
Journal of Computer Science 7 (5): 690-697, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Zina Houhamdi, Software Engineering Department, Faculty of Science and Information Technology,
Al-Zaytoonah University, Jordan

690

Structured Integration Test Suite Generation

Process for Multi-Agent System

Zina Houhamdi and Belkacem Athamena
Department of Software Engineering,

Faculty of Science and Information Technology,
Al-Zaytoonah University, Jordan

Abstract: Problem statement: In recent years, Agent-Oriented Software Engineering (AOSE)
methodologies are proposed to develop complex distributed systems based upon the agent paradigm.
The implementation for such systems has usually the form of Multi-Agent Systems (MAS). Testing of
MAS is a challenging task because these systems are often programmed to be autonomous and
deliberative and they operate in an open world, which requires context awareness. Approach: We
introduce a novel approach for goal-oriented software integration testing. It specifies an integration
testing process that complements the goal oriented methodology Tropos and strengthens the mutual
relationship between goal analysis and testing. Results: The derived test suites from the system goals
can be used to observe emergent properties resulting from agent interactions and make sure that a
group of agents and contextual resources work correctly together. Conclusion: This approach defines a
structured and comprehensive integration test suite derivation process for engineering software agents
by providing a systematic way of deriving test cases from goal analysis.

Key words: Multi-Agent Systems (MAS), integration testing, test case generation, deriving test,

Agent-Oriented Software Engineering (AOSE), Object-Oriented (OO), tropos
methodology, architectural design, collaborative goals, detailed design

INTRODUCTION

 MAS are increasingly taking over operations and
controls in enterprise management, automated vehicles
and financing systems, assurances that these complex
systems operate properly need to be given to their
owners and their users (Nguyen et al., 2010). This calls
for an investigation of suitable software engineering
frameworks, including requirements engineering,
architecture and testing techniques, to provide adequate
software development processes and supporting tools.
 There are several reasons for the increase of the
difficulty degree of testing and debugging multi-agent
systems: increased complexity, since there are several
distributed processes that run autonomously and
concurrently; amount of data, since systems can be
made up by thousands of agents, each owning its own
data; irreproducibility effect, which means that it is not
ensured that two executions of the systems will lead to
the same state, even if the same input is used. As a
consequence, looking for a particular error can be
difficult if it is not possible to reproduce it each time
(Huget and Demazeau, 2004).

 As a result, testing software agents and MAS seeks
for new testing techniques dealing with their peculiar
nature (Maamri and Sahnoun, 2007). The techniques
need to be effective and adequate to evaluate agent's
autonomous behaviors and build confidence in them. It
is quite hard to verify that agents or MAS satisfy user
requirements, behave correctly and are not malicious.
 Testing a single agent is different from testing a
community of agents. When testing a single agent a
developer is more interested in the functionality of one
agent and whether the agent operates for a set of
messages, contextual inputs and error conditions. But,
when testing a community of agents, the tester is
interested in whether the agents operate together, is
coordinated and if message passing between the
agents is correct (Gatti and Staa, 2006). The agent
society test is a kind of integration test and the
integration strategy depends on the agent system
architecture where agents’ dependencies are usually in
terms of communications (but sometimes context
mediated interactions could be present).
 Several AOSE methodologies have been proposed
(Henderson-Sellers and Giorgini, 2005). In terms of

J. Computer Sci., 7 (5): 690-697, 2011

691

testing and verification, while some consider
specification-based formal verification (Dardenne et al.,
1993; Fuxman et al., 2004; Perini et al., 2003), other
borrow Object-Oriented (OO) testing techniques, taking
advantage of a mapping of agent-oriented abstractions
into OO constructs (Cossentino, 2008; Pavon et al.,
2005). However, a structured testing process for AOSE
methodologies is still absent.
 In this study, we propose a testing process that
exploits the link between goal analysis and test cases
following the V Model. We describe the proposed
approach with reference to the Tropos software
development methodology (Mylopoulos and Castro,
2000) and consider MAS as the target implementation
technology.

Background and related works:
Tropos: Tropos is an AOSE methodology that covers
the whole software development process. Tropos is
based on two key ideas. First, the notion of agent and
all related mentalistic notions (for instance goals and
plans) are used in all phases of software development,
from early analysis down to the actual implementation.
Second, Tropos covers also the very early phases of
requirements analysis, thus allowing for a deeper
understanding of the environment where the software
must operate and of the kind of interactions that should
occur between software and human agents. Tropos
methodology spans five phases (Dardenne et al., 1993;
Mylopoulos and Castro, 2000).

Early requirements: Concerned with the problem
understanding by studying an organizational setting
where the intended system will operate. The output of
this phase is an organizational model which includes
relevant actors (representing stakeholders) their
respective goals (stakeholder’s objectives) and their
interdependencies.

Late requirements: where the intended system is
described within its operational environment, along
with relevant functions (hardgoals) and qualities
(softgoals). The intended system is introduced as a new
actor. It appears with new dependencies with existing
actors that indicate the obligations of the system
towards its context as well as what the system expects
from existing actors in its environment.

Architectural design: where the system’s global
architecture is defined in terms of subsystems,
interconnected through data, control and other
dependencies. More system actors are introduced. They

are assigned to subgoals or goals and tasks (those
assigned to the system as a whole).

Detailed design: where behavior of each architectural
component is defined in more detail including
specification of communication and coordination
protocols. Agents' goals, beliefs and capabilities are
specified in detail using existing modeling languages
like UML or AUML, along with the interaction
between them should occur between software and
human agents.

Implementation: During this phase, the Tropos
specification, produced during detailed design, is
transformed into a skeleton for the implementation.
This is done through a mapping from the Tropos
constructs to those of a target agent programming
platform, such as JADE (Bellifemine et al., 2007).
Recent work on mapping Tropos goal model to JADEX
programming platform is described in (Penserini et al.,
2006).

Goal types versus test types: We present different goal
types and testing types. The relationships between goal
types and testing levels are presented with reference to
the process.

Test type: There are four types of testing: Agent
testing, Integration testing, System testing and
Acceptance testing (Nguyen et al., 2010). The
objectives and scope of each type is described as
follows.

Agent testing: The smallest unit of testing in agent-
oriented programming is an agent. Testing a single
agent consists of testing its inner functionality and
agent’s capabilities to fulfill its goals and to sense and
effect the environment.

Integration testing: An agent has been unit-tested; we
have to test its integration with existing agents. In some
circumstances, we have to test also the integration of that
agent with the agents that will be developed and
integrated subsequently. Integration testing make sure
that a group of agents and environmental resources work
correctly together which involves checking an agent
works properly with the agents that have been integrated
before it and with the “future” agents that are in the
course of Agent testing or that are not ready to be
integrated. This often leads to developing mock agents or
stubs that simulate the behaviors of the “future” agents.

J. Computer Sci., 7 (5): 690-697, 2011

692

Fig. 1: V-model of goal-oriented testing

System testing: Agents may operate correctly when
they run alone but incorrectly when they are put
together. System testing involves making sure all agents
in the system work together as intended. Specifically,
one must test the interactions among agents (protocol,
incompatible content or convention) and other concerns
like security, deadlock (Houhamdi and Athamena, 2011).

Acceptance testing: Test the MAS in the customer
execution environment and verify that it meets the
stakeholder goals, with the participation of
stakeholders.

Goal type: Different perspectives give different goal
classifications. For instance, classify agent goals in
agent programming into three categories, namely
perform, achieve and maintain, according to the agent's
attitude toward them (Dastani et al., 2006). We use a
general perspective on goals, but not from a specific
subject, to classify them based on the Tropos software
engineering process.
 Goals are classified into the following types
according to the different phases of the process.

Stakeholder goals: Represent stakeholder objectives
and requirements towards the intended system. This
type of goal is mainly identified at the early
requirements phase of Tropos.

System goals: Represent system-level objectives or
qualities that the intended system has to reach or
provide. This type of goal is mainly specified at the late
requirements phase of Tropos.

Collaborative goals: Require the agents to cooperate
or share tasks, or goals that are related to emergent
properties resulting from interactions. This type of goal
can be called also as group goal and they often appear
at the architectural design phase of Tropos.

Agent goals: Belong to or are assigned to particular
agents. This type of goal appears when designing agents.

Goal-oriented testing: The V-Model is a
representation of the system development process,
which extends the traditional water-fall model. The left
branch of the V represents the specification stream and
the right branch of the V represents the testing stream
where the systems are being tested (against the
specifications defined on the left-branch). One of the
advantages of the V-model is that it describes not only
construction stream but also testing stream (unit test,
integration test, acceptance test) and the mutual
relationships between them.
 Tropos guides the software engineers in building a
conceptual model, which is incrementally refined and
extended, from an early requirements model to system
design artifacts and then to code, according to the upper
branch of the V depicted in Fig. 1. Tropos integrates
testing by proposing the lower branch of the V and a
systematic way to derive test cases from Tropos
modeling results (Pavon et al., 2005).
 Two levels of testing are distinguished in the
model. At the first level of the model (external test
executed after release), stakeholders (in collaboration
with the analysts), during requirement acquisition time
produce the specification of acceptance test suites.
These test suites are one of the premises to judge
whether the system fulfills stakeholders’ goals. At the
second level (internal test executed before release),
developers refer to goals that are assigned to the
intended system, high-level architecture, detailed
design of interactions and capabilities of single agents
and implement these agents.
 In this study, we are interested by the internal
testing level exactly integration testing. In next section,
we present in detail a testing process model and we
discuss how to derive systematically test cases from
goal models.

J. Computer Sci., 7 (5): 690-697, 2011

693

MATERIALS AND METHODS

 The purpose of integration testing is to assure that
agents work together correctly sharing tasks and
resources to achieve collaborative or agent goals. MAS
Integration testing consist of the following tasks:

• Tests the interaction of agents, communication

protocol and semantics, interaction of agents with
the context, integration of agents with shared
resources, regulations enforcement

• Observe emergent properties, collective behaviors
• Make sure that a group of agents and contextual

resources work correctly together

 To acquire these objectives, we consider
dependencies between agents for collaborative goals
and dependencies between agents and resources. In
fact, these dependencies are sources that lead to
interactions, i.e. agent-agent and agent-context
interactions.
 We can use them to derive test suites that apply
these dependencies and then evaluate the result of the
interactions. Following the V model, Integration test
suite derivation takes place once detailed design is
completed, so that we can use the interaction protocol
design.
 The test suite derivation for collaborative goals,
represented by agent-agent interaction, consists of the
following steps (Fig. 2): In the system architectural
design we describe a set of collaborative goals. For
each of these goals we recognize agents that are
involved, interaction scenarios, protocols and ontology.
Then, we identify fulfillment criteria for the goal.
Finally, for each scenario we can determine a test suite
making use of data identified, i.e. agents, protocols,
criteria and so on.
 The test suite derivation for collaborative goals,
represented by agent-context interaction, consists of
testing their perception and influence capabilities. That
is, we need to make sure that the agents under test are
able to gather changes concerning the interested
resources. We test whether they can take on such
resources properly. The following steps guide us when
deriving test suites for testing the agent-context
interaction (Fig. 3): For each agent type in the system
we list resources that the agent uses. Then, we describe
set of interaction scenarios, access policies, protocols
and other related factors. Finally, we define criteria for
each scenario and create a test suite for it.

Fig. 2: Test suite derivation for Agent-Agent

interaction flowchart

 Testing for emergent characteristics resulting from
agents interaction consists of verifying that all the
involved agents respect predefined rules and that the
expected group behaviors are actually noticed. Test
suites created for this objective should pay particular
attention on providing necessary context, so as to
facilitate the agent interaction under test and on binding
the rules that control the comportment of the agents
under test.
 In addition, test criteria for occurrence involve
human observation and common viewpoint because
different observers, with different viewpoints, may
view the testing outputs, i.e. emergent characteristics,
differently. So the definition of test criteria needs to
consider these issues into account.

J. Computer Sci., 7 (5): 690-697, 2011

694

Fig. 3: Test suite derivation for Agent-Context
interaction flowchart

 As with the other testing levels, integration test
suites are purposed at two distinctive points:

• To elaborate the interaction design and find a way

of solving integration problems as early as possible.
It is realized during the Detailed Design phase and
integration test suite derivation.

• To test the integration of the implemented agents
with one another and with the context, once these
are available. It can be started as soon as an agent or
a contextual resource is implemented. We do not
need to wait until all the involved entities are
implemented to start integration testing. We can use
Mock agents, which simulate agents' behaviors.

RESULTS

 To illustrate our approach, we introduce a multi-
agent system that is composed of several cleaner agents
working at a public garden. This software could be
deployed on a physical platform composed of a set of
moving robots. Robots are in charge of keeping the
garden clean and agents in the system have to
collaborate to optimize their work. Following the
guidelines of Tropos, we do the architectural design of
the cleaning MAS (Fig. 4).

G1: Teamwork is a collaborative goal that involves all
the cleaner agents. When we go further into the detailed
design of the agent, in Fig. 5, we determine two
interaction scenarios:

• One cleaner agent broadcasts information about its

location.
• The agent receives a message broadcast from

another cleaner agent.

 Let's consider scenario 1, Fig. 6 shows the detailed
design of the scenario: first, an agent sends a request to
the Agent Management System (AMS) to get the
addresses of other cleaner agents. Once a list of agents
is returned, the agent broadcasts a message containing
position information to all the agents in the list.
 In order to test this scenario, we create the test case
described in Table 1.
 Based on goal models specified in the cleaner
agent architectural design (Fig. 5), we identify four
resources (garbage, bins, obstacles and recharging
stations) that give rise to four integration test cases,
following the steps described in agent-context
interaction flowchart (Fig. 3). The test scenarios
presented in Table 2 are abstract and we keep them so
to make our example simple and understandable.

DISCUSSION

 At the MAS integration testing level, effort has
been put in agent interaction to verify dialogue
semantics:

• Padgham use design artifacts (e.g., agent interaction

protocols and plan specification) to make available
automatic identification of the source of errors
detected at run-time (Padgham et al., 2005). A
central debugging agent is inserted in the MAS to
control the agent interactions. It receives a copy of
each message exchanged between agents, during a
specific conversation. Interaction protocol
specifications corresponding to the conversation are
sent back and then analyzed to discover
automatically incorrect situations.

J. Computer Sci., 7 (5): 690-697, 2011

695

Fig. 4: MAS architecture

Fig. 5: Cleaner agent architecture

Fig. 6: Broadcast position information protocol

J. Computer Sci., 7 (5): 690-697, 2011

696

Table 1: Test case derived for broadcast position information
Test case Scenario Criteria
TC1 Instantiate two cleaner agents working The two agents register themselves with the AMS
 together and monitor the communication The two agents send requests to the AMS
 between these two agents and between The two agents send messages to each other
 each of them and the AMS The content of the messages is valid

Table 2: Test case derived for G1 (teamwork)
Test case Scenario Criteria
TC1 Given an actual area of the garden (A for short) The agents do not overlap their cleaning areas
 Cleaner Agents work together in area A
TC2 There is two recharging stations (X1; X2) in A There is no conflict with regard to the recharging station
TC3 There is a bin in each area The cleaner agent put the garbage in the nearest bin
TC4 There is p obstacles in the area A The cleaner agent must identify the objects and avoid obstacles
 by changing the direction

• The ACL Analyzer tool runs on the JADE platform.

It acquires all exchanged messages between agents
and stores them in a relational database. This
approach use clustering techniques to construct agent
interaction graphs that assist the detection of omitted
interaction between agents that are expected to
communicate, unbalanced execution configurations,
overhead data exchanged between agents. This tool
has been improved with data mining techniques to
apply results of the execution of large scale MAS
(Botia et al., 2006).

• (Ekinci et al., 2009) view integration testing of
MAS rather abstract. They considered system goals
as the source cause for integration and apply the same
approach for testing agent goals (unit according to
their view) to test these goals.

• (Rodrigues et al., 2005) take benefit of social
behavior, i.e., norms, rules, that prescribe
permissions, obligations and/or prohibitions of
agents in an open MAS to integration test.
Information available in the specifications of these
communications causes a number of assertions
types, such as time to live, role, cardinality and so
on. During test execution, a special agent called
Report Agent will observe events and messages in
order to generate analysis report afterwards.

 In summary, most of the modern researches work
on testing software agent and MAS focuses essentially
on agent and integration level. Basic issues of testing
software agents like message passing,
distributed/asynchronous have been considered; testing
frameworks have been proposed to facilitate testing
process. However, there are still many points for further
investigations, like:

• A complete and comprehensive testing process for
software agents and MAS.

• Test inputs definition and generation to deal with
open and dynamic nature of software agents and
MAS.

• Test criteria: How to judge if an emergent property
is correct? How to check the mutual relationship
between macroscopic and agent behaviors.

• Reducing/removing side effects in test execution
and monitoring because introducing new entities in
the system, e.g., mock agent tester and monitoring
agent as in many approaches can influence the
behavior of the agents under test and the
performance of the system as a whole.

 The proposed methodology contributes to the
existing AOSE methodologies by providing:
• A testing process model, which complements the

development methodology by drawing a connection
between goals and test cases.

• Systematic way for deriving test cases from goal
analysis.

CONCLUSION

 This study introduced a test suite derivation
approach for integration testing that takes goal-oriented
requirements analysis artifact as the core elements for
test case derivation. The proposed process has been
illustrated with respect to the Tropos development
process. It provides systematic guidance to generate test
suites from modeling artifacts produced along with the
development process. We have discussed how to derive
test suites for integration test from architectural and
detailed design of the system goals. These test suites can
be used to observe emergent properties resulting from
agent interactions and make sure that a group of agents
and contextual resources work correctly together.

J. Computer Sci., 7 (5): 690-697, 2011

697

 In this study, we have presented a process for
integration test case generation. In the future work, we
will investigate other testing type like system testing
and agents testing.

REFERENCES

Bellifemine, F.L., G. Caire and D. Greenwood, 2007.

Developing Multi-Agent Systems with JADE. 1st
Edn., Willey, ISBN: 978-0-470-05747-6, p: 300.

Botia, J., J. Gomez-Sanz and J. Pavon, 2006. Intelligent
data analysis or the verification of multi-agent
systems interactions. Proceedings of the 7th
International Conference of Intelligent Data
Engineering and Automated Learning, Sep. 20-23,
Burgos, Spain, pp: 1207-1214. DOI:
10.1007/11875581_143

Cossentino, M., 2008. From Requirements to Code with
PASSI Methodology. In: Intelligent Information
Technologies: Concepts, Methodologies, Tools and
Applications, Sugumaran, V. (Ed.). Oakland
University, USA., pp: 491-512. ISBN: 10: 1-
59904-941-4

Dardenne, A., A. Lamsweerde and S. Fickas, 1993.
Goal-directed requirements acquisition. Sci.
Comput. Programm., 20: 3-50. DOI:
10.1016/0167-6423(93)90021-G

Dastani, M., M. Riemsdijk and J. Meyer, 2006. Goal
types in agent programming. Proceeding of the
17th European Conference on Artificial
Intelligence, Aug. 28-Sep. 1st, IOS Press,
Amsterdam, Netherlands, pp: 220-224. DOI:
10.1145/1160633.1160867

Ekinci, E., M. Tiryaki, O. Cetin and O. Dikenelli, 2009.
Goal-oriented agent testing revisited. Proceedings
of the 9th International Workshop on Agent-
Oriented Software Engineering, May 12-13,
Springer-Verlag, Portugal, pp: 85-96. DOI:
10.1007/978-3-642-01338-6_13

Fuxman, A., L. Liu, J. Mylopoulos, M. Pistore and M.
Roveri et al., 2004. Specifying and analyzing early
requirements in Tropos. Requirements Eng., 9:
132-150. DOI: 10.1007/s00766-004-0191-7

Gatti, M. and A. Staa, 2006. Testing and Debugging
Multi-Agent Systems: A State of the Art Report.
http://www.dbd.pucrio.br/depto_informatica/06_04
_gatti.pdf

Henderson-Sellers, B. and P. Giorgini, 2005. Agent-
oriented methodologies. 1st Edn., Idea Group Inc.,
Hershey, PA, ISBN: 1591405815, pp: 413.

Houhamdi, Z. and B. Athamena, 2011. Structured
system test suite generation process for multi-agent

system. Int. J. Comput. Sci. Eng., 3: 1681-1688.
http://www.enggjournals.com/ijcse/doc/IJCSE11-
03-04-036.pdf

Huget, M.P. and Y. Demazeau, 2004. Evaluating
multiagent systems: A record/replay approach.
Intelligent Agent Technology. IAT 2004.
Proceedings of IEEE/WIC/ACM International
Conference Sep. 20-24, Beijing, China, pp: 20-24.
DOI: 10.1109/IAT.2004.1343013

Maamri, R. and Z. Sahnoun, 2007. MAEST: Multi-
agent environment for software testing. J. Comput.
Sci., 3: 249-258. DOI: 10.3844/jcsp.2007.249.258

Mylopoulos, J. and J. Castro, 2000. Tropos: A
Framework for Requirements-Driven Software
Development. Information Systems Engineering:
State of the Art and Research Themes, Lecture
Notes in Computer Science, Springer-Verlag.
Berlin, 2068: 108-123. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.17.4590

Nguyen, C., A. Perini and P. Tonella, 2010. Goal-
oriented testing for MASs. Int. J. Agent-Oriented
Software Eng., 4: 79-109. DOI:
10.1504/IJAOSE.2010.029810

Padgham, L., M. Winikoff and D. Poutakidis, 2005.
Adding debugging support to the Prometheus
methodology. Eng. Appli. Artificial Intell., 18:
173-190. DOI: 10.1016/j.engappai.2004.11.018

Pavon, J., J. Gomez-Sanz and R. Fuentes-Fernandez,
2005. The INGENIAS Methodology and Tools. In:
Agent Oriented Methodologies, Henderson-Sellers
and Giorgini (Eds.). Idea Group, USA., pp: 236-
276. ISBN: 1-59140-581-5

Penserini, L., A. Perini, A. Susi and J. Mylopoulos,
2006. From capability specifications to code for
multi-agent software. Proceedings of the 21st IEEE
International Conference on Automated Software
Engineering, Sep. 18-22, IEEE Computer Society
Tokyo, Japan, pp: 253-256. http://doi.
ieeecomputersociety.org/10.1109/ASE.2006.38

Perini, A., M. Pistore, M. Roveri and A. Susi, 2003.
Agent-oriented modeling by interleaving formal
and informal specification, agent-oriented software
engineering IV. Proceedings of the 4th
International Workshop, July 15, Melbourne,
Australia, pp: 36-52. DOI: 10.1007/978-3-540-
24620-6_3

Rodrigues, L., G. Carvalho, P. Barros and C. Lucena,
2005. Towards an integration test architecture for
open MAS. Proceedings of the 1st Workshop on
Software Engineering for Agent-Oriented Systems,
Oct. 3, Uberlância, Brasilia, pp: 60-66.
http://www.les.inf.pucrio.br/
seas2005/file/lRodrigues.pdf

