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Abstract: Problem statement: A common way to define and measure coupling is through structural 
properties and static code analysis. However, because of polymorphism, dynamic binding and the 
common presence of unused code in commercial software, the resulting coupling measures are 
imprecise as they do not perfectly reflect the actual coupling taking place among classes at run-time. For 
example, when using static analysis to measure coupling, it is difficult and sometimes impossible to 
determine what actual methods can be invoked from a client class if those methods are overridden in the 
subclasses of the server classes. Approach: Coupling measurement has traditionally been performed 
using static code analysis, because most of the existing work was done on non-object oriented code and 
because dynamic code analysis is more expensive and complex to perform. We refer to this type of 
coupling as dynamic coupling. In this study we propose a dynamic and efficient measurement technique 
over object oriented software. Result: We propose a hybrid model to measure the dynamic coupling 
present in distributed object oriented software. The proposed method has three steps; they are 
instrumentation process, post process and coupling measurement. First, the instrumentation process is 
performed. In this process, to trace method calls, a modified instrumented JVM has been used. During 
this process, three trace files, .prf, .clp and .svp are created. In the second step, the information present 
in these files, are merged. At the end of this step, the merged detailed trace of each Jvms contains 
pointers to the merged trace files of the other JVM’s such that the path of each remote call from the 
client to the server can be uniquely identified. Conclusion: Finally, the coupling metrics are measured 
dynamically. The proposed system was implemented in JAVA. The implementation results show that 
the proposed system effectively measures the dynamic coupling. 
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INTRODUCTION 
 
  Software engineering describes the group of 
methods that construct and support software products 
by employing an engineering approach. Methods based 
on models and theories are employed by engineering 
disciplines. Specifying a hypothesis, designing and 
performing an experiment to verify its truth and 
interpreting the results are involved in scientific 
methods. Measuring the variables differentiates cases, 
measuring the changes in behavior and measuring the 
causes and effects are the supportive scientific method 
measurements. After the validity of a model or the truth 
of a theory is confirmed by scientific method, the 
theory is applied to practice by continuously using 
measurements. More visible characteristics and 

relationships in estimating the enormity of problems 
and in shaping a solution to problems can be obtained 
by means of effective measurements. Coupling analysis 
is one of the diverse methods used in software system 
for modeling and measuring the relationships between 
components. Two components having any type of 
connection or relationship between them are coupled by 
coupling analysis. Generally, the coupling nature has 
been categorized into diverse levels or types.  
 Coupling analysis attempts to capture all the 
attributes of the relationships between components of a 
given software program, by defining a theoretical 
model. By defining a set of measures, the coupling 
levels are also quantified by it. On a range of crisis that 
are related to the interaction among components, the 
theoretical model and the measurement set serve as a 
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foundation for implementing complexity analysis. A 
major role is played by software metrics in the planning 
and control of software development projects. Software 
development and maintenance has important 
applications for coupling measures. In software, the 
causes for structural complexity are explained and 
quality attributes such as fault-proneness, ripple effects 
of changes and changeability are predicted by coupling 
measures. The extent to which each program module 
depends on each one of the other modules is termed as 
coupling or dependency. Static usage dependencies 
between the classes in an object-oriented system are 
portrayed by coupling measures. “Static” couplings 
only are taken into account by conventional coupling 
measures. They may considerably underestimate the 
complexity of software leading to underestimation of 
code inspection, testing and debugging needs because 
dynamic coupling due to polymorphism are not taken 
into account. Therefore, inferior predictive accuracy is 
likely in quality models that utilize static coupling 
measurement.  
 Works available in the literature for software 
metrics have mainly concentrated on centralized 
systems and only very few of them have focused on 
distributed systems and more specifically on service-
oriented systems. Conventional non distributed systems 
differ from systems with distributed components in 
several ways including communication type, latency, 
concurrency, partial, versus total failure and referencing 
parameters- passing strategies. Normally, distributed 
systems with service oriented components are more 
complex because they accomplish efficiency and other 
quality characteristics in a more heterogeneous 
networking and implementation environment. The 
importance of software quality has been accepted a 
matter of great concern not only for the developers but 
also for the business and government customers.  
 As it was well-Known before, quality depends 
mainly upon the maintainability of the software. 
Coupling measurement is undoubtedly one of the 
benchmarking methods whether the ready-to-launch 
application has reliable maintainability or not. The 
measurement, in one hand, has traditionally been 
performed simply using static code analysis at the stage 
of system testing or sometimes at the trial operation 
stage. The static analysis is an appropriate measure 
while we were using traditional programming languages 
like COBOL, FORTRAN, Pascal and C among others. 
With the crowded popularity of Object-Oriented (OO) 
languages like C++, Visual C, Java and applications 
implemented in those OO languages, on the other hand, 
the dynamic coupling measure could be used for the 

evaluation of the systems and application. One of the 
main reason to apply dynamic coupling metrics is that it 
can reflects the reality of the tested application since the 
measure could pinpoint the pitfalls and shortages that 
are not to be expected to be found with static coupling 
measure although dynamic measure takes much more 
time to quality-test especially if the size of the subject 
application is large. 
 In the context of object-oriented systems, 
research related to quality models has focused mainly on 
defining structural metrics (e.g., capturing class 
coupling) and investigating their relationships with 
external quality attributes (e.g., class fault-proneness) 
(Chidamber et al., 2005). The ultimate goal is to 
develop predictive models that may be used to support 
decision making, e.g., decide which classes should 
undergo more intensive verification and validation. 
Regardless of the structural attribute considered, most 
metrics have been so far defined and collected based on 
a static analysis of the structural attribute considered, 
most metrics have been so far defined and collected 
based on a static analysis of external quality attributes, 
such as fault-proneness (Briand and Labiche, 2002), 
ripple effects after changes (Briand et al., 1999; Kabaili 
et al., 2001) and changeability (Arisholm, 2001; 2002; 
Arisholm et al., 2001, Aly and Abuelnasr, 2010). 
However, many of the systems that have been studied 
showed little inheritance and, as a result, limited use of 
polymorphism and dynamic binding (Deligiannis et al., 
2002). As the use of object-oriented design and 
programming matures in industry, we observe that 
inheritance and polymorphism are used more frequently 
to improve internal reuse in a system and facilitate 
maintenance. Though no formal survey exists on this 
matter, this is visible when analyzing the increasing 
number of open source projects, application frameworks 
and libraries. The problem is that the static, coupling 
measures that represent the core indicators of most 
reported quality models (Briand and Labiche, 2002) 
lose precision as more intensive use of inheritance and 
dynamic binding occurs. This is expected to result in 
poorer predictive accuracy of the quality models that 
utilize static coupling measurement. 
 A common way to define and measure coupling is 
through structural properties and static code analysis. 
However, because of polymorphism, dynamic binding 
and the common presence of unused (“dead”) code in 
commercial software, the resulting coupling measures 
are imprecise as they do not perfectly reflect the actual 
coupling taking place among classes at run-time. For 
example, when using static analysis to measure 
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coupling, it is difficult and sometimes impossible to 
determine what actual methods can be invoked from a 
client class if those methods are overridden in the 
subclasses of the server classes. 
 Coupling measurement has traditionally been 
performed using static code analysis, because most of 
the existing work was done on non-object oriented code 
and because dynamic code analysis is more expensive 
and complex to perform. For modern software systems, 
however, this focus on static analysis can be 
problematic, because although dynamic binding existed 
before the advent of object-orientation, its usage has 
increased significantly in the last decade. We refer to 
this type of coupling as dynamic coupling. An empirical 
evaluation of the proposed dynamic coupling measures 
is reported in which we study the relationship of these 
measures with the change proneness of classes. 
Preliminary results suggest that some dynamic coupling 
measures are significant indicators of change proneness 
and that they complement existing coupling measures 
based on static analysis. 
 
Classification of coupling measures: Existing coupling 
measures can be broadly classified into the following 
two groups: 
 
• Procedural programming coupling measures: these 

measure the coupling of software components that 
are implemented in procedural programming 
languages; examples include metrics proposed by ); 
Briand et al. (1999); Cartwright and Shepperd 
(2000); Chaumun et al. (2000) and Chidamber and 
Kemerer (2005). This class of metrics is heavily 
influenced by the classification of coupling levels. 
 

• Object-oriented coupling measures : these measure 
the coupling of software components that are 
implemented in object-oriented programming 
languages; examples include metrics prop osed by 
Chidamber et al. (2005); Deligiannis et al. (2002); 
and Freund and Wilson (1998) 

 
 Existing evidence suggests that dynamic coupling 
could be of strong interest. A preliminary empirical 
study on a Smalltalk system suggests that there is a 
significant relationship between change proneness and 
dynamic coupling (Arisholm, 2002). Furthermore, 
according to the results of a controlled experiment 
(Arisholm et al., 2001), static coupling measures may 
sometimes be inadequate when attempting to explain 
differences in changeability (e.g., change effort) for 
object-oriented designs. A follow-up study indicates that 
the actual flow of messages taking place between 

objects at run-time is often traced systematically by 
professional developers when attempting to understand 
object-oriented software (Kabaili et al., 2001). The 
results thus suggest that dynamic coupling measures 
could be of interest as predictors of the cognitive 
complexity of object-oriented software. Finally, 
dynamic coupling is more precise than static coupling 
for systems with dead (unused) code, which is 
uninteresting in most situations and can seriously bias 
analysis. 
 Traditional coupling measures take into account 
only “static” couplings. They do not account for 
“dynamic” couplings due to polymorphism and may 
significantly underestimate the complexity of software 
and misjudge the need for code inspection, testing and 
debugging. This is expected to result in poorer 
predictive accuracy of the quality models in Distributed 
Object-Oriented System that utilize static coupling 
measurement. 
 We first distinguish different types of dynamic 
coupling measures. Then, based on this Classification, 
we provide both informal and formal definitions, using a 
working example to illustrate the fundamental 
principles. Our measures were designed to fulfill five 
properties that we deem very important for any coupling 
measure to be well formed. In order to define measures 
in a way that is programming language independent, we 
refer to a generic data model defined with a UML class 
diagram. 
 
Entity of measurement: Since dynamic coupling is 
based on dynamic code analysis, coupling may be 
measured for a class or one of its instances. The entity of 
measurement may therefore be a class or an object. 
 
Granularity:  Orthogonal to the entity of measurement; 
dynamic coupling measurement can be aggregated at 
different levels of granularity (Table 1). With respect to 
dynamic object coupling, measurement can be 
performed at the object level, but can also be aggregated 
at the class level, i.e., the dynamic coupling of all 
instances of a class is aggregated. In practice, even when 
measuring object coupling, the lowest level of 
granularity is likely to be the class, as it is difficult to 
imagine how the coupling measurement of objects could 
be used. Alternatively, all the dynamic coupling of 
objects involved in an execution scenario can be 
aggregated. We can also measure the dynamic object 
coupling in entire use cases (i.e., sets of scenarios), sets 
of use cases, or even an entire system (all objects of all 
use cases). In the case where the entity of measurement 
is a class, the aggregation scale is different as we can 
aggregate dynamic coupling across an inheritance 
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hierarchy, a subsystem, a set of subsystems, or an entire 
system. 
Scope: Another important source of variation in the way 
we can measure dynamic coupling is the scope of 
measurement. This determines which objects or classes, 
depending on the entity of measurement, are to be 
accounted for when measuring dynamic coupling. For 
example, we may want, depending on the application 
context, to exclude library and framework classes. 
Simula At the level, we may want to exclude certain use 
cases modeling exceptional situations (e.g., error 
conditions, usually modeled as extended use cases 
(Lakhotia and Deprez, 1999) or objects that are 
instances of library or framework classes. At the very 
least, we may want to distinguish the different types of 
coupling taking place in these different categories. The 
choices we make regarding the entity, granularity and 
scope of measurement depend on how we intend to 
apply dynamic coupling. 
 

MATERIALS AND METHODS 
 
Collecting dynamic coupling data at distributed 
environment: It is crucial to collect dynamic coupling 
data in a practical and efficient manner, Based on 
dynamic UML models. 
 We propose a hybrid model to measure the 
dynamic coupling present in distributed object oriented 
software. The proposed method has three steps; they 
are:  
 
• Instrumentation process 
• Post process  
• Coupling measurement 

  
 First, the instrumentation process is performed. In 
this process, to trace method calls, a modified 
instrumented JVM has been used. During this process, 
three trace files, .prf, .clp and .svp are created. In the 
second step, the information present in these files, are 
merged. At the end of this step, the merged detailed 
trace of each Jvms contains pointers to the merged trace 
files of the other JVM’s such that the path of each 
remote call from the client to the server can be uniquely 
identified. Finally, the coupling metrics are measured 
dynamically. The proposed system was implemented in 
JAVA. The implementation results show that the 
proposed system effectively measures the dynamic 
coupling. 
Collecting distributed dynamic coupling measures at 
runtime in the distributed environment: To collect 
dynamic coupling data from Java applications, we 
developed a method: Trace Event. An overview of the 

architecture is depicted in Fig. 1. The method separates 
the collection and analysis of dynamic coupling data 
into three phases. In the first phase is instrumentation 
process, in this process we are using trace event method 
to trace the .prf, .clp and .svp from a running Java 
program is gathered and stored. This is accomplished 
by having the Java Virtual Machine (JVM) load a 
library of data collection routines that are called 
whenever specified internal events occur. The 
interfaces used for communication between the JVM 
and the library are called JVMPI (Java VM Profiling 
Interface) and JVMDI (Java VM Debugging Interface). 
Most of the data is collected from the profiling 
interface. The JVMDI is used to obtain the unique line 
number from which a method call originates (to obtain 
the information needed to calculate the measures). 
 During the instrumentation process phase, a user 
may interactively tag messages belonging to specific 
scenarios or use cases through a separate utility that 
communicates with distributed systems so through a 
socket connection. These tags can subsequently be used 
to limit the scope of measurement (e.g., to specific use 
cases) and, potentially, to compute measures at higher 
levels of granularity than the class (e.g., at the use case 
aggregation level). When the application terminates, the 
data is stored in a flat file structure (Data).  
 In the second phase, the information present in 
these files like .prf, .clp and, .svp are merged and the 
data is analyzed.  
 In the third phase, the merged detailed trace of 
each Jvms contains pointers to the merged trace files of 
the other JVM’s such that the path of each remote call 
from the client to the server can be uniquely identified. 
Finally, the coupling metrics are measured dynamically. 
The proposed system was implemented in JAVA. The 
implementation results show that the proposed system 
effectively measures the dynamic coupling. 
 Each measure is then computed simply by counting 
the number of elements in each set. Data from several 
runtime sessions can be merged by the analysis tool, 
such that accumulated dynamic coupling data can be 
computed. This merging capability enables the 
collection of coupling data for Java systems for which 
several concurrent instances of the JVM are used, such 
as large, distributed, or component-based systems. 
 Our coupling method utilizes interfaces provided 
by the Java Virtual Machine to collect the message 
traces and other information. Instrumentation can be 
done either at the source code or byte code level using 
tools such as the Java Compiler Compiler (JavaCC) 
(Java.net, 2003) or the Byte Code Engineering Library 
(BCEL) (Jakarta, 2003), respectively. However, 
utilizing the existing interfaces to the Java VM provides 
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several benefits over instrumentation. Instrumenting the 
code means that we are testing the instrumented version 
and not the actual version, which may lead to different 
outputs and system states. Since instrumentation causes 
a significant effort overhead, if the system is evolving 
rapidly, the project manager will also be reluctant to 
keep instrumenting the new versions. 
 Furthermore, source code instrumentation requires 
access to the Java application source code. This might 
be a disadvantage in cases where an application uses 
libraries for which the source code is not available. 
Finally, instrumentation might cause a significant 
performance overhead. In contrast to our approach, 
both source code and byte code instrumentation require 
that parts of the data collection software be written in 
Java. Subsequently, the byte code of the data collection 
software is interpreted by the Java VM. Since our data 
collection tool is written in C++ and dynamically linked 
with the JVM at runtime, there is probably less 
performance overhead associated with our approach 
than with data collection tools employing 
instrumentation. As performance overhead increases, 
the behavior of concurrent software is more likely to be 
affected by the data collection process and it is 
important to minimize the chances of such a problem 
occurring. 
 
Working example: We now use a small working 
example, as shown in Fig. 1, though it is assumed that 
our measures are collected through static and dynamic 
analysis of code, we use UML to describe a fabricated 
example, because it is more legible than pseudo code. 
This example is designed to illustrate the subtleties 
arising from polymorphism and dynamic binding. Other 
aspects, such as method signatures, have been 
intentionally kept simple to focus on polymorphism and 
dynamic binding. 
 The following sets can be derived from above Fig. 2: 
 
Class C = {c1, c2, c3, c4, c5} 
Method M = {m1, m2, m3} 
RMC= {(m1, c1), (m2, c2), (m3, c3)}: 
 
Definitions of measures: The measures are all defined 
as cardinalities of specific sets. They are therefore 
defined on an absolute scale and are amenable, as far as 
measurement theory is concerned; to the type of 
regression analysis performed. First, as mentioned 
above, we differentiate the cases where the entity of 
measurement is the object or the class. Second, as in 
previous static coupling frameworks (Briand et al., 
1999), we differentiate import from export coupling, 
that is the direction of coupling for a class or object. For 
example, we differentiate whether a method executed 

on an object calls (imports) or is called by (exports) 
another object’s method. Furthermore, orthogonal to the 
entity of measurement and direction of coupling 
considered, there are at least three different ways in 
which the strength of coupling can be measured. First, 
we provide definitions for import and export coupling 
when the entity of measurement is the object and the 
granularity level is the class. Phrases outside and 
between parentheses capture the situations for import 
and export coupling, respectively.  
 
Dynamic messages: Within a runtime session, it is 
possible to count the total number of distinct messages 
sent from (received by) one object to (from) other 
objects, within the scope considered. That information 
is then aggregated for all the objects of each class. Two 
messages are considered to be the same if their source 
and target classes, the method invoked in the target 
class and the statement from which it is invoked in the 
source class are the same. The latter condition reflects 
the fact that a different context of invocation is 
considered to imply a different message. In a UML 
sequence diagram, this would be represented as distinct 
messages with identical method invocations but 
different guard conditions. 
 

  
Fig. 1: Dynamic coupling data at distributed environment 
 

 
 
Fig. 2: Class diagram example (UML notation) 
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Table 1: Dynamic coupling classification 
  Granularity Scope 
S. No Entity  aggregation level (Include/Exclude) 
1 Class Class, inheritance Library files and classes, 
     Hierarchy, Systems Framework files  
     and Set of sub systems and classes 
 2  Object Class, object, set Library objects, 
   of use cases, set of Framework objects, 
   scenarios and systems Exceptional use cases  
 
Distinct method invocations: A simpler alternative is 
to count the number of distinct methods invoked by 
each method in each object (that invokes methods in 
each object). Note that this is different from simply 
counting method invocations as we count each distinct 
method only once. That information is then aggregated 
for all the objects of each class. 
 
Distinct classes: It is also possible to count only the 
number of distinct server (client) classes that a method 
in a given object uses (is used by). That information is 
then aggregated for all the objects of each class. 
 
Analysis of properties: We show here that the five 
coupling properties presented in (Briand et al., 1999) 
are valid for our dynamic coupling measures. The 
motivation is to perform an initial theoretical validation 
by demonstrating that our measures have intuitive 
properties that can be justified. 
 
Nonnegativity: It is not possible for the dynamic 
coupling measures to be negative because they measure 
the cardinality of sets, e.g., IC OM returns a set of 
tuples (m, c, m’, c’) 2 M_ C _M_ C. 
 
Null values: At the system level, if S is the set that 
includes all the objects that participate in all the use 
cases of the system, IC (M_S) is empty (and coupling 
equal to 0) if and only if the set of messages in S is 
empty. 
 
Monotonicity: If a class c is modified such that at least 
one instance o sends/receives more messages, its 
import/export coupling can only increase or stay the 
same, for any of the coupling measures. 
 
Impact of merging classes: Assuming c0 is the result 
of merging c1 and c2, thus transforming system S into 
S0, for any Coupling measure, we want the following 
properties to hold at the class and system levels: 
 
Coupling (c1)+ Coupling(c2) > = Coupling(c) 
Coupling (S) > = Coupling(S’) 
 
Merging uncoupled classes: Following reasoning 
similar to that above, if two classes’ c1 and c2 do not 

have any coupling, this means there is no tuple of the 
type (m1, c1, m2, c2) in IV. If we merge them into one 
class, we therefore cannot obtain tuples of the type (m1, 
c0, m2, c0). 
 
Related work: Arisholm et al. (2003) defined and 
validated a number of dynamic coupling metrics and 
studied the relationship of these with the change 
proneness of a system. They found that the dynamic 
coupling measurement did capture additional properties 
to the static coupling metrics and were good predictors 
of the change proneness of a class. Chidamber and 
Kemerer (2005) originally defined CBO for a class as “a 
count of the number of non inheritance related couples 
with other classes. An object of a class is coupled to 
another if methods of one class use methods or instance 
variables defined by the other. They later revised their 
definition to state (Thwin and Quah, 2003), “CBO for a 
class is a count of the number of other classes to which 
it is coupled. 
 Briand et al. (1999) carried out an extensive survey 
of the available literature on coupling in object-oriented 
systems and concluded that all the metrics at that time 
measured coupling statically, at the class level. No 
measures of runtime object level coupling had been 
proposed. 
 Yacoub et al. (1999) described a set of dynamic 
coupling metrics designed to evaluate the change-
proneness of a design. The metrics were applied at the 
early development phase to determine design quality. 
They used executable object-oriented design models to 
model the application to be tested. The metrics were 
evaluated for a number of different execution scenarios 
and they extended the scenarios to have an application 
scope. 
 Existing literature on software metrics is mainly 
focused on centralized systems. Yacoub et al. (1999) 
while work in the area of distributed systems, 
particularly in service-oriented systems, is scarce. 
Systems with distributed components differ from 
traditional non distributed systems along a number of 
dimensions including communication type, latency, 
concurrency, partial versus total failure and 
referencing/parameter-passing strategies. Distributed 
systems with service-oriented components are even 
more complex, since efficiency and other quality 
attributes must be achieved in a typically more 
heterogeneous networking and execution environments. 
Object-oriented analysis and design are popular 
concepts in today’s software development environment. 
They are often heralded as the silver bullet for solving 
software problems, while in reality there is no silver 
bullet; object-oriented has proved its value for systems 
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that must be maintained and modified. Object-oriented 
software development requires a different approach 
from more traditional functional decomposition and data 
flow development methods. While the functional and 
data analysis approaches commence by considering the 
systems behavior and/or data separately; object-oriented 
analysis approaches the problem by looking or system 
entities that combine them. Object-oriented analysis and 
design focuses on objects as the primary agents involved 
in a computation; each class of data and related 
operations are collected into a single system entity. The 
concepts of software metrics are well established and 
many metrics relating to product quality have been 
developed and used. For evaluating software quality that 
has four goals 
 
• Stability o f requirements and design 
• Product quality 
• Testing effectively and 
• Implementation effectively 
 
 With object-oriented analysis and design 
methodologies gaining popularity, it is time to start 
investigating object-oriented metrics with respect to 
these goals. 
 

RESULTS 
 
         The coupling metrics for Distributed Object 
Oriented System, which is proposed in this paper, was 
implemented in the working platform of JAVA (version 
JDK 1.6). The results obtained from the proposed 
method are described as follows. 
 

 
 

Fig. 3: Initial screen obtained in the proposed system 

When we execute the proposed method, the initial 
screen obtained which is described in Fig. 3. In this, the 
browse button is used to select the package.  In Fig. 4, 
the instrumentation process is described. 

 

 
 

Fig. 4: The sample output obtained in the 
Instrumentation process 

 

 
 

Fig. 5: The static coupling measurements 
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Fig. 6: The dynamic coupling measurements 

 
         These Fig. 5 and 6 show, the number of packages 
used in both static and dynamic coupling. In this, the 
packages are used by both client and servers. 
 

DISCUSSION 
 

          In this paper, we have proposed a new approach 
to the computation of dynamic coupling measures in 
DOO systems by introspection and adding trace events 
into methods. First, we provide formal, operational 
definitions of coupling measures and analysis. We 
propose dynamic coupling measures for distributed 
object-oriented systems i.e., coupling measurement on 
both clients and server dynamically. We described the 
classification of dynamic coupling measures. The 
motivation for those measures is to complement 
existing measures that are based on static analysis by 
actually measuring coupling at runtime in the hope of 
obtaining better decision and prediction models because 
we account precisely for inheritance, polymorphism 
and dynamic binding. Admittedly, many other 
applications of dynamic coupling measures can be 
envisaged. However, investigating change proneness 
was used here to gather initial but tangible evidence of 
the practical interest of such measures.  Finally we 
propose our dynamic coupling measurement techniques 
which involve Introspection Procedure, Adding trace 
events into methods of all classes and Predicting 

Dynamic Behavior while running the source code.  The 
source code is filtered to arrive the Actual Runtime 
used Source Code which is then given for any standard 
coupling technique to get the Dynamic Coupling. 

 
CONCLUSION 

 
 In the above we have discussed about the 
distributed object oriented system for coupling 
measurement, in future we have to analyses some steps 
to showcase that our proposed scheme behaves 
efficiently than the existing one. We are analyzing the 
various Coupling Measurement in Object Orient 
Software and propose the Hybrid model in Distributed 
Object Oriented (DOO) Software for dynamic coupling 
measurement. 
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