the same on the rationale.

• Specify Knowledge Metamodel From the steps 3, 4
and 5 represent the Metamodel for the rationale.

• Check whether adequate decisive knowledge
obtained. If not refine the traceability and go to
step 2.

• Next Release Go to step 1 with new release.

Brainstorming for decisions: A choice description and
the derived rationale realize one or more dependent
requirements. Now the solutions are the set of
prescription to the architecture. Thus this becomes a
result of decision process which bride between
requirement engineering and detail design. By this the
usability design decisions and the relations between the
elements of design decision are studied and
documented adept. For each decision, the motivation
(Fig. 6) and the choices lead to a decision which may
become an alternative solution relying the context of
application of decision.
 First, collectively define the overall user
experience separate from architectural or design
elements to engage the entire team in defining design

principles and the user experience strategy that will
filter down into all design releases. This helps keep
everyone on the same page throughout the entire design
process and helps to make sure that the visual design
reflects design principles based on adapted quality
attributes.
 Second, confirm all roles participate in generative
design activities, if, each team member sketches out 10
ideas for a product in 5 min and then the team regroups
to share ideas and discover patterns. The idea is to get
as many quick ideas on the table as possible to discuss
overall themes and experience approaches within the
scheduled hour. Encourage all team members to
participate in these activities to get input from all team
members early in a project and to foster collaboration
before any design decisions are solidified upon the
usability patterns.
 Now, set priority for each of the idea and elect the
most tacit one.
 Next, share early concepts with designers while
they’re still in progress should involve interface
designers as early as possible to get their feedback
about how a usability object will be structured both at a
global level and at the unit (page) level. These interface
designers can provide any unique perspectives in
regards to information hierarchy, element placement,
traceability of design and how to create overall design
cohesion. This can both help to refine early prototypes
as well as give practitioners a better understanding of
decisions that went into releases.

J. Computer Sci., 7 (5): 619-628, 2011

626

 Then follow to conduct user research that can
influence usability design early in the process as it is
fairly common for the interface designers to validate
user behavior and mental models with techniques of
conceptual usability tests; we often neglect to perform
early techniques that can specifically influence usability
design. Performing research techniques such as user-
generated mood boards help and feed the usability
design process and help designers start to think about
ideas even before prototypes are complete.
 As next step, discuss usability tradeoffs of high-
level design approaches, so that before a designer craft
the interfaces, the team collectively can discuss
potential usability implications of various approaches.
The team should also discuss how proposed style
guides should be adjusted to account for things such as
the usability attributes, which we intend to retain.
 Finally, document the decisions, sources of
motivations and interaction models that impact the
interface design to explain the intended unit level
interactions and any other specific details that might
influence the interface design. And Monitor the
effectiveness of the design to influence future iterations.
 The system’s documentation is the rich source of
the information. Perfect documentation refers to the
actual state of the decisions. The organizations culture
plays big role in the process of documentation and have
standard documentation policy. Information about the
development process are capture in version control
system; Referring to the version control may produce
rich traceable dependencies of decisions.

Knowledge rules: Here we have to consider two
decisions simultaneously. The First one is the design
decision up on the business object and the second one is
the decision on corresponding design pattern which is
very traceable to it. The dependencies between the
decision objects’ and the usability patterns play a vital
role in determining the preferences and the rules to
obtain user oriented rationale. For each dependency,
four-dimension rules are applicable while deriving
knowledge:

• Exist-Exist: By this rule, only if the design decision

live, then the decision on usability pattern will
survive until the design decision is in priority list

• Exist-Emerge: By this rule, if the design decision
exists to be in the priority list then the decision on
pattern will emerge as the successor of it

• Emerge-Emerge: By this rule, both the decisions
emerge at a time; possibly from single source of
traceability

• Emerge-Exit: By this rule, if the design decision
emerged, then the decision on the usability pattern
is dropped out

 These dependencies may be categorized into
external, internal, strong and weak dependencies from
the available traceable reports.

RESULTS

 Usability Inspections are essential for early
detection of defects in UI design, but they require sound
usability knowledge. Usability Patterns are the state-of-
the-art format for describing usability knowledge. Thus,
it seems obvious to use them as a means for evaluating
the design of user interfaces. And successful
development of a usable software system therefore
must include creating a software architecture that
supports the right level of usability. So properly
documented evidence should exist for the architectures
designed focusing on usability, to support software
architects in creating and maintaining the software
architecture that supports usability. Explicit evaluation
of usability during architectural design prevent part of
the high costs incurred by adaptive maintenance
activities once the system has been implemented and
leads to architectures with better support for usability.
Design for change is a well-known adagium in software
engineering. We separate concerns, employ well-
designed interfaces and the like to ease evolution of the
systems we build. We model and build in changeability
through parameterization and variability points as in
product lines. These all concern places where we
explicitly consider variability in our systems. We
conjecture that it is helpful to also think of and
explicitly model invariability, things in our systems and
their environment that we assume will not change. In
particular, we show how we can explicitly model
assumptions in an existing product family. From this,
we derive Meta models to document assumptions.
Finally, we show how this type of modeling adds to our
understanding of the architecture and the decisions that
led to it.

DISCUSSION

 This activity, QDK (Fig. 7), explores the quality-
impact design decision for usability. Most architectural
decisions have multiple consequences; result in
additional requirements to be satisfied by the
architecture, which need to be addressed by additional
decisions. Some are intended, while others are side
effects of the decision. Some of the most significant
consequences of decisions are those that impact the
quality attributes of the system. We call it as Discovery

J. Computer Sci., 7 (5): 619-628, 2011

627

of Knowledge, to be recorded in Knowledge rule
Specification (Ks). This impact may be the intent of the
decision; for example, one may choose to use a role-
based access control model in order to satisfy quality
attributes. One of the key challenges in dealing with
such consequences is the vast amount of knowledge
required to understand their impact on all the quality
attributes. Architectural design decisions are concerned
with the application domain of the system, the
architectural styles and patterns used in the system,
components for product line and other infrastructure
selections as well as other aspects needed to satisfy the
system requirements.

CONCLUSION

 Usability Pattern is increasingly recognized as an
important consideration during software development;
however, many well-known software products suffer
from usability issues that cannot be repaired without
major changes to the software architecture of these
products. Generally, a motivational reason behind
usability patterns can be a requirement, a goal, an
assumption, a constraint. It is important to represent
motivational reasons explicitly as inputs to the
decisions so that they are given proper attention in the
decision making process. Quality doesn’t appear
without mature design decisions. In the software world,
perfect information and rational consumers are two
concepts that seem quite valid in the development
scenario of product line or automation software. In this
case, software engineers are the rational consumers
need to make engineering decisions. Decisions have to
be made on the basis of information, so typically there
is a lot of analysis required, much of which is manual.
The attributes of the quality should be recorded among
with the tacit decisions of the patterns along the way
designing usability oriented architecture. These
activities are to be carried out manually; because when
the solution space is very large, practitioners go for
automated process with case tools of development and
typically impossible to do enough manual analysis to
cover all possibilities. Knowledge rules model process
try to capture the knowledge used the architecture
construction. From a knowledge system perspective,
making usability oriented design decision is seen as a
decision process, which decide how the architecture is
maintained and controlled. Capturing knowledge by
this means provides the basis for justification, learning
and re-uses of the knowledge rules for further design
decisions. This model explicitly model the goal of the
design decision process wants to satisfy, as well as the
design decision and corresponding rationale. Design

decision model provide basis to capture, describe and
reason about the design decisions made during design
process. As a result of our specification process, the
software architecture documentation not only describes
what the architecture contains; the design decisions
underlying the architecture provide this why. Relevant
set of facts for the decision will be fertile in the future
phase of maintenance and version control.

REFERENCES

Alti, A., T. Khammaci and A. Smeda, 2007. Integrating

software architecture concepts into the MDA
platform with UML profile. J. Comput. Sci., 3:
793-802. DOI: 10.3844/jcsssp.2007.793.802

Bass, L., P. Clements and R. Kazman, 1998. Software
Architecture in Practice. 1st Edn., Addison-
Wesley, USA., ISBN-10: 0201199300, pp: 452.

Bass, L., R. Nord, W. Wood and D. Zubrow, 2006.
Risk themes discovered through architecture
evaluations. Information for the defense
community.
http://oai.dtic.mil/oai/oai?verb=getRecord&metada
taPrefix=html&identifier=ADA456884

Booch, G., 1994. Object-oriented analysis and design
with applications. 2nd Edn., Benjamin Cummings
Pub. Co., USA., ISBN: 10: 0805353402, pp: 589.

Bosch, J., 2000. Design and use of Software
Architectures: Adopting and Evolving a Product-
Line Approach. 1st Edn., Addison-Wesley, USA.,
ISBN-10: 0201674947, pp: 354.

Clements, P., D. Garlan, R. Little, R. Nord and J.
Stafford, 2003. Documenting software
architectures: views and beyond. Proceedings of
the 25th International Conference on Software
Engineering, May 3-10, IEEE Xplore, USA., pp:
740-741. DOI: 10.1109/ICSE.2003.1201264

Constantine, L.L. and LA.D. Lockwood, 1999.
Software for Use: A Practical Guide to the Models
and Methods of Usage-Centered Design. 1st Edn.,
Addison Wesley, USA., ISBN-10: 0201924781,
pp: 579.

Cooper, A. and R. Reimann, 2003. About face 2.0: The
Essentials of Interaction Design. 2nd Edn., Wiley,
USA., ISBN-10: 0764526413, pp: 540.

Falessi, D., G. Cantone and M. Becker, 2006.
Documenting design decision rationale to improve
individual and team design decision making: An
experimental evaluation. Proceedings of the
ACM/IEEE International Symposium on Empirical
Software Engineering, (ISESE’06). ACM Press,
New York, USA., pp: 134-143. DOI:
10.1145/1159733.1159755

J. Computer Sci., 7 (5): 619-628, 2011

628

Folmer, E. and J. Bosch, 2004. Architecting for
usability: a survey. J. Syst. Software, 70: 61-78.
DOI: 10.1016/S0164-1212(02)00159-0

Gamma, R., 2005. Design Patterns: Elements of
Reusable Object-Oriented Software. 1st Edn.,
Addison-Wesley, USA., ISBN-10: 0201633612,
pp: 395.

Garlan, D., 2000. Software architecture: A Roadmap.
Proceedings of the Conference on the Future of
Software Engineering, (CFSE’00), ACM New
York, NY, USA., pp: 91-101. DOI:
10.1145/336512.336537

Hana, W.M. and S.J. Huang, 2007. An empirical
analysis of risk components and performance on
software projects. J. Syst. Software, 80: 42-50.
DOI: 10.1016/j.jss.2006.04.030

Jacobson, I., 1992. Object-Oriented Software
Engineering: A Use-Case Driven Approach. 1st
Edn., ACM Press, USA., ISBN-10: 0201544350,
pp: 524.

Jansen, A. and J. Bosch, 2004. Evaluation of tool
support for architectural evolution. Proceedings of
the 19th IEEE International Conference on
Automated Software Engineering, Sept. 20-24,
Linz, Austria, pp. 375-378. DOI:
10.1109/ASE.2004.35

Jansen, A. and J. Bosch, 2005. Software architecture as
a set of architectural design decisions. Proceedings
of the Conference on Software Architecture,
(CSA’05), IEEE Xplore, USA., pp: 109-120. DOI:
10.1109/WICSA.2005.61

Jansen, A., J.V.D. Ven, P. Avgeriou and D.K. Hammer,
2007. Tool support for architectural decisions.
Proceedings of the Working Conference on
Software Architecture, Jan. 6-9, IEEE Xplore,
India, pp: 4-4. DOI: 10.1109/WICSA.2007.47

Kazman, R. G. Abowd, L. Bass and P. Clements, 1996.
Scenario-based analysis of software architecture.
IEEE Software, 13: 47-55. DOI:
10.1109/52.542294

Kazman, R., M. Klein, M. Barbacci, T. Longstaff and
H. Lipson et al., 1998.The architecture tradeoff
analysis method. Technical Report, CMU/SEI-98-
TR-008.

Kruchten, P., P. Lago and H.V. Vliet, 2006. Building
up and reasoning about architectural knowledge.
Quality Software Archit., 4214: 43-58. DOI:
10.1007/11921998_8

Lamsweerde, A.V., 2000. Requirements engineering in
the year 00: A research perspective. Proceedings of
the International Conference on Software
Engineering, Jun. 4-11, IEEE Xplore, Ireland, pp:
5-19. DOI: 10.1109/ICSE.2000.870392

Mylopoulos, J., L. Chung, S. Liao, H. Wang and E. Yu,
2001. Exploring alternatives during requirements
analysis. IEEE Software, 18: 92-96. DOI:
10.1109/52.903174

Perry, D.E. and A.L. Wolf, 1992. Foundations for the
study of software architecture. Software Eng.
Notes, 17: 40-52. DOI: 10.1145/141874.141884

Roeller, R., P. Lago and H.V. Vliet, 2005. Recovering
architectural assumptions. J. Syst. Software, 79:
1792-1804. DOI: 10.1145/141874.141884

Tang, A., M.A. Babar, I. Gorton and J. Han, 2005. A
survey of the use and documentation of
architecture design rationale. Proceedings of the
5th Working Conference on Software Architecture,
(WICSA’05), IEEE Xplore, USA., pp: 89-98. DOI:
10.1109/WICSA.2005.7

Tang, A., M.A. Babar, I. Gorton and J. Han, 2006. A
survey of architecture design rationale. J. Syst.
Software. DOI: 10.1016/j.jss.2006.04.029

Tyree, J. and A. Ackerman, 2005. Architecture
decisions: demystifying architecture. IEEE
Software, 22: 19-27. DOI: 10.1109/MS.2005.27

Van Der Ven, J., A.. Jansen, J. Nijhuis and J. Bosch,
2006. Design decisions: The bridge between
rationale and architecture. Rationale Manage.
Software Eng., 3: 329-348. DOI: 10.1007/978-3-
540-30998-7_16

